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ENDS IN FREE MINIMAL SPANNING FORESTS1

BY ÁDÁM TIMÁR

Indiana University

We show that for a transitive unimodular graph, the number of ends is
the same for every tree of the free minimal spanning forest. This answers a
question of Lyons, Peres and Schramm.

1. Introduction. Let G = (V ,E) be a graph and let {U(e)}e∈E be indepen-
dent uniform [0,1] random labels assigned to its edges. Define the free minimal
spanning forest [FMSF or FMSF(G)] of G as the set of edges e where U does
not attain its maximum at e for any cycle containing e. The wired minimal span-
ning forest [WMSF or WMSF(G)] is defined analogously: this is the set of edges e

where U does not attain its maximum at e for any cycle or any bi-infinite simple
path containing e. It is easy to see that the random graphs defined this way are
indeed spanning forests. When there is no need to specify whether we refer to the
free or the wired forest, we call it MSF.

Minimal spanning forests of finite graphs have been studied for a long time. In
this case, MSF is the tree that has minimum sum of weights over its edges, which
make MSFs essential for certain optimization problems. The interest towards min-
imal spanning forests in infinite graphs arose because of their close connections
to percolation. See the paper of Lyons, Peres and Schramm [2] for the history and
further references.

In what follows, it is assumed that the infinite graph G considered is locally
finite, transitive and unimodular (e.g., it may be a finitely generated Cayley graph).

In [2] various properties of MSFs are proved. Several open questions are listed
there, one of which is the following. Given a transitive unimodular graph G, is
it true that if FMSF(G) �= WMSF(G), then every tree of FMSF(G) has infinitely
many ends? The condition FMSF(G) �= WMSF(G) implies that at least one tree
of FMSF(G) has infinitely many ends. From Proposition 3.6 of [2] we know that
FMSF(G) �= WMSF(G) can hold only if G is nonamenable. In this case every
component of WMSF(G) has one end. Hence our question can be rephrased: does
every tree of FMSF(G) have infinitely many ends provided that one of them has in-
finitely many ends? Or, equivalently, are the (infinite) components of the FMSF of
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a nonamenable graph indistinguishable by the number of their ends? The indistin-
guishability of infinite clusters is known when the percolation process is insertion
tolerant [3], and the same question about MSFs is one of the challenging questions
about MSFs.

In this paper we shall prove that the trees of the FMSF all have the same num-
ber of ends. Note that if an invariant tree has infinitely many ends, then there are
2ℵ0 ends. (For a proof one can use Lemma 2.2.) Hence, our result says that if
FMSF(G) �= WMSF(G), then every FMSF-tree has uncountably many ends.

For its central role, let us give the definition: an end of a tree T is an equivalence
class on the set of (simple) paths in T , where two paths are equivalent iff their
symmetric difference is finite. Suppose that P is a representing path for an end ξ

and x is some vertex of P . Let C be the component of T \ {x} that contains all
but finitely many vertices of P . If x could be chosen so that any path in C differs
from P in only finitely many edges (i.e., if C has only one end), then we say that
ξ is an isolated end.

We shall use the mass transport principle (MTP) several times, by the following
simple corollary of it.

PROPOSITION 1.1. Let G be a unimodular transitive graph, and let S be a
random set of disjoint infinite subsets of V (G), where the distribution of S is in-
variant under the automorphisms of G. Then one cannot assign a finite nonempty
subset to each (or at least one) set in S in a way that is equivariant with S.

A description of the mass transport principle can be found, for example, in [2].
We shall not always mention “almost always” when this is the case. We shall

use without mentioning that MSF is ergodic (as proved in [2]); hence we do not
distinguish between invariant events of positive probability or of probability 1.

We shall prove the following.

THEOREM 1.2. If G is a transitive, unimodular graph and FMSF(G) is not
equal to WMSF(G), then every tree of FMSF has infinitely many ends.

REMARK 1.3. Notice that the claim here is equivalent to saying that no
WMSF-tree can coincide with an FMSF-tree. The number of WMSF-trees con-
tained in an FMSF-tree T is 1 more than the number of edges in T \ WMSF
(in case of infinitely many, they are equal). Since one cannot choose a finite sub-
set of T in an invariant way, T has infinitely many ends if and only if infinitely
many WMSF-trees are contained in it. By Theorem 3.12 of [2] the converse of
Theorem 1.2 is also true, because any tree of the WMSF has one end.

Let Gp denote the graph formed by the set of edges with labels < p and their
endpoints. Let G∗

p stand for the union of infinite components of Gp . Finally, given
a configuration κ of edge labels, denote by κp the set of edges whose label is
smaller than p in κ ; WMSF(κ) and FMSF(κ) stand for the respective spanning
forests for the configuration κ .
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2. Infinitely many ends of FMSF-trees. In this section we prove Theo-
rem 1.2.

Here is a brief sketch of the proof. If FMSF �= WMSF, then pc < pu. Choose a p

strictly between pc and pu. We shall use a kind of “weak” insertion tolerance for
the FMSF, that we define in the rest of this paragraph. Suppose that A is an event
of positive probability and e is an edge such that, on A, the endpoints of e are in
distinct connected components of Gp . Define A′ as the event arising from A when
we multiply the label of e by p. Then P[A′] > 0. Further, FMSF ∩ Gp on A′ is the
union of e and the FMSF ∩ Gp of the corresponding configuration in A. Hence,
if we denote the FMSF(G) ∩ Gp-trees that contain the endpoints of e on A by T

and T ′, then FMSF(G)∩ Gp on A′ contains a tree that is the union of e, T and T ′.
Also, it is easy to check that T and T ′ are infinite, and they belong to different
trees of FMSF(G).

So the edge e was “inserted” in the FMSF and the new event still has positive
probability. The definition that we outlined here is actually simpler (though basi-
cally the same) as the one that we shall need in the proof.

Now, if we suppose that there is a tree in FMSF with finitely many ends, then
“insert” a path between this tree and another FMSF-tree, to get an FMSF-tree with
at least two ends, some of which are isolated. Such a tree cannot occur with positive
probability, by a result proved in [3], giving a contradiction.

From now on, we confine ourselves to nonamenable graphs. As we have al-
ready mentioned, the hypothesis of Theorem 1.2 fails for amenable graphs. For
nonamenable graphs, we will use repeatedly the fact that WMSF-trees have one
end, by Theorem 3.12 in [2].

The following is Proposition 3.6 in [2].

LEMMA 2.1. Let G be a unimodular transitive graph. Then the following are
equivalent:

(i) FMSF(G) is not equal to WMSF(G).
(ii) pc(G) < pu(G).

Another tool we need is the following lemma, which was first stated in [3].

LEMMA 2.2. Let F be a random forest in a unimodular transitive graph G

whose distribution is invariant under the automorphism group of G. Then no tree
of F with infinitely many ends can have an isolated end.

PROOF. Otherwise we could assign vertex x to each maximal 1-ended com-
ponent of F \ {x}, giving an MTP contradiction. �

We say that the components C1 and C2 of a subgraph of a graph G are connected
by a path P if C1 ∪ C2 ∪ P is connected and one endpoint of P is in C1 and the
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other one is in C2. An inner vertex of a path P is a vertex different from the
endpoints of P .

PROOF OF THEOREM 1.2. We prove by contradiction. Suppose that there is a
tree of WMSF(G) that is also a tree of FMSF(G). (This is the negation of our claim
by Remark 1.3.) Call trees with this property lonely. As a corollary of Proposi-
tion 3.1 of [1] (also repeated in [2]), the MSF intersects some infinite cluster of Gp

in an infinite component whenever p > pc.
Fix some p ∈ (pc,pu). Such a p exists by Lemma 2.1. There exists a finite

path P in G such that with positive probability the following hold:

(i) P connects two components K1 and K2 of G∗
p .

(ii) The endpoint of P in K1 is a vertex from a lonely tree T (and of course
T ∩ K1 infinite).

(iii) No edge of T ∩ K1 is incident to any inner vertex of P .

Denote by D the set of edges incident to some inner vertex of P . Hence (iii)
says that T ∩ K1 ∩ D is empty.

Such a choice indeed exists because the countable union of events satisfying
the first two conditions for some finite P is just the event of having a lonely tree
and more than one component in G∗

p (which has probability 1). The last condi-
tion is fulfilled if we choose a path P of minimal length (and satisfying the other
conditions).

Fix P and let E be the event that (i), (ii) and (iii) hold. Define K1 and K2 as
in the criteria. For a configuration κ in E we can perform some of the following
transformations:

(1) Change the label U(e) of each edge e ∈ D \ P to a new label p + (1 −
p)U(e).

(2) Change the label U(f ) of each edge f ∈ P to a new label pU(f ).

Let κ ′′ be the configuration we get after applying (1) on κ ; let κ ′ be the one
we get after applying both transformations. The sets of every κ ′′ and κ ′ arising by
these couplings also have positive measures, since P[E] > 0. Now, the MSF in κ ′′
differs from MSF(κ) only by finitely many edges, since the values on the edges
differ only at finitely many places (Lemma 3.15 of [2]). Since we do not decrease
labels going from κ to κ ′′, the only thing that could change from FMSF(κ) \ D

(⊃ T ) to FMSF(κ ′′) is that a few edges become part of the FMSF (but only those
in D \ P might “fall out”). However, almost surely none of these new edges can
connect T with some other tree of FMSF(κp). Otherwise a tree of FMSF(κp) with
more than one end (i.e., infinitely many ends) would contain T and an isolated end
in it, contradicting Lemma 2.2. Hence T is in a lonely tree in κ ′′ as well as in κ .
(We mention that in κ ′′ the lonely tree containing T may have finitely many edges
not in T .)
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From κ ′′ we get κ ′ by changing the labels of the edges in P , according to (2).
Every edge of P becomes part of κ ′

p . They are also in FMSF(κ ′), because any cy-
cle through any edge f ∈ P intersects E(G) \ κ ′

p . (By the construction of κ ′′,
as we have already pointed out, no inner vertex of P is incident to any edge
in κ ′

p \ P .) Similarly, every edge of FMSF ∩ κ ′′
p is also in FMSF ∩ κ ′

p , because
any cycle that contains an edge in P (i.e., an edge whose label was changed) also
intersects E(G) \ κ ′

p .
Now we get to the final contradiction. Let S be the tree in WMSF(κ ′′) ∩ K2

adjacent to an endpoint of P . It is easy to check that |S ∩ K2| is infinite. Since P

belongs to FMSF(κ ′), the edges of T ∪ P ∪ S are in a tree T ′ of FMSF(κ ′) [by the
conclusions of the previous paragraph and that T ∪ S ⊆ FMSF(κ ′′)]. Hence T ′
has more than one end. Now, T ′ either has finitely many ends, in which case
T ′ \ WMSF(κ ′) is finite, giving an MTP contradiction, or T ′ has infinitely many
ends, in which case it has an isolated end (provided by T ), but that is impossible
by Lemma 2.2.

This completes the proof. �

REMARK 2.3. It is possible that our method can be used to prove indistin-
guishability of FMSF-trees when pc < pu. The “weak” insertion tolerance at p

(pc < p < pu) makes the arguments in [3] applicable in this setting, provided
that the existence of distinguishable FMSF-trees in G would imply that there are
distinguishable trees in FMSF(G)∩Gp . Unfortunately we could not prove this im-
plication. Further interesting properties, such as relentless merging, would follow
too. By this we mean that for pc < p1 < p2 < pu any tree in MSF ∩ Gp2 contains
infinitely many trees from MSF ∩ Gp1 .

Acknowledgments. I thank Russell Lyons and Gábor Pete for their comments
on the manuscript.

REFERENCES

[1] HÄGGSTRÖM, O., PERES, Y. and SCHONMANN, R. (1999). Percolation on transitive graphs
as a coalescent process: Relentless merging followed by simultaneous uniqueness. In Per-
plexing Probability Problems: Papers in Honor of H. Kesten (M. Bramson and R. Durrett,
eds.) 69–90. Birkhäuser, Boston. MR1703125

[2] LYONS, R., PERES, Y. and SCHRAMM, O. (2006). Minimal spanning forests. Ann. Probab.
34. To appear.

[3] LYONS, L. and SCHRAMM, O. (1999). Indistinguishability of percolation clusters.
Ann. Probab. 27 1809–1836. MR1742889

DEPARTMENT OF MATHEMATICS

INDIANA UNIVERSITY

BLOOMINGTON, INDIANA 47405-5701
USA
E-MAIL: atimar@indiana.edu
URL: mypage.iu.edu/~atimar

http://www.ams.org/mathscinet-getitem?mr=1703125
http://www.ams.org/mathscinet-getitem?mr=1742889
mailto:atimar@indiana.edu
http://mypage.iu.edu/~atimar

	Introduction
	Infinitely many ends of FMSF-trees
	Acknowledgments
	References
	Author's Addresses

