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AN URN MODEL OF DIACONIS1

BY D. SIEGMUND AND B. YAKIR

Stanford University and Hebrew University

An urn model of Diaconis and some generalizations are discussed.
A convergence theorem is proved that implies for Diaconis’ model that the
empirical distribution of balls in the urn converges with probability one to the
uniform distribution.

1. Introduction. Diaconis has formulated the following simple urn model.

EXAMPLE 1.1. Let G be a finite group, generated by g1, . . . , gr . Initially,
an urn contains r balls, each labeled by one of the generating elements. At times
n = r + 1, r + 2, . . . , two balls are drawn with replacement from the urn. The
labels on these balls are multiplied to form a new group element. A ball, bearing
this element as its label, is then added to the urn, increasing the number of balls
in the urn by one. Let Xk be the label indicator with respect to the kth ball (i.e.,
Xk is a vector of length |G|, with a one placed in the coordinate associated with
the ball’s label and zeros elsewhere). Let pg,n = ∑n

k=1 I{Xg,k=1}/n denote the
relative frequency of balls labeled g when the total number of balls in the urn
is n. As an application of Theorem 2.2 below, we verify a conjecture of Diaconis,
that pg,n → |G|−1, for all g ∈ G, as n → ∞ with probability one.

EXAMPLE 1.2. A special case of Example 1.1 occurs when the balls are
numbered either 0 or 1 and the group operation is addition modulo 2. Then pn,

the fraction of 1’s in the urn after n draws, converges to 1/2 with probability one.
As a variation of this special case, one can draw k ≥ 2 balls from the urn with
replacement and add a 0 or a 1 according as the number of 1’s drawn is even or
odd. Again, the fraction of balls numbered 1 converges to 1/2 with probability
one.

EXAMPLE 1.3. For an example motivated by a classical model in population
genetics (e.g., [2]), we suppose that the population size in a pure birth process at
the nth generation is kn ≥ n. The population consists of three kinds of individuals
corresponding to the three biallelic genotypes AA, Aa and aa, which have relative
fitness (i.e., probability of reproduction ) of 1− s,1,1− t , respectively. We assume
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s < 1, t < 1. In the most interesting special case 0 < s < 1,0 < t < 1, so the
heterozygote Aa has the greatest fitness. Let pn denote the fraction of A alleles
in the population at the n generation. Then under random mating, the relative
proportions of AA, Aa and aa genotypes that reproduce in the (n+ 1)st generation
are p2

n(1− s) : 2pn(1−pn) : (1−pn)
2(1− t). We assume that reproduction occurs

independently of the population size process. Does the fraction pn converge and
what is its limit? In this example it is natural to assume that kn grows exponentially,
so that the number of balls added to the urn in each generation is comparable to
the number of balls already in the urn. One could also add this feature to Examples
1.1 and 1.2.

2. Convergence to a fixed point. Consider a finite set G. Let G∗ be the
simplex of probability distributions over G and let T :G∗ → G∗ be a map of
the simplex into itself. The point q ∈ G∗ is a fixed point of the transformation
if T (q) = q . Below we investigate almost-sure convergence of the stochastic
sequence of empirical distributions {pn}, defined by the recursion:

pn+1 = kn

kn+1
pn +

∑kn+1
i=kn+1 Xi

kn+1
= k0p0 + ∑kn+1

i=1 Xi

kn+1
,

where {kn} is a monotone sequence of integer-valued random variable (i.e.,
kn+1 ≥ kn + 1, for all n), and Xi is a random vector that indicates an element
from G. The integer k0 is positive and p0 is a given initial distribution
vector. Consider the filtration Fn = σ {X1, . . . ,Xkn, k1, . . . , kn, kn+1}, for n ≥ 1.
We assume that, conditional on Fn,

kn+1∑
i=kn+1

Xi ∼ Multinomial
(
T (pn), kn+1 − kn

)
,(1)

and identify sufficient conditions to ensure the convergence of pn to a contracting
(cf. Assumption A1 below) fixed point of the transformation T .

Our argument is a two-fold application of the almost supermartingale conver-
gence theorem of Robbins and Siegmund [3]. We begin with a statement of that
theorem:

THEOREM 2.1. Let Zn, ξn, ζn be nonnegative random variables adapted to
the increasing sequence of σ -algebras Fn. Suppose that, for each n,

E(Zn+1|Fn) ≤ Zn + ξn − ζn.

Then limZn exists and is finite and
∑

ζn < ∞ almost surely on the event where∑
ξn < ∞.

Our main result relies on the following assumptions on the transformation T ,
the sequence {kn} and the initial distribution p0:
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ASSUMPTION A1. The collection Q = {q0, q1, . . . , qJ } of fixed points of T

is nonempty and finite and the fixed point q0 is contracting, that is, ‖T (p)− q0‖ <

‖p − q0‖, for all p ∈ G∗ − Q. The point q0 may be in the interior of G∗, but all
other fixed points are on the boundary (i.e., their supports are proper subsets of G).

ASSUMPTION A2. For all j > 0, let cj be a vector with 0’s in those
coordinates where qj has positive mass and 1’s in those coordinates where qj has
no mass. Assume cj is not equal to the zero vector (which is equivalent to assuming
that qj is on the boundary of G∗). Further assume that 〈cj ,p0〉 > 0 and for p not
orthogonal to cj , lim infp→qj

〈cj , T (p)〉/〈cj ,p〉 > 1.

ASSUMPTION A3. The increasing sequence, kn, of random integers satisfies
kn+1/kn ≤ C, for all n and for some constant C > 1 such that C − 1 < min{‖qi −
qj‖ : i �= j}.

THEOREM 2.2. Under Assumptions A1–A3, pn → q0 with probability one as
n → ∞.

PROOF. The proof consists of applications of Theorem 2.1 to (a) Zn =
‖pn − q0‖2 and (b) Zn = 1/〈cj ,pn〉. Consider first case (a). Let πn+1 = (kn+1 −
kn)/kn+1 and define X̄n+1 = ∑kn+1

i=kn+1 Xi/(kn+1 − kn). Observe that pn+1 −
q0 = (1 − πn+1)(pn − q0) + πn+1(X̄n+1 − q0). We take the the conditional
expectation given Fn of the squared norm of this identity and use the facts that
(i) E(X̄n+1|Fn) = T (pn) and (ii) the (conditional) second moment of a random
variable is the sum of its variance and the square of its expectation. Then by
regrouping terms and using the Cauchy–Schwarz inequality and Assumptions
A1 and A3, we see that

E(Zn+1|Fn) = Zn − 2πn+1(1 − πn+1)[Zn − 〈pn − q0, T (pn) − q0〉]
+ π2

n+1
[
E

(‖X̄n+1 − T (pn)‖2|Fn

) + ‖T (pn) − q0‖2 − Zn

]
≤ Zn − Zn

kn+1 − kn

C · kn

(
1 − ‖T (pn) − q0‖

‖pn − q0‖
)

+ kn+1 − kn

k2
n+1

.

Hence, by Assumption A1 and Theorem 2.1, since
∞∑

n=0

kn+1 − kn

k2
n+1

≤
∫ ∞

0

dx

x2 < ∞,

we see that, with probability one, limZn exists and is finite and the negative terms
of the process are summable. By the nonnegativity of the terms involved and by
the fact that

∞∑
n=0

kn+1 − kn

kn

≥
∫ ∞
k0

dx

x
= ∞,
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we can conclude that either Zn → 0 or ‖T (pn) − q0‖/‖pn − q0‖ −→n→∞ 1.
However, only fixed points produce equality in the contraction inequality.
Consequently, by Assumption A3, with probability one, pn converges to some
qj ∈ Q, the set of fixed points.

To eliminate the possibility that some qj with j > 0 is the limit, we consider
case (b): Zn = 1/〈cj ,pn〉. Indeed, we let Aj = {pn → qj } and show that
Zn converges to a finite limit on Aj , which would be a contradiction unless
P(Aj ) = 0. This will complete the proof of the theorem since pn must converge to
a fixed point.

We turn to proving the convergence of {Zn} on Aj . Define S̃n+1 = 〈cj ,∑kn+1
i=kn+1 Xi〉, p̃n = 〈cj ,pn〉 and T̃ (pn) = 〈cj , T (pn)〉. Note that p̃n+1 = [knp̃n +

(kn+1 − kn)S̃n+1]/kn+1. Conditional on Fn, S̃n+1 is the sum of a subset of the
coordinates of a multinomial vector and, hence, is distributed as Binomial(kn+1 −
kn, T̃ (pn)). Now

E[Zn+1|Fn] = E

[
kn+1

knp̃n + S̃n+1

∣∣∣Fn

]
=

kn+1−kn∑
s=0

kn+1

knp̃n + s
P(S̃n+1 = s|Fn).

The relations P(S̃n+1 = 0|Fn) = 1−∑kn+1−kn

s=1 P(S̃n+1 = s|Fn) and 1/(knp̃n+s)−
1/(knp̃n) = −s/(knp̃n + s) · 1/(knp̃n) produces

= Zn + kn+1 − kn

knp̃n

[
1 − kn+1

kn+1 − kn

kn+1−kn∑
s=1

s · P(S̃n+1 = s|Fn)

knp̃n + s

]
.(2)

We will proceed by showing that, on the event {p̃n → 0} ⊃ Aj , the term in
the square brackets is eventually strictly negative. Therefore, the positive part is
summable, and Theorem 2.1 can be used in order to conclude that limZn exists
and is finite.

We analyze separately the cases: (i) E(S̃n+1|Fn) < ε, (ii) ε ≤ E(S̃n+1|Fn) ≤ M ,
and (iii) E(S̃n+1|Fn) > M , for some prespecified 0 < ε < M < ∞ to be
determined later.

Consider case (i). By the monotonicity of the function x/(a + x), we obtain the
inequality [

· · ·
]

≤
[
1 − kn+1

kn+1 − kn

P(S̃n+1 ≥ 1|Fn)

knp̃n + 1

]
.

Now, P(S̃n+1 ≥ 1|Fn) = 1 − (1 − T̃ (pn))
kn+1−kn ≥ (kn+1 − kn)T̃ (pn)(1 − ε/2),

which leads to the inequality

≤
[
1 − (1 − ε/2)

knT (p̃n)

knp̃n + 1

]
.

If knp̃n → ∞, then Assumption A2 will produce a negative limit provided that ε

is small enough.
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To prove that knp̃n → ∞, it is sufficient to prove that
∑∞

n=0 I{S̃n+1≥1} is almost
surely infinite. Equivalently, it is enough to show

∞∑
n=n0

P(S̃n+1 ≥ 1|Fn) ≥
∞∑

n=n0

(kn+1 − kn)p̃n(1 − ε/2) = ∞,

for an appropriate n0. However, p̃n ≥ 〈cj ,p0〉/kn, and the statement follows from
the fact that {(kn+1 − kn)/kn} has an infinite sum.

Next consider case (ii). Since T̃ (pn) → 0, we must have that kn+1 − kn → ∞
and, thus, S̃n+1 behaves in distribution like a Poisson random variable (conditional
on Fn). This time we use the inequality[

· · ·
]

≤
[
1 − 1

(kn+1 − kn)p̃n

E

(
S̃n+1

1 + S̃n+1/knp̃n

∣∣∣Fn

)]
.

Case (ii) implies a lower bound on the term (kn+1 − kn)p̃n and a stochastic upper
bound on the random variable S̃n+1. It follows that the conditional expectation
∼ E(S̃n+1|Fn) = (kn+1 −kn)T̃ (pn), which produces a negative value in the square
brackets, by Assumption A2.

Finally, consider case (iii). By monotonicity, one gets that

s

a + s
≥ y · I{s≥y}

a + y

and, upon selecting y = (1 − ε1)E(S̃n+1|Fn), the inequality[
· · ·

]
≤

[
1 − kn+1P(S̃n+1 ≥ (1 − ε1)E(S̃n+1|Fn)|Fn)

kn[p̃n/(1 − ε1)T̃ (pn)] + (kn+1 − kn)

]
.

Chernoff’s inequality leads to the upper bound[
1 − kn+1

kn[p̃n/(1 − ε1)T̃ (p̃n)] + (kn+1 − kn)

(
1 − e−ε2

1M/2)]
.

Selection of a large enough M and a small enough ε1 will lead to a negative
limit, provided that (kn+1 − kn)/kn is bounded. This last condition is assured by
Assumption A3. �

3. Applications.

EXAMPLE 1.1. In the urn model of Diaconis the transformation takes the form

(T (p))g = ∑
h∈G

pg·h−1ph for g ∈ G.

Any uniform distribution over a subgroup is a fixed point of this transformation.
Conversely, any fixed point is a uniform distribution over a subgroup. The last
statement follows from the fact that the support of a fixed point is a subgroup since
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the support is closed under group operations and the group is finite. Moreover, by
the definition of a fixed point, the probability of each element in the support must
be equal to the maximum of all probabilities unless a contradiction is to occur. The
collection of uniform distributions over subgroups is finite.

Denote by q0 the uniform distribution over the entire group. Viewing
(
∑

h∈G pg·h−1ph)
2 as the square of the expectation of the random variable taking

on the value ph with probability pg·h−1 , we obtain from the Cauchy–Schwarz in-
equality that

∑
g∈G(

∑
h∈G pg·h−1ph)

2 ≤ ∑
g∈G p2

g , with strict inequality unless ph

is constant on its support. From this and direct computations, we see that T is con-
tracting, so Assumption A1 is met.

Let Gj be a proper sub-group of G. Observe that 〈cj ,p〉 assigns a probability
to G \ Gj . A product of two group elements, one belonging to Gj and the other
not belonging, produces a group element not belonging to Gj . It follows that

〈cj , T (p)〉 ≥ 2〈cj ,p〉(1 − 〈cj ,p〉).
If p0 assigns positive probabilities to generators of G, then 〈cj ,p0〉 > 0 and
Assumption A2 is fulfilled.

EXAMPLE 1.2. From the elementary fact that, when a coin is tossed k times,
the probability of an odd number of heads is [1 − (1 − 2p)k]/2, one can verify
the conditions of the theorem, to show that pn → 1/2 with probability one.
It is perhaps interesting to note that, when k is even, the transformation T (p)

is concave; when k is odd, it is concave to the left of 1/2 and convex to the right
of 1/2.

EXAMPLE 1.3. From the assumption of random mating, it follows that
T (p) = p(1 − ps)/[1 − p2s − (1 − p)2t], from which it easily follows that
0 and 1 are fixed points of T . If s and t are both positive or both negative, then
q∗ = t/(s + t) is also a fixed point; otherwise 0 and 1 are the only fixed points.
It is straightforward to show that when s and t are both positive, the interior point
t/(s + t) is attracting, so pn → t/(s + t) with probability one. (Like Example 1.2,
T is concave to the left of q∗ and convex to the right.) When s is nonpositive and t

is positive, the fixed point at 1 is attracting, and conversly in the case when s is
positive and t nonpositive. If s = t = 0, every point in [0,1] is a fixed point and
the sequence pn is a martingale, which converges with probability one to a random
limit. In the case when both s and t are negative, the fixed point at t/(s + t) is not
attracting. It seems intuitively clear that pn must converge to 0 or 1, but this does
not seem to follow from Theorem 2.2 without an additional argument.
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