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Let M be a noncompact metric space in which every closed ball is
compact, and leG be a semigroup of Lipschitz mappings &f. Denote by
(Yn)n>1 a sequence of independegitvalued, identically distributed random
variables (r.v.s), and by an M-valued r.v. which is independent of the
rv. Y, n > 1. We consider the Markov chaii¥,),>o with state spacé/
which is defined recursively byo=Z and Z, 11 = Y412, for n > 0.

Let & be a real-valued function ofi x M. The aim of this paper is to prove
central limit theorems for the sequence of r.&$Y,, Z,_1)),>1. The main
hypothesis is a condition of contraction in the mean for the actioMoof

the mappings,;; we use a spectral method based on a quasi-compactness
property of the transition probability of the chain mentioned above, and on a
special perturbation theorem.

1. Introduction. Let M be a noncompact metric space in which every closed
ball is compact, endowed with its BoreHield M. We denote byG a semigroup
of Lipschitz mappings oM and byg a o -field on G. We assume that the action
of G on M is measurable; that is, the maglefined byj (g, y) = gy is measurable
from (G x M, § ® M) to (M, M).

Let = be a probability distribution oG, and let(Y,),>1 be a sequence of
independent-valued random variables (r.v.’s) identically distributed according
to ir, defined on a probability spa¢g, ¥, P). The iterated random mappings,

n > 0, are defined by

Ro=1dy, R, =Y, ---Y1,n>1
Let Z be anM-valued r.v. which is independent of the r.v¥s, n > 1. The
sequenceéZ,),>o defined by
Zy,=R,Z n=>0,
is a Markov chain oM which is defined recursively by
Zo=2Z, Zny1=j(Ynt1, Zp) = Yn11Zy, n > 0.

Observe that we get here the general Lipschitz iterative modak pwhich has
been considered by many authors; see Duflo (1997) and Diaconis and Freedman
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(1999) to get an overview of the subject. Consider particularly the case where
the linear spac®4. The generalized linear autoregressive model is obtained when
G is the semigroup of affine mappings #&f. Replace in the preceding the linear
part of the action by that of a fixed Lipschitz mappifigof M. An elementg of
the semigroups is now defined by a vectdr, € M, and it acts onV/ according
to the formulagx = f(x) + b,. In this context the probability distributiom on G
is simply defined by a distribution on; thus we get the Lipschitz functional
autoregressive model.

Now let & be a real-valued measurable function @nx M. The aim of this
paper is to establish a central limit theorem with a rate of convergence and a local
central limit theorem for the sequence of r.v.'s

(S(Yn, Zn—l))nzl-

The interest of considering a functignof the couple(g, x) € G x M rather than
a function only depending on appears, for example, in the study of random
matrices products.

From the stochastic viewpoint, the context may be described as the study of
the sequence of r.v.'s obtained by composing the fundtiand the Markov chain
(X,)n>0 With state spacé& x M defined by

XOZ(IdM’Z)’ X}’l:(Y}’l!Z}’l—l)’ nzl

The main hypothesis will be a condition of contraction in the mean of the action
on M of the elements of; under the probability distributiomr. This property
enables us to make use of a refinement of the spectral method. Recall that the
spectral method was initiated by Nagaev (1957), and then used and improved by
many authors. It is fully described in Hennion and Hervé (2001), where references
are given. The spectral method is based on a quasi-compactness property of the
transition probabilityQ of the chain(X,),>0, and on a perturbation theorem
ensuring that, for small¢|, the Fourier kernelg(r) associated withQ and &
have spectral properties similar to thoseifln the present setting, the use of the
standard perturbation theory for operators leads to assume moments of exponential
type (cf. Milhaud and Raugi (1989) and Hennion and Hervé (2001), Chapter X,
Section 3). The main feature of this paper is the use of a perturbation theorem
of Keller and Liverani (1999) which is adapted to operators verifying a Doeblin—
Fortet inequality. By means of this theorem, we get the desired limit theorems
under moments of polynomial types.

Notice that there are several methods to cope with central limit theorems for
a function of a Markov chain; most known are regeneration and splitting, use of
central limit theorems for martingale increments and Lindeberg techniques. As
will be discussed later, when applied to the present context, some of these methods
can give a central limit theorem under hypotheses which are weaker than ours;
however, it seems that these methods have not yet been developed so far as to get
the central limit theorem with a rate of convergence and the local central limit
theorem of this paper. See Section 3 for more details.



1936 H. HENNION AND L. HERVE

2. Statementsof results. Forg € G, we set

d ’
c(g) =Sup{M X, YyEM, x #y},
d(x,y)
by assumptior(g) < +oc.
Forn € N*, we denote byr*" the distribution ofR,,. We choose a fixed point
in M. Forn > 1 andn € N*, we define the integrals:

My = G(1+c<g> + d(gx0, x0))" dn (g),
M; = /G c(g) (1+ c(g) + d(gxo, xo))"‘ldn(g),
e = /G c(g) maxte(g), 1" Ldx ™ (g).

Notice that, since (") is submultiplicative M/ < +oo implies €}" < +oo.
The statements below will appeal, on the one hand to the moment conditions
M, < 400 and :M;]/ < +o00, on the other hand, to the average contractivity

conditione(’f) < 1, for a suitable choice of, n’ > 1.
We consider a real-valued measurable funcéiam G x M satisfying:

CoNDITION RS. There exist, s € R, and measurable nonnegative functions
R, S onG such thatforall x, y e M andg € G,

|&(g, %) < R(g)(1+d(x,x0)",
1&(g,x) —&(g, M| < S(&)d(x, y)(1+d(x, x0) +d(y, x0)".

Observe that, if the second conditianCondition RS holds, then the first one
is also valid withr = s + 1 andR(g) = |£(g, x0)| + S(g). However, it is worth
noticing that this condition may be verified for a smaller exponerthis is the
case, for example, whef is bounded. This remark also shows that, without
a significant loss of generality, we could add to Condition RS the inequality
r < s+ 1; yet, we notice that, whenincreasesR(g) decreases. The case= 0
andr = 1 corresponds to functiorissuch that (g, -) is Lipschitz for allg € G.

At last, notice that, ifw €]0, 1], thend(-, -)* is a distance o/; consequently,
Condition RS involves the case of functichsuch tha& (g, -) is locally «-Hélder
forall g € G.

As in the Introduction, we denote ¥ a r.v. in M defined on(2, ¥, P), and

independent of the r.\¥,,, n > 1. We set

n
S =&k, Zr-1), n>1
k=1
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We now state central limit theorems for the seque®,,; more precise results
concerning the behavior of the sequeiRgZ, SZ), are given in Section 9.

A preliminary to all these statements is the existence of a probability distribution
on M which is preserved by the action af More precisely, the action oM of
the sequence of random mappinds,),>o defines a Markov chain: foyp € M,
the sequencer, yo),.>o is Markov with state spac#, initial distributioné,,, and
transition probabilityP defined by

yEM, Be M, P(y,B)=/GJIB(gy)dn(g)-

THEOREM | (Invariant probability measure).Assume that there exigt > 0
and an integerng > 1 such thatM, .1 < +oco andG(”j)1 <1

Then there exists oM, M) a unique P-invariant probability distributionv.
Moreoverwe have

/ d(x, x0)” Tt dv(x) < 400,
M

and the geometric ergodicity holds in the Prohorov distafitcdNamelythere exist
positive real number€ and«g < 1, such that for any probability distributionu.
on M satisfyingu(d(-, xg)) < +oo,and alln > 1,

dp(uP",v) < Cxp/%.

It must be noted that such an ergodicity result holds under much weaker
hypotheses; see the survey of Diaconis and Freedman (1999) and a recent result
in Bhattacharya and Majumdar (2004). In fact, the above statement is just the one
which fits the general hypotheses of the paper.

In the sequel our hypotheses will involve a parameges 0 and:

CONDITIONS #(yg). For

/
M}/0+1 < +OO’ M2y0+1 < +OO’

there existsio € N* such tha@é’;glrl <1

Sincee}(,’;?gl < Gé’}‘,glrl if the above conditions hold, then tiReinvariant distri-

butionv, whose existence is ensured by Theorem |, is suchuitaét, xg)?0*1) <
+o00; consequently, if the numberand the functionk in Condition RS verify
r <%+ % and/; R(g)?dn(g) < +oo, we have
| [ s x2dn@ ave) < +oo.
MJG

From now on we shall assume that

m= / f £(g, x)dr(g) dv(x) = 0.
MJG
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This causes no loss of generality since it is always possible to replagé — m.
Otherwise, we shall keep in mind that, & has theP-invariant distributionv,
then we havdE[d(Z,xo)VO“] < 400. However, unless otherwise stated, in the
sequelZ is not supposed to bedistributed.

At last, we define fog € G,

5(8) = 1+ c(g) + d(gxo, x0),
and forr > 0 and positive real valued measurable functibhd’ on G, we set
770V = [ Uee@ie® dre+ [ veie .

or more shortlyg™ (U, V) = 7 (Uc §%) 4+ 7 (V §711).

THEOREM A (Central limit). Assume¥ (yo) with yo > r + max{r, s + 1} and
that

/ R?drm < +00, g (R, R+ S) < +oo.
G

Then there exists a real number? > 0 such that under the condition
VA

E[d(Z, x0)"* 1] < 400, the sequence%)nzl converges in distribution to a

N (0, o2)-distributed rv.

As already mentioned, this statement is not the best known one; using our
spectral method, it is a stage to the two following results.

THEOREM B (Central limit with a rate of convergence)Assume¥ (yo) with
yo > 3r + max{r, s + 1} and that

/ R3dm <400,  g77"(R,R+S)+ g7 % (R% (R + S)R) < +00.
G

Then if 02 > 0, there exists a constanC such that when Z verifies
E[d(Z, x0)"*t1] < 400, we havefor all n > 1,

yot+1
SUpP[SZ < uo/n] — N(0,1)(] — oo, ul)| < C 1+ Eld(Z, x0)*]
ueR ﬁ

We denote by the Lebesgue measure @ Furthermore, a complex-valued
function onM is said to be locally Lipschitz if it is Lipschitz on every compact
subset ofM.

THEOREM C (Local central limit). Assume that the conditions of Theorém
hold, and thaté verifies the nonarithmeticity conditiothere is nor € R, ¢ #£ 0,
no X € C, |A| = 1, no bounded locally Lipschitz function on M with nonzero
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constant modulus on the supp@& of v, such that we havéor all x € X, and all
n>1,

eSiw(Ryx) = Mw(x), P-as.

Thenif 02 > 0, and if Z is such thatE[d(Z, xg)"°T1] < 400, we havefor every
continuous functioh onR such thatim | - ;0 u?h(u) =0,

lim o v/2wnElh(S;)] = L().

We end with a result which gives a criterion fer? > 0 and definess?
asymptotically.

THEOREMS. Assume¥ (yp) with y9 > 2r + s + 1 and that
g7 (R, R+ S) + g% (R% (R + S)R) < +00.

@ If 02~: 0,then there exists a real-valued locally Lipschitz funcoon M
satisfyingv(glz) < 400, and such that we haywith Z distributed according to,

£V, 2)=81(2) —61(1nZ),  P-as
(i) If the distribution ofZ verifiesE[d (Z, x0)?°T1] < +o0, then

o?=1lim }E[(S,ZZ)Z].
non

It will be seen later on (Theorems @nd 9) that the functionav and&; in
the two last statements must not be merely locally Lipschitz; they must belong to
certain spaces to be defined in the sequel.

In the following section, we show how these theorems apply to some cases of
interest. This being done, the rest of the paper is devoted to the proofs; the reader
will find in Section 4.2 a brief outline of the subsequent work.

3. Applications.

3.1. Sequences of type((Z,)),. Let x be a real-valued locally Lipschitz
function onM, and suppose that there exists € R, such that, for alk, y e M,

X () = x (] < Cd(x, y)(1+d(x, x0) + d(y, x0))".

Using martingale methods, it is proved that the central limit theorem for
(x(Z,)), holds for any initial distribution under the moment conditi@yd (gxo,
x0)**tV dm(g) < +o0o and the contraction property, c(g)*¢*Pdn(g) < 1;

see Duflo (1997). By means of similar techniques, it is established in Benda
(1998) that, whery = 0, the same result is valid under the weaker hypotheses
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Jgc(9)?dn(g) < 1 and; d(gxo, x0)?dn (g) < +oo. Considering the stationary
chain with initial probabilityv, Wu and Woodroofe (2000) have established a
central limit theorem for functiong which are not Lipschitz and not even
continuous.

Let us now apply the results of the preceding section: we &etx) = x (x).
The moment hypotheses of Theorem A are the same as those of Theorem C, so that
it can be seen from Theorem 3.1 that they are stronger than the ones previously
stated. However, to our knowledge, Theorems B and C are new. They can be stated
as follows. Recall that(g) = 1+ ¢(g) + d(gxo, x0)-

THEOREM3.1. Suppose that there exist- 0 and integersig > 1,k > 0 such
that

n(gk(s+1)+1+e/2+C(§2k(s+1)+8) < 400,

and
n,*no(c ma)({l, C}Zk(s+1)+8) < 1’

and assume that(x) = 0, wherev is the P-invariant probability measure
If & takes the valued and 3, respectivelythen the assertions of Theorems
B and S, respectivelyapply to

n
SE=>"x(Zr-).
k=1

Moreoverif x is nonarithmetic and if the above integral conditions are satisfied
for k = 2, then the assertion of Theorgthholds

PrRoOOF The function&é on G x M defined byé&(g,y) = x(y) verifies
Condition RS with the exponents= s + 1 ands associated with constant
functionsR andS. These have moments of all orders. Consequently the moment
conditions of Theorems B, S, and C reduce#oyo) with yo = k(s + 1) + 5; this
gives the desired results[]

Let us point out thaPollicott (2001) has stated a dea limit theorem with a
rate of convergence and a large deviations theorem in the case where the support
of the probability measure is finite. However, this study is based on the assertion
without proof that, on a suitable space of Lipschitz functions, the Fourier kernels
P(t) (see Section 4) are analytic perturbed operatorB.oAlso notice that, if it
is proved that the stationary chain with initial probability distributiois strongly
mixing and Harris recurrent, then we can apply Bolthausen (1982) to obtain a
central limit theorem with am—1/2 rate of convergence. However, on one hand,
this requires some additional hypothesesmoifisee Meyn and Tweedie (1993),
page 140, for a sufficient coitithn in the context of the following section]; on the
other hand, this only covers the stationary case.
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3.2. Generalized autoregressive processd3enote byG the semigroup of all
affine mappings oM =R?, ¢ > 1. An elemeng € G is identified with a couple
(a(g),b(g)), wherea(g) is an endomorphism dk? andb(g) is a vector inR?.
Fory e M, we setgy = a(g)y + b(g). The associated generalized autoregressive
processZ,),>o is then defined by

Zo=12, Zny1=aYn11)Zn +b(Yn11), n=>0.

Let & be a function fromG x R? to R, and suppose that there exist a ngrmij|
onRY, ¢ €]0, 1], r, s € Ry and nonnegative measurable functidghandsS on G
such that, for alg € G andx, y € R?, we have

&g, )] < R(e)(L+ [lxID*",

&(g.x) —&(g, I = S(@llx = yI* @+ llxl + Iy ID*.

For instance, these properties hold wite= 1 whené is a polynomial function of
the entries of the matrix representingg) and of the coordinates of the vectors
b(g) andx.

Let us consider the distanee defined onR? by d(x,y) = ||lx — y|%, and
choosexg = 0 € R?. We havec(g) = [la(g)||* andd(gxo, x0) = ||b(g)||*. Then
the statements B, C, S apply straightforwardly. To compare with former results, let
us rewrite Theorem B. Leii(g) = (1 + [la(g) || + [1b(g) )%, then

THEOREM 3.2. The hypotheses in the central limit theorem with a rate of
convergencé€TheorenB) are satisfied if there exigty > 3r + max{r, s + 1} and
no € N* such that

(3"t 4 1a]*8%70) < 400 and 7TO(||a|* max(l, la]|}?0%) < 1,

and when the functionB(-) and S(-) satisfy the moment conditions

/ R3¥dm <400,  g77"(R,R+S)+ g7 ¥ (R% (R+ S)R) < +o0.
G

In this context, convergence rates in the central limit theorem have already
been established by Milhaud and Raugi (1989) and by Cuny (2004). The spectral
method used in Milhaud and Raugi (1989) is, in substance, similar to the one
developed here, but it appeals to the standard perturbation theorem. For this reason
(see Section 6.1), the following conditions@f) andb(-) are requiredfa(-)| < 1
m-p.s, and there exist real numbers> 0 and g €]0, 1] such that we have the
exponential morant condition

[ e (Rg) +5(0)° (1~ la(ll?) 5/ PHTH g g) < oc.
G

The hypotheses on boi(-) and b(-) are significantly less restrictive in Theo-
rem 3.2. The study in Cuny (2004) is based on martingale methods. The contrac-
tion condition is the same as in Milhaud and Raugi (1989), and it is supposed
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that, for all¢ e N, [ [|b(g)||*dm(g) < +oc. Under these conditions, for functions
& which are not necessarily Holder of the variablégt is proved that the rate of
convergence in the central limit theoremmis? for everyp < %

3.3. Products of positive random matrices.et G be the semigroup of x g
matrices with nonnegative entries which are allowable, namely, every row and
every column contains a strictly positive element, and denot@bthe ideal ofG
composed of matrices with strictly positive entries.

Forg € G andw € R4, we denote by (w) the image ofw underg; the cone

C={w:w=(wy,...,wy) eR, wr>0k=1,...,9}

is invariant under alk € G. Define M to be the intersection of the hyperplane
{fw:weRY?, Zzzlwk =1} of R? with C.
The linear spac®? is endowed with the norm - || defined by

q
w= (w1, ..., w,) €RY, lwll =" lwl,

and for eacly € G, we set

gl =sunligl:y e M}, v(g) =inf{llg(Ml:y € M}.

The semigroupG being equipped with its Boreb-field ¢, we consider a
probability distributionrt on G for which there exists an integep such that the
support of the r.vR,,, contains a matrix oG°. Denote byg* the adjoint ofg. Itis
shown in Hennion (1997) that, if

/ (Illg*ll | + [N v(g™))2dr(g) < +oo.

then there existy1 € R such that, fory € M, the sequenc(e—(ln IR, (M —

ny1)).>1 converges to thev (0, ¢?) distribution; moreover, the case® =0 is
investigated. Using Theorems B and C, it is possible to state a central limit theorem
with a rate of convergence and a local central limit theorem. Notice that similar
theorems have already been given in Hennion and Hervé [(2001), Section X.5],
but under more restrictive moment hypotheses.
To see how this case enters the present frame, we setdar andy € M,
8(y)

= , ,y) =1 .
y e a(g,y)=Inllg»ll

It is easy to check that the first formula defines an actiorGobn M, while
the function defined by the second one verifies the property of additive cocycle
associated with this action:

a(gg'.y)=a(g.g'y)+a(g',y), 2.8 €G, yeM.
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Consequently, setting(g, y) = a(g, y) — y1, for (g, y) € G x M, we can write,
forye M,

N[ R, (NIl —ny1="Y_ E(Yi, Re—1y).
k=1

Furthermore, wheM is endowed with a suitable metrity; called the Hilbert
metric [see Bapat and Raghavan (1997)], every G is Lipschitz with constant
c(g) <1, and we haver(g) < 1 if and only if all entries ofg are strictly
positive. Therefore, if the support at,, contains such a matrix, we have

ey = [ e(g)dm*o(g) < 1forally > 1.
Forn >0, set

£7= [ (nlgh+1inv(e) + v ) dr ().

THEOREM 3.3. Suppose that there exists an integgrsuch that the support
of the tv. R,,, contains a matrix oz°, and lete > 0.

(i) Assumer*té < 4o0; thenif o2 > 0, there exists a nonnegative constént
such thatin case the.x. Z of M verifiesE[dn(Z, x0)2T¢/2] < 400, we havefor
alln>1,

SURHPU” IRx (Z)| = ny1 <uo/n] = N(0,1)(] — oo, ul)

1+ Eldn(Z, x0)*+*/?]
<C )
Jn
(i) Assumel£3+ < 400, 02 > 0, and that the support oR,,, contains two
matrices g1, g2 € G° whose spectral radiip1, p2 verify In% ¢ Q. Then if
E[dn(Z, x0)?1¢/2] < 400, we havefor any real valued continuous functidnon
R such thatim | 400 #?h(u) =0,

lim o /27 n E[A(IN | Ry(Z) ]| = nyD)] = £L(h).

PROOF  First notice that the numbdg*|| associated to any endomorphigm
of R? defines a new norm which is equivalent to the one already considered.
Consequently, there exists a constéhtsuch that, for every € G, we have
IInflg“ll < C+1Inlgll.

We denote bye)?_, and by(-, -) the canonical basis and scalar producRn
If y,y € M, we set

(v, ex)
(¥, ek)

du(y,y) =—In(mu(y, Y )mu(y', y)),

mH(y,y/)=min{ :kzl,...,q},
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dy is the Hilbert distance o/ [see Bapat and Raghavan (1997)]. The space
(M, dy) is not compact, but each closed ball in it is compact. Sg&=
1/q,...,1/q) € M; we have

max (gxo, i) _ | Max lig™eill

d(gxo, xg) = In — = -
min; (gxo, €;) min; [[g*e; ||
g™l %
=In——<C+[Inligll+Inv(g®) I
v(g*)

The function&(g, -) is bounded byly1| + [In]igll| + [Inv(g)]. From [lgy| >
mu(y, y)llgy'll, we deduce thatS(g) = 1 ands = 0 [see Hennion (1997),
Lemma 5.3]. Therefore, Condition RS is verified wi(g) = 2(|In|gl|l| +
[Inv(g)),r=0,andS(g) =1,s =0.

The above estimations prove that the required moment conditions of Theorems
B and C hold if we have, respectively*+¢ < +o00 and£3¢ < +oc.

It remains to prove that the additional hypothesis in (ii) implies the nonarith-
meticity of &. Let k = 1, 2. It follows from the Perron—-Frobenius theorem that
or > 0 and that, for alk > 1, we haveg,f = p,f(pk + hﬁ), wherep, € G° and the
endomorphisni; of R? has a spectral radius 1. Consequently, for any € M,
we have In|gx | = €1In p + ri ¢ (x), with limg 7 ¢ (x) = In || px (x) ||. Suppose that
there exist e R, t 20, A € C, || =1, and a bounded locally Lipschitz function
w on M which has a nonzero constant modulus on the supgpgdf v, and such
that we have, for alk € X, and alln > 1,

A w(x) = S w(R,x) = TN I=nyyy (R ¥y, P-as.

From the continuity of the functions used in the two members, we deduce that, for
anyf>1andx € ¥,, we have

/1IN gL I=n0bya) y (g€yy = 1m0 gy ().
It follows that
¢
o1tz p1) _ W 815D it(r1 g0 (0) 12 ()
w(g5x)
The second member converges wlies 400, while the countable set of complex

numbers defined by the first one is densézinz € C, |z] = 1}. This contradiction
completes the proof.[]

4. Preliminaries.

4.1. P-invariant probability measurd proof of Theoreml). Here the hy-

potheses are those of TheorenM;, 11 < +o0, G}(,’f)l < 1(y = 0,n9 € N*). For
A €]0,1], x € M, andg € G, we set

pr(x) =14 1d(x, xo),
8,.(g) =maxc(g), 1} + 1 d(gxo, x0) and 8(g) =1+ c(g) + d(gxo, xo0).
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LEMMA 4.1. We haveforalg e GandO<i<1

supp*(g")) <5,(9) <5(g).

xeM Pr(X

The functiong(-) and$(-) are submultiplicative

PROOF Letx € M andg € G; then
pr(gx)  1+2d(gx,x0) —Ard(gxo,x0)  Ad(gxo, X0)

m(x) 1+ Ard(x, xo) 14 rd(x, xg)
1+ xd(gx, gxo) 1+ ie(g)d(x, xo)
< rd ,Xx0) < Ad ,
= 11 d(x.xo) + A d(gxo, x0) < 15 7d(x.x0) + A d(gxo, x0)

< max1, c(g)} + A d(gxo. x0)-
The fact that:(-) is submultiplicative is obvious. Finaly fdr, g € G, we get
3(hg) <1+ c(h)c(g) + [d(hgxo, x0) — d(hxo, x0)] + d (hxo, x0)
< 1+ c(h)e(g) + chd(gxo, x0) + d(hxo, x0) <5(W3(g). O

Recall that, fom € N*, 7#*" denotes the law oR,,.

LEMMA 4.2. Letg,(x) =d(x, xg)py(x)Y for A € [0, 1]. Then

(a) Forall n > 1andx € M, we haveP" ¢, (x) < +o0.
(b) For Ao €10, 1] small enoughwe have/; c(g)dx,(g)" dmr*°(g) < 1.
(c) There exist constantse 10, 1[, C € R, such that

Pnod))uo =< C+ egbko-
PROOF (@) Forn > 1 andx € M, we have

Pl (x) = /G d(gx, x0)pa(gx)? d*(g)
< / d(gx0, x0) p1(gx)” d™ (g)
G
+ /G [d (g, x0) — d(gx0, x0)1pa(gx)? drr*" (g)
< pr() /G d(gx0. x0)8(8)” dn™(g)

+d(x, x0) () /G c(2)8:(8)7 dn*(g).

The functions in the two integrals above are dominated Gy’ +1. Since this
function is submultiplicative ang-integrable, Fubini’'s theorem ensures that these
integrals are finite. Thug"¢; (x) < +o0.
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Since c§], < §”*! and § is submultiplicative, assertion (b) is a direct
consequence of hypotheses and Lebesgue’s theorem.

Sete’ = [;c(8)8,(g)Y dn*°(g). From the above inequality applied with
A = Ag andn = ng, there exists a constahly such that

PnO¢A0 = DOP;\/O + 8/¢)»0-

p)»o(-x)y _
¢)»0(x) -
constantC such thatDopi’O <C+ 1‘75@0. Hence P"0¢,, < C + e¢,, with

_ 1+¢
&= 5. O

Using continuity and limg xg) — +o00 0, we see that there exists a

Now let us prove Theorem |. For convenience wegset ¢,,. By induction and
Lemma 4.2, we obtain, for evegy> 1, P7"0¢ <e9¢p+C(L1l+e+---+ 41 <
¢ + 1= . Letn € N*. Writting n = gng + r with r € {0, ..., ng — 1} and setting
E =maxP*¢(xg), k=0,...,n0— 1}, we getP"¢(xo) < E + 1= Therefore,
the sequencéP" ¢ (xo)), is bounded by a constant, s&y Forn > 1, letv, be the
probability measure oW, M) defined by

1}’!—1
BeM,  vy(B)=~ > (P*1p)(x0).
k=0

Observe that, for each> 1, we havev,(¢) < K. Since limy(x, xp) — +oo ¢ (x) =
o0, the subsely < «] is compact for each > 0. The Markov inequality implies
that, for alln > 1, we havey, ([¢ > «a]) < ”"T(‘m < § so that the sequence,),,
is tight. Therefore, we can select a subsequéngg, converging to a probability
measure. It is clear that is P-invariant.

For p € N*, set ¢,(-) = min(¢(-), p). For k > 0 and p > 0, we have
Un, (@) < vy (@) < K; consequently, for alp > 0, limg v, (¢,) =v($,) < K.
The monotone convergence theorem givés) < +oo, that is,v(d(-, xg)? 1) <
+00.

Now let us prove thatv is the unique P-invariant probability distribu-
tion. First observe that, SiNCB[INc(R,,)] < INE[c(R,y)] = INCY"Y < 0, the
law of large numbers asserts that Iim;uquno)l/q < lim,(IT}_y c(Yeng - -
Y(g—l)no-l—l))l/q <1 onasef2; suchthatP(21) = 1. Forx,y e M andg > 1, we
can writed(Rynox, Ryngy) < c(Ryny) d(x,y), S0 that limy d(Ryngx, Rynyy) =0
on Q1. Let v’ be aP-invariant probability distribution od/. For each bounded
continuous functiory on M, we have

V() = v(f) = /M E[f(Rgngx) — f(Rgnoy)] dv'(x) dv(y);

passing to the limit, we get () — v(f) = 0. We conclude that’ = v.
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It remains to establish the geometric ergodicity in the Prohorov distdgce
Let f be a bounded uniformly Lipschitz function . Then, for allx,y € M
andn > 1, we have

[P f(x) = P"f(¥) S/ | f(gx) — f(g»)ldm™ (g)

<mo(dex, ) [ Mdn*"(g)

<mo(f)d(x,y)e",

wheremo(f) = suﬂ%{,)@)', x,y €M, x # y}. Let u be the law ofZ, and

assume thapo(-) = d (-, xo) iS wu-integrable. By integrating the previous inequality

with respect to bothdv(x) and du(y), it follows that [v(f) — wP™(f)| <
(”)mo(f)(v(qbo) + (o). This bound proves that — wP”" is a continuous

linear functional on the space of all bounded uniformly Lipschitz functiongfon
endowed with its canonical norm. Moreover, we hdive- u P"|| < C/Gin) with

C’ = v(¢o) + (o). Writing n = gng + r with r € {0, ..., ng — 1} and using the
fact thate(-) is submultiplicative, we easily see thaf” < C”(c"®)"/". Since
d,(v, wP") < 2|lv—uP"||Y/? [see Dudley (1989)], the last assertion of Theorem |
follows with i = (€"®)1/"0,

4.2. Outlines ofthe method. As mentioned in the Introduction, the main idea
of this work consists in applying the method described in Hennion and Hervé
(2001) to the functiort and to the Markov chainX,),>o with the state space
G x M and the transition probabilit® defined by

@) €GxM, BegxM  0((s.y).B)= /G 15(h, gy) dr (h).

However, we observed in Chapter X of Hennion and Hervé (2001), devoted to
Lipschitz kernels, that, because of the special fornr@othe essential part of the
study can be performed with the help of the transition probab#itand of the
Fourier kernelsP(t), t € R, associated t®® and &, which are defined, for any
bounded measurable functighon M, by

veM, PWf()= fG C1EED) £ (gy) dr(g).

This is due to the fact that, for all functions as above, we hav@(f o j) =
(Pf)o j,wherej is the action ofG on M. Then, in the sequel, we shall only use
the kernelsP (1); the next statement indicates that these kernels are sufficient for
our purpose.

BAsIiC LEMMA. Let f be a bounded measurable function &) and denote
by u the distribution ofZ. Then we havdorn > 1,1 € R,

E[f(RyZ)e'"S% ] = w(P()" f).
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PROOF  SetS§ =0. Forn > 1, we have

E[f(RaZ)e"" % | = E[ £ (Y, Ry _1Z)e"" SiatEWnRina2))]

Since(Z,Y1,...,Y,_1) andY, are independentr.v.’s, Fubini’s theorem gives

E[ f(RnZ)ei’vaz] =E[e"’5nz—1 /G F(gRy_1Z)e' 58 Rn12) g ()]

=E[e"S"1(P (1) f)(Ry-12)]-

The desired formula fom = 1 holds because the second member equals
E[P®)f(Z)] = uw(P(@)f). Suppose now that the stated formula is valid at
rank n — 1, n > 2. Then, from the previous relation and the fact tifat) f

is a bounded measurable function #fi we conclude thaE[f(RnZ)e"’SnZ] =
w(P()""L(P(r) f)). This completes the proof.0]

Theorems A, B, C, S will be direct consequences of the extensigis A, S
stated in Section 9. The outline of the argumentation is the following. In Section 5,
we shall introduce spaceB, , which depend on a real paramejer- 0 and are
composed of locally Lipschitz functions avf. Three norms, denoted by, ,,

N, and Ny, will be defined onB,, . It will be proved that they are equivalent,
but each of them will be suited to a part of the proof. In this way, in Section 5.3,
we shall see that the use &, is convenient to establish that, for suitalpleP is
quasi-compact orB,,, and furthermore that the number 1 is the unique peripheral
eigenvalue ofP. In Section 6, the norm&, ,, will be helpful for the study of the
behavior of the functior® (r) nearr = 0. For this purpose, it will be worth noticing
that, fory” < y, P(¢) may be viewed as a bounded linear map fr@y to 8,,;
indeed, the derivative kernels @&f(¢), which in general do not define bounded
endomorphisms of8,, N, ), can be considered on the other hand as bounded
linear maps from8, to B, for suitabley’ < y. Of course, this will be a less
restrictive property because the spagg strictly contains8,, and is endowed
with a weaker norm. In Section 7, the no ,, will be an essential tool to apply

a perturbation theorem due to Keller and Liverani (1999), from which it will follow
that P (¢) are perturbed operators Bffor small|z|. The interest of this perturbation
theorem is that it only requireB(-) to be continuous as a map taking values in the
space of bounded linear map fro®, , N1,) to (B,,v(| - |)); this is the key
point of this study (see Section 6.1). In particular, this theorem ensures that, for
small|z|, P(¢) has only one dominating simple eigenvalié,), on 8,, and we
shall establish in Section 8 that the Taylor expansiongPfan at: = 0 obtained

in Section 6 lead to expansions of the eigenelements belonging)toThen, in
Section 9, by using the previous preparation and by applying the method described
in Hennion and Hervé (2001), we shall be in a position to prove limit theorems.
Notice that renewal and large deviations theorems for the sequgge.1 might

be derived from similar techniques.
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5. The space 8, and quasi-compactnessof P.

5.1. Conventions and notation.From now on, we fixp > 0 andng € N* such
that Condition# (yo) holds, that is:

Myp+1= 787t < 400,
Mpyo 1= T(c570) < +o0,

ey, ) =7 (c maxc, 1}%0) < 1.

According to the subsequent statements, some additional conditions will be
imposed ony.

LEMMA 5.1. There exists a real numbeg € ]0, 1] such that

o= /Gc<g> (max(c(g), 1} + Aod(gx0, x0)) °dm*™(g) < 1.

PROOF  Sincec(g)(maxc(g), 1} + Aod(gxo, x0))?° < c(g)5(g)?°, and the
functions ¢,§ are submultiplicative, the lemma follows from the two last
conditions of# (yp) and Lebesgue’s theorem(]

Now we fix aig € ]0, 1] satisfying the previous inequality.
Forx,ye M, g € G, we set

p(x) =1+ Xod(x, x0),
8(g) =max{c(g), 1} + Aod(gxo, x0).

Notice thatp <14 d(-, xg) < A—lop, ands <4 < A_Z()S' Besides, fory > 0, let us
write

Ay(x,y)=d(x,y)p(x)’ p(y).

With the help of these elements, we now define the s@ceomposed of locally
Lipschitz functions orM, and we define four equivalent norms on this space. Such
spaces, introduced in Le Page (1983), have already been used by several authors in
order to prove the quasi-compactness of probability kernels having a contracting
property; see Milhaud and Raugi (1989) and Peigné (1993). A similar statement
will be established in Section 5.3.

5.2. Definitions of8, and of the normsVy, ,,, Ny 7. N, @and Ny ,,. For
y > 0, we denote byB, the space of all complex-valued locally Lipschitz
functions onM such that

|f ) = fO)I

,x,yeM,x;éy} < 4o00.
Ay(x,y)

m, (f)=-su
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The inequality A, (x,x0) = d(x,x0)p(x)” < (1/x0) p(x)¥ 11 ensures that,
for all f € 8,, we have|f(x)| < |f(x0)| + (1/ko)m,,(f)p(x)7’+1; thus
SUR. s ,,‘(iﬁ?il < +00. ConsequentlyB, can be equipped with the norm

Noo,y(f) =my(f) + |f|y7

where|f|, = squ'(f;()’;)ll, x € M}.
Lety > y. As p’ ™1 > p¥*1 we have, forf € B,, | fl; = SUB.cy L ()]

+o0: We set peT
o0,

Nooy.y (f) =my (f) + 1115

Since M,y11 < 400 and @;(,’;331 < Gé’;gll < 1, the P-invariant probability

measurey, whose existence is ascertained by Theorem I, is such that
/ d(x, x0)"° T dv(x) < +00.
M

Therefore, for every €10, yol, v integratesp?+1, and thus integrates all the
functions of8,,, so that we can define a8, the following norms:

Ny (f)=my (f)+ (N,
N1y (f) =my (f) +v(fD.

PROPOSITIONS.2. Lety, 0 <y < yo. The four normsNe ,, Nuo .5, Ny
and N, are equivalent omB,. When equipped with one of these noy#s is a
Banach space

PrROOF The factthal(8,, N, ) is a Banach space is well known.

() N,y and N, ; are equivalent. Since |f|; < |f|,, we have
Noo,y.7(f) < Neo, (f). Conversely, fox € M,

If@I _ 1f @)l + @/r0)my (f)pe)"

px)ytt— plx)r+t

1
=|f(xo)l + )\_Omy(f)-

The bounds|f(xo)| < |fl; and 1< igt prove that|f], < Ag Neo,.7(f);

consequentlyNoo , (f) < (L4 g HNoo .5 (f)-
To establish thatv, (-) and N, (-) are equivalent, we proceed as in Hennion
and Hervé [(2001), Chapter X].

LEMMA 5.3. (8B,,N,) is aBanach space

PrROOF. Let (f,), be a Cauchy sequence ¥8B,,N,). Setg, = f, —
fan(yo), where yo is any point of M. We have |g,(x) — g,(x)| < m), X
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(84 — 8p) Ay (x, y0) =my (fg — fp) Ay (x, yo) because, (yo) = 0. Hencev(|g; —
gpl) = v(A,Coyo)my (fg — fp)- Recall thatv(pVH) < +o0, so thatv(A, (.,
y0)) < +o0.

Consequently(g,), is a Cauchy sequence in the Lebesgue sgabe);
therefore it converges in this space, afdg,)), converges inC. Moreover,
(v(fn))n converges iNC because, by assumption, it is a Cauchy sequence. It
follows that (£, (yo)), converges to a complex number, sAfyo), and then that
(f)n converges if.1(v). Becausey is arbitrary,( f,), converges pointwise tg.

We have lim _, 1 v(f — fn) = 0. The propertieg’ € 8, and lim, _, Lo m, (f —
f») = 0 are obtained by standard arguments!

(i) N, and N, are equivalent. For f € 8,, we havelv(f)| < v(|f]) <
|fl,v(p? ™. Thus Ny (f) < (L + v(p? )N, (f). Since (B,.N,) and
(8B, No,,) are Banach spaces, the open mapping theorem yields the claimed
equivalence [see Dunford and Schwartz (1958)].

(i) N1, and N, are equivalent. We have |[f(y)| < [f(x)] +
my, (f)d(x,y)p(x)” p(y)” for all x,y € M. By integrating this inequality with
respect to the measuvewe obtain

| fDI=v(fD +my () p(»)” /M d(x, x0) p(x)” dv(x)

+my, (f)d(y, x0)p(»)” /M p(x)Y dv(x)
<v(IfD) + 25 my (NP o (p? ),

henceN, (f) < (1+ 2K51V(p”+1))N1,y(f)-
Finally, we haveNy ,, (f) = my (f) +v(If]) <m, (f) + | fl,v(p"™ < 1+
v(p?" ™) Neo, (f). O

We conclude this section by giving a statement that will be useful for the spectral
study of P(¢).

LEMMA 5.4, (i)For 0 <y < y,the canonical embedding fro(B,,, Ny ,.7)
into (B, | - |) is compact

(i) Fory €]0, yol, the canonical embedding fro(8, , N1, ) into (B,,, v(|-]))
is compact

ProOOF (i) Let (f,), be a sequence of functions i, such that
Neo,y7(fn) < 1 for all n. Then (f,), is equicontinuous on every compact
set of M, and the diagonal process ensures that there exists a subsequence
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(fsm))n Which converges uniformly on every compact setifto a function
f € 8, satisfying N, ;(f) < 1. To prove (i), it suffices now to show that
limy, | f — foumly =0. Observe thatf — ful, < A5 Neo,y 5(f — fu) < 2457
(proof of Proposition 5.2). Let > 0. As y < y, there exists a positive con-
stantc such that, for allz € N and for allx € M satisfyingd(x, xg) > ¢, we

—1 y+1 .
have ‘fg()x_){fr(f‘)' < ZAZ(;))(;L < ¢. Besides, on the compact séf. = {x:x €

M, d(x, x0) < c}, (fpm))n cOnverges uniformly tgf; thus there existd/ € N such
that, for alln > N and allx € M., we have% < ¢. Consequently, for
n> N, weobtain f — foml; <e.

(i) Now let (f,), be a sequence of functions 8, such thatvy , (f,) < 1.
Since N1, and N, are equivalent (Proposition 5.2), the sequeqgg, is
bounded in(8,, No,,) by a constant’. As above, we can check that there
exists a subsequencé;,)), Which converges pointwise to a functighe 8, .
Since| f,| < ¢/ pYt1 andp?*1is v-integrable, the Lebesgue theorem ensures that
lim, v(|f = fgm =0. O

5.3. Quasi-compactness #fon8,. The following statement shows that, for
y €10, yol, P is a quasi-compact operator @y,. This property will also follow
from arguments given in Section 7, but Theorem 5.5 provides a precise description
of the peripheral spectrum a?: 1 is a simple eigenvalue and it is the unique
peripheral spectral value df.

THEOREMS5.5. Foreveryy €]0, yol, P is a bounded linear operator o@,,,
and we have the following decomposition

whereH, = {f:f € 8,, v(f) =0} is a closedP-invariant subspace of3,
such thatr(Pig,) < (99)¥m < 1; the real numberdy < 1 has been defined in
Lemmab.1,andr(Pn,) is the spectral radius of the restriction éfto H,, .

PROOF.  Here itis convenient to considé, equipped with the nornv,,. We
have, for allk > 1,

Ay(gx, gy) dn*(g) = d(gx, gy) (p(gX))V<p(gy)
G Ay(x,y) G dx,y) \ p(x) p(y)

< f c(2)8()% dn*(g) = Di(y).
G

Y
) dr*(g)

Sinces < §, andc ands are submultiplicative (Lemma 4.1), hypothesi$, ., <
+oo and Fubini’'s theorem ensure that (y) < +oo. Let f € 8,. We have,
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forx,ye M,
Pk f(x)— PEF(y)l < /G | f(gx) — fgy)|dm**(g)

A, (g,
Smy<f>Ay<x,y>/G£(+§)”
}/ )

=my(f)Ay(x, y)Di(y).

With k = 1, the foregoing proves tha&f € B,,, andm,, (Pf) < D1(y) m, (f).
Sincev(Pf) =v(f), we see thaP is a bounded linear operator 08, , N, ). As
v(p?’”) < 400, the distributionv defines a continuous linear functional @ ;
consequentlyl, = Kerv is a closed subspace; it B-invariant becauseP = v.

On the other hand, witlk = ng, since D,,(y) < 99 (Lemma 5.1), we get
m, (P" f) < ¥om,(f), and by induction,n, (P9 f) < ¥im, (f) for every
g > 0. In particular, ifh € H,, then, for every > 1, we havev(P4"0h) = v(h) =
0, thus N, (P9"h) = m,, (P9"0h) < ®dm, (h) = OIN,(h). Thus r(P,) =
(r(P";%/))l/no < (190)1/710.

The identity f = v(f) - 1+ (f — v(f) - 1) leads to the stated decomposition.

[l

dn*k(g)

6. Fourier operators on 8,. Recall that the Fourier kernelB(z), ¢ € R,
associated t@ and¢ are defined by

(Pt f)x) = /G @D £(gx) d(g).

and that is a real-valued function o6 x M satisfying Condition RS.

We shall prove that, for suitablg’, P(¢) acts continuously o, . But, for
0 < 7n’ < n, it will also be convenient to seB(r) as a bounded linear map from
B,y to By, this is true by virtue of the following topological embedding that will
be exploited repeatedly in the sequel:

if0 <n' <n, we haveB,, C 8, andforallf € B,,

Noo,n(f) = Noo,iy ().

Let £(B,, B,) be the space of all bounded linear maps fraBy,, N )
to (B, Nwo,). We denote by - ||,/ , the operator norm ol (B,/, 8,); when
n' =n,wemerelyset - [l, =1y

6.1. Preliminary remarks about the functioA(-). As already mentioned in
Section 2, the spectral method described in Hennion and Hervé (2001) consists in
applying perturbation theory t&(¢), so that the magP(-) has to be sufficiently
regular.

In order to understand what are the restrictions imposed here by this property,
suppose that Condition RS holds with> 0, and let us study the quantity



1954 H. HENNION AND L. HERVE

|P(t)f — Pfl, for f € 8,. Lete €]0, 1]. From the inequalitye’™ — 1| < 2|u?,
Condition RS, and Lemma 4.1, we have, for.alt M,

\P() f(x) — PF)|
< / "85 _ 1] | £ (gx)|d7(g)
G
))/+1

p(gx
p(x)r+i

() <2011+ d(x. x0)) ° | £l px)’ /G R(g)° dr(g)

0) <2CI111° | fl, p(x) 1+ d(x, x0)) "

with C = [, R(2)%8(g)" 1 dn(g). Because(l + d(-,xg))¢ is not bounded
on M, this estimation does not imply that ljmo|P(¢) f — Pf|, = 0. Similar
complications appear when one conside( P (t) f — Pf).

To get around these difficulties in the special case of autoregressive processes
(Section 3), Milhaud and Raugi (1989) have used a space of locally Lipschitz func-
tions similar to8,,, which is defined by replacing(-)” 1 with p()? F1erdt.x0),
where is a positive parameter. In this case, provided the strict contraction and
exponential moment conditions given in the above mentioned paper are satisfied,
one can verify that the right member of)(Is bounded, and more generally, that
P(-) is a regular function from a neighborhoodrct 0 to L(B,).

In this paper, we use another method which enables us to weaken the contraction
and moment hypotheses considered in previous papers. This method is based on
the two following facts:

1. By integrating (I) with respect to the measutave obtainv(|P(¢) f — Pf]) <
C'|t|° N1, (f). This weak continuity property will be sufficient to apply Bqr)
a perturbation theorem of Keller and Liverani (1999).

2. LetO<n' <n.For f € 8,, we have

IP()f () =PI =2C3g" 1| Fly p0) o4,

so that, ify’ +re <n, we get|P(r) f — Pfl, <2Cry"*|t|°| fl,y. This leads

us to investigate the continuity and, more generally, the existence of the Taylor
expansions oP (r) atr = 0 whenP(-) is viewed as ai(B,;, 8B,)-valued map
[instead of ant(B,,)-valued map]; this is the aim of Sections 6.2 and 6.3. Let
us mention that similar methods are used in Le Page (1989) and Hennion (1991)
for other purposes.

6.2. Taylor expansions ofP(r) at t = 0. For r > 0 and any nonnegative
measurable functiong, V on G, we set

U, V) = fG U(g)e(g) 8(8)% dr(g) + /G V(g)8(g)"Ldn(g).
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L7 (U, V) is an additive positively homogeneous function of bGtlandV, and an
increasing function of the variablebecausé(-) > 1.

Observe that, for & y < yo, we havel” (1, 1) < Mp, 4 + Myp+1 < +00.

Let us state the three main results of this section.

PROPOSITIONG6.1. Suppose + 1 < yp, and lety be a real number such that
s+1<y <yoand

27 (0, S):/GS(g)S(g)V+1dn(g) < +00.

Thenforall r e R, P(t) € L£L(B,). Besidesthere exists a constait such that we
have forall f € 8,,

[P fl, <470, D |fly, my, (P ()" f) < dom, (f) + C|t|4¥ (O, S)| f 1,
wheredg < 1is the real number defined in Lemrbdl.

PROPOSITIONG.2. Suppose that the following condition halds
Uo(n',m):0<n <yo, n' <n, s+1<1, 47(0,8) < +oc.
Then
lim ||P(t)— P|,y.,=0.
Jm 1P @ = Pllyy

With the view of obtaining the Taylor expansions ®ft) at + = 0, let us
introduce for k € N*, the kernels

(Lif)(x) = fG (i£(g. 1)) f(gx) dm(g).

PROPOSITION6.3. Letn > 1. Suppose that the following condition holds
U, m):0<n' <yo. n'+nr<n, s+14+@m—Dr<n,
1" (R", (R + S)R" 1) < +oo0.
Thenfork=1,...,n, Ly € L(B,, B,) and

n tk
P(t)—P—kX_:lHLk =0.

N

lim
|t|—0 |t|n ,

n

6.3. Proofs of Proposition$.1-6.3 The main tool is Lemma 6.4, which will
be stated in the next technical context.

Let k e N*. Consider a complex-valued measurable functiam G* x M.

Leta, B € R4, and letA, B be nonnegative measurable functions@hx M.
We shall say that the inequalities (A) and (B) are satisfied if, fok @IG* and for
all (x, y) € M2 satisfyingd (xo, y) < d(xg, x), we have:
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(A) lg(h,x)| < A(h,x)p(x)*,
(B) Ig(h,x) —q(h,y)| < B(h, x)d(x, y) p(x)P.

Forx € M, we denote byA, and B, the nonnegative functions defined 6
by A, (h) = A(h, x) andB, (h) = B(h, x).

Forh = (h1, ..., hy) € G*, we seth* = hy---hy, and we denote by ®¥ the
product measure o6. If x € M and if f is a measurable function ai such
thath — g (h, x) f (h*x) is 7®*-integrable, then we set

@ = [ athon fhex)dn® .
Fort > 0 and for any nhonnegative measurable functiohd’ on Gk, we set
LU, V) = / U eh)3 () dn®(h) + / VST dn® (h).
G G

This integral only occurs in the following technical lemma; notice that it equals
J7(U, V) whenk = 1.

LEMMA 6.4. Let 0 < n’ < n. Suppose thatfor all x € M, we have

17 (Ay, A¢ + By) < +oo. Then for f € B, and x € M, X f(x) is defined
moreoverfor x,y € M such thatx # y and d(y, xg) < d(x, xg), we have the
inequalities

K _ 20, A)
Py = payr e

1K) = KFO|_ 1] (Ax.0) 170 B
Ay (s ) sp(x)n_n,_a my (f) + 11 1 fly

|f Ly s

To apply this lemma, it will be worth noticing that, fgr> 0 and for any function
f onM, we have, owing to symmetry,

|f ) = fOI

Xy eM.x#y,d(y, x0) Sd(x,XO)}-
An(xv y)

my(f)=su

PROOF OFLEMMA 6.4. We shall use the inequalities sup p(gx)/p(x) <

8(g) (Lemma 4.1) and f(g-)| < |fl,p(g-)"+L Let £, x andy be as in the
statement. We have

| a0 f hrldx®m) < pI fly [ Atprs L dn S n)

< pO)*H £ 47 (0, A,).

It follows that X f (x) is defined and verifies the first stated inequality.
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To prove the second one, let us write
| K f(x) = Kf(] < A1(x,y) + Aax,y)
with
Ax,y) = /G Mg 011 f () = () dn® i),

Axte.) = [ 1F 0 g — U, )] dx® ).

Then
Ai(x,y)
AT](-x’ y)

<my(f)px)*

« [ Aw U ) p (BT Uiy
Gk d(x,y)p(x)"p(y)"

= (f) <pfx(;")jl"’ ) <p(y)l"‘"’ )

></ A, x)e(h)s (2T dw® ()
Gk

dn®*h)

n/
- A (Ax,/O)
Topx)nTree
Consider now the quantity,(x, y). By using the inequalityl (v, xo) < d(x, x0),
we obtain

Ao, ) = | flyd ) p @) [ Bl p(hty) i)

(M1) my (f) [becausep(y)”‘”' >1].

< fly dG. )p@)P p()7 47 (0, By)
M'2) <|fly d(x, y)p)PL p()" 17 (0, By),
and fromp(y)" < p(y)", we get

Agx,y) _ 41 (0, BY)
An(-xv )’) - p(_x)n_ﬁ_l
We conclude by combining (M1) and (M2)[

(M2)

| f 1y

We shall also need the next bounds.
LEMMA 6.5. Forn e N andx € R, we set, (x) = /¥ — Y _o &0°,
For all x, y € R, we have

(i) |Pn ()] = 2x|" min{1, |x|},
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(i) |eiy —eix| <|y—x|,
@iy for n > 1, 1¢u(y) — du(x)| < 2|y — x|(Ix|""Tmin{l, x|} + [y]"~1 x
min{1, [y|}).

PrROOF The assertion (ii) is clear, and it implies tHab(x)| < min{2, |x|} <
2min{1, |x|}.

Letn > 1. The Taylor formula to the ordersandn — 1 with integral remainder
shows that

|x |1 @ix)" |x |
|%@»sm+b!aM|mun:@4ar-m <2—-.
Hence
) 2|x|n |x|n+l .
I%wﬂsmm{n!%n+DJ§2MIWMLMH

Since ¢,,(x) = i¢y—1(x) for n > 1, we havelg,(x) — ¢,(y)| < |x — y| x
sup|g,—1(®)|:t € [x, y]}. This inequality and point (i) prove assertion (iii)lJ

Now let us prove Propositions 6.1-6.3.
PROOF OFPROPOSITIONG.1. Letk € N*. By induction, we easily prove that
(P(t)kf)(_x) — / . eitSk(h’x)f(l’l*x) d7T®k(h),
G

with & (h, x) = &(hg, x) + E(hk—1, hgx) + -+ + E(h1, ho---hgx), for all h =
(h1.....h) € G*. Therefore X = P(1)* is associated to the kernglh, x) =
elt&(hx) \We havelq(h,x)| = 1; Condition RS and Lemma 4.1 give, for

81,82€0G,
|£(81. 82%) — £(81. 82))| < S(g1) d(g2x, g2y) (1 + d(g2x, x0) + d(g2y, x0))’
<Ay d(x,)S(g1)c(g2)(p(g2x) + p(g2y))’
< iy d(x,y)S(g1)c(g2)8(g2)" (p(x) + p(y)’.
Hence, ifd(xo, y) < d(xg, x), we get
1£(g1, g2x) — £(g1, 82y)| < 2°Ag" d(x,y) S(g1) c(g2)8(g2)" p(x)°.

Finally, by using Lemma 6.5(ii) and the facts that) < §(-) and thatc(-), 5(-)
are submultiplicative (Lemma 4.1), we obtain tha@k, x) verifies the inequalities
(A) and (B) with

A(h,x)=1, a=0, B(h, x) = 225" |t| B (h), B=s,
whereBy(h) = Y51 S(hi) c(hiy1) -+ - c(hy) 8(hiy1)® - --5(hy)*. We have
JUA, A+ B) =20 (1, 1+ 225" |t]Br) < 4)°(1, 1) + 2°25° |t]4°(0, By).
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Sincecs?0 < 8§20, §rot+l < §ro+l and the functions, § are submultiplicative,
hypothesesM,,+1 < 400, *M/2y0+1 < +o00, and Fubini’'s theorem imply that

47°(1, 1) < 4o00. Besides, we have

k
5.8 =Y [ Shcthisn)--cthbhi’
i=1

o 8(h)* S(hy)? T () AR K (h).

We have § < 25, and [;S(2)8(g)’Ttdn(g) < +oo, thus [;S(g) x
§(g)?T1dm(g) < +00. Moreover, we have(g)s(g)? 115 < ¢(g)8(g)2v. It fol-
lows from hypothesisi(;, . < +oc and Fubini’s theorem thal (0, By) < +o0.
Now let us apply Lemma 6.4 with =n =y < yo.
Fork =1, we get, forallf € 8,,

[P(®) fly <40, D |fly.
On the other hand, singe> s + 1, we havep(x)” ~*~1 > 1; hence, sinc@; = S,
my (P(1)) <47 (1, 0)my, (f) +2°1q" [t] 47 (O, S)| f 1,

This proves thaP (1) € L(B,).
For k = ng, the first inequality is still valid forP (¢)"°, while the second one
becomes

my(P(t)nof) = 1%0(1, O)my(f) + ZS)»aslfllZO(O, Bno)|f|y,
with £,(1,0) < £73(1, 0) = [ c(h)8(h)?0 d*™0(h) = 9. O

To establish Propositions 6.2 and 6.3, we shall employ the notation
(1,8, x) =min{1, [1|R(g)(1+d(xo0,x))"}.
LEMMA 6.6. Letn > 0 and letU, V be nonnegative measurable functions
on G such thatt”(U, V) < 4+o00. Thenfor all ¢ > 0,

im <Sup1"(U(-)T(t, L x), V)T, -J))) _o.
t|=>0\ s em (1+d(x, xg))¢

PROOFE Let p > 0. We haver < 1 and, for 1+ d(xg,x) < p, we can
write t(t, g,x) < min{l, [t|R(g)p"} = 1,(t, g). Therefore, comparing with
1+ d(xp, x), we obtain, for allk € M,

INUC)TE, - x), VT, -, x))
(1+d(x, x0))*

<p 4NU, V) + 21U p(t, ), V()Tpe(t, ).
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Since lim;—o71,(t,g) =0 andr, < 1, the dominated convergence theorem
implies that

Iimsup(supln(U()f(ﬂ 5 x), V)T, -, x))

[t]—=0 \xeM (1+d(x,x0))*
Sincep is arbitrary, this provides the desired statemeff.

) p ELN(U, V).

~PROOF OF PROPOSITION 6.2. Let us consider the kernej(g,x) =
et _ 1 x e M, g € G, which defines the operatok; = P(r) — P. By
Lemma 6.5(i) withn = 0, and then (ii), we have, for e M andg € G,

lg(g, x)| =€) — 1| <2min(1, |¢| (g, x)I} < 2t(t, &, %),
and, ifd(y, xg) < d(x, xo),
lg(g, x) —q(g, )| < |t||E(g, x) —E(g, y)| < 2°|t|S(g)d(x, y)(1+ d(x0, x))".
Lemma 6.4 applied with = 1, and
A(g,x) =2t(t, g, x), a =0, B(g,x) =2°1"|1]S(g), B=s,
yields

K f G _ = 270, T(t, -, x

P =70 A d G ) =
i f OISO _gyin STC000.0)
Ay(x,y) (1+d(x, x0)1"
o 270, S(-))
+2)\0 |t|(1—{—d( , x0))15— 1|f|7]

Sincen — 7' >0,n—s—1>0,47(0,1) < M1 < +oo, and 47 (1,0) <
‘MIZyo+1 < +o00, we conclude by using Lemma 6.6 witft/, V) = (0,1) and
U,v)y=(1,0. O

PROOF OFPROPOSITION6.3. Letus considerthe kernglg, x) = e/15(&%) —

Yoo WEEO)N 0" and setk; = P(1) — P — YI_ L 5Ly
Assertlon (|) of Lemma 6.5 implies that we have fore M andg € G,

lg(g, )| < 2|t|"|&(g, x)I" min{1, |¢] |£(g, x)[}
< 21"R(8)" (1+d(x0. x))" 7 (1, g. %),
while assertion (iii) shows that, fet(xg, y) < d(xg, x),
lg(g,x) —q(g, y)l
< 2Jt"E(g. x) — £(g, WI(1E(g. »I" T min{L, |¢]£(g. )]}
+ 1&g, »I" I min{l, [1] |£(g. y)I})
< 2F2|1|"S(g) d(x, y)R()" (L4 d(x0, )" e (1, g, x).
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Therefore inequalities (A) and (B) hold with= 1, and
A(g, x) =215 [t|"R"(8)T(t, g, X), o =nr,
B(g,x) =225 "SR @)t (t, 8, %), B=s+@n—Dr
From Lemma 6.4 withk = 1, it follows that
|Ke f O] _ 270, R"()T(t, -, x))

77,—77 n ,
o <2rg el (1+d(x,xo))n—n’—"r|f|"’
| K f(x) — K f ()] < Zkg’—nmn LT (R ()T (e, "f)f’_fimn%f)
Ay(x,y) (A+d(x,xp)" "

270, SOR"I)T(t, - x

(1+4d(x, xo)n A1
Sincen—n' —rn>0,n—B—1=n—s5s—n—1r—1>0,andL” (R", (R +
SYR" 1) < 400, the previous inequalities imply tha; € £L(B,, By); then, by
using Lemma 6.6, we get

1- )
+ 27257 |f 1y

1
lim — || X |,., =0.
\t|—>0|l‘|" || t”n,n

Finally, it remains to prove that, for=1,...,n, Ly € £L(8B,, 8,). This derives
from the following: on the one han®, P(r) € L(8B,/, 8,) (Proposition 6.2), and

on the other hand, by the above, we hag) — P — Zz;l %Lk € L(By, By)
forn’=0,....,n. O

To end this section, we give an additional statement which completes Proposi-
tion 6.1 and will be helpful in the proof of Proposition 7.4.

PROPOSITIONG.7. Assume + 1 < yp, and lety and# be real numbers such
thats +1+ (n—n) <n<n<yoand
17(0, §) < +oc.
Then there exists a constafitsuch that we haydor all r e R and f € 8,,
my(P ()" f) < domy(f) + Clt| | f15-

PROOF  First, we establish the following with the notation of Lemma 6.4.

LEMMA 6.8. Suppose that inequaliti€d) and(B) hold. Let0 < n < 7.
If« =0, B+ 1+17j <2n,andif forall x e M, 4] (Ay,0) + 4;(0, By) < +00,
then we havgor all f € 8,,

my(K f) < L] (Ax, Oymy(f) + 4]0, B) | 5.
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PROOF Let us write, as in the proof of Lemma 6.4K f(x) — K f(y)| <
A1(x,y) + Ax(x, y), and let us return to inequalities (M1) and’@)

With ' =  anda = 0, (M1) glvesAl(x ) < §7(Ay, Oymy ().

Inequality (M2) holds for anyy’ > 0 |n partlcular it is satisfied withy’ = 7.
Besides, it/ (y, x0) < d(x, xo0), we havep(y)" = p(») " p(y)" < p(x)T "p(y)".

Hence Az(x, y) < | £l7dCx, y) p(x)PHFI=1p ()1 4](0, By).
Sinceg + 1+ 1 —n < n, we obtain
A2(x,y)
< 470, B
Ay S 10, B) | f15.

We conclude by combining the two previous boundsl

Let us now prove the proposition. Consider the kegrgl x) = ¢/5n0 %) j ¢
G"°, x € M, definingP(r)"° (see proof of Proposition 6.1); it verifies inequalities
(A) and (B) with k = ng, anda, 8, A, B given in the proof of Proposition 6.1.
Lemma 6.8 applies to this kernel becagsel+7 = s +1+17 < 25, 411,(Ax, 0) =
(1,0 < v, and 1,,0(0 B,) < +o0; this last point can be shown by using
hypothesist’(0, §) < +o0o and a method similar to that employed in the proof
of Propositio 6.1. This prove the proposition. OJ

7. The spectrum of P(¢) acting on 8,. We use the standard notation
o (T) andr(T) to name the spectrum and the spectral radius of an operator
[see Dunford and Schwartz (1958)]. We denoteﬁ{ythe topological dual space
of 8,, and by(-, -) the canonical bilinear functional oﬁ}’, X B,y.

Fory < yp, the P-invariant probability distribution defines an element &8/,
and Theorem 5.5 shows thAte £(8, ), that

U(P)C{l}U{Z:ZEC, |Z|§K0} with Ko—ﬁl/no 1,

and that there existd,) € L(B, ), with spectral radius(N(,)) < ko < 1, such
that, forn > 1andf € 8,

P"f = (v, Y1+ N>\ f.

The following statement, which is obtained by applyingR@) a perturbation
theorem of Keller and Liverani (1999), asserts first that, for sialthe spectrum
of P(¢) is close to that ofP; second, that a spectral decomposition of the preceding
type is still valid for P (¢z); and third, that the resolvents are uniformly bounded in
t for z ranging outside a neighborhood of the spectrun® of

We shall use the following notation. Lef and«( be real numbers such that
0 <Ko < ky < ki <1. Let Do and D, be the open discs of the complex plane
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defined by
Do={z:2€C,|z] <«p}, D1={z:z€C,|z—1 <1—«}}.

We denote byI'g and I'1 the oriented circles defined, respectively, as the
boundaries ofDp and of Df. We set

R=C\(DoUD1)={z:2€C,|z| > kg, |z—1 >1—«k(}.

PROPOSITION7.1. Assumethai+ 1< yg.Lety besuchthat+1<y <yp
and

27 (0, S):/GS(g)(S(g)V+1dn(g) < +00.

Then for all r € R, P(r) € L(8B,). Moreover there exists an open intervd),
containingr = 0 such that we have the following spectral properties ¢ € I,
and for P(¢) acting on8,,

(@) o (P (1)) C DoU D1, and there exists(, (1) € C suchthab (P (1)) ND1 =

{ApH (@O},

(b) there exists a unique functian,(¢), belonging to8,,, such that we have
(v, v (@) =1and P()v) (1) = Aoy (v (1),

(c) we haveM, =sug|(z— P(t)) Y|, t € I,,z € R} < +o0,

(d) there existp(,) (1) € £}’, andN,)(t) € L(B,) such that

VfeBy, VneN, P(O)" f =1 )" (o) (@), flog) @) + Noy(®)" f,
with [| N ()" lly < 22 (0)"
Notice that, forr = 0, we havei,(0) =1, v;)(0) = 1, ¢¢,)(0) = v and

Ny)(0) = N(). From the inclusion8,, C 8,, for 0 < y' <y, and from
Proposition 7.1, we deduce the following corollary.

COROLLARY 7.2. Under the conditions of Proposition1,if s + 1<y’ <
Yy <vyo,thenforall r € I,, NI, we have

Ay (1) = A (D), V() (1) = vy (1),
b)) ()18, = D) (1), Ny (@18, = N ().

NOTATION. In accordance with this corollary, when Proposition 7.1 applies
to P(¢) acting on8B,, we set

At) = A (1), v(1) = v(y) (@), (1) = P (1), N(t) =Ny (@).

It will follow from the proof of Proposition 7.1 that we have the following:
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COROLLARY 7.2. Under the conditins of Poposition7.1,fors + 1<y <
yoandforz € I,,, the elementd/ (¢), v(¢), ¢ (1) are given by the following formulae
in which integration is considered in the spacesB,, ):

N(@t) = ifr (z— P(1)) tdz,
0

2im

v(t) = I1(1)1,

v(I(1)1)
¢ (1) =TI(1)"v,

where
(1) = i/ (z— P@) tdz.
2ir Jry
Moreoverwe have

N@" = % /FO 7"(z— P(t))_ldz and [N®"|l, < f—;(xé)”.

PROOF OFPROPOSITION7.1. The hypotheses are those of Proposition 6.1.
Consequently, forall e R, P(t) € L(By).

To establish the assertions (a)—(d), we shall use the results of Keller and Liverani
(1999). Let us specify the context of this paper: the space (@gjeon which the
collection of operators [herB(r), t € R] acts, is endowed with a norm (hehg ,,,
Section 5.2) with respect to which the space is complete, and with an auxiliary
norm which is dominated by the preceding one. An easy adaption shows that the
results of Keller and Liverani (1999) are still valid with an auxiliary seminorm
[herev(] - )]. The lemma below proves that the required hypotheses are fulfilled.

LEMMA 7.3. Under the hypotheses of Propositidrn.:

(i) forreR,neN*andf e B8,,we havev(|P ()" f|) <v(|f]),
(i) there exist/ € Ry and an open interval, containings = 0 such thatfor
t eI, we have

VfeBy, N1y (P(0)™ f) < (k)" N1,y (f) + Jv( £,

(i) forall r € I, the essential spectral radius &f(¢) is < /c(),
(iv) there exists a positive continuous functipyvanishing at = 0, such that
we haveforall f e 8,,v(|P(t)f — Pf]) <@)N1,(f).

We refer to Hennion and Hervé [(2001), Chapter XIV] for the notion of essential
spectral radius of an operator. The property (iv) above means that, in a weak sense,
for small|z|, P(¢) is a perturbation oP.



LIMIT THEOREMS FOR ITERATED MAPS 1965

PROOF OFLEMMA 7.3. (i) As P is nonnegative, we geP (1)" f| < P"| f|;
hence the inequality of point (i), sineeis P-invariant.
(i) From Proposition 6.1, we have, for afl e 8,,

my (P()" f) < kg°my, () +Clt] 470, $) | f1y-

As a consequence of the equivalence of the novgs, and Ny ,, we get a
constantk”’, such that, for allf € 8,,, we have

my (P (1) f) < 1g°my (f) + K'ltIN1y (f) = (g + K'lt)my, (f) + K|t [v(| f]).

m no
Ko

0_ .
so that, forl7| < “—"2-, we obtain

my (P()" f) < (k0)"my, () + (k® — kv (| £ ],

Using point (i), we getNy, (P(1)"f) < (k0)"°N1,,, (f) + Jv(|f]) with J =
Ko® — kp® + 1.

(i) Recall that the essential spectral radius of an operator is smaller than its
spectral radius; consequently, point (i) is clear wh€R (1)) < .

Assume thatr(P(t)) > ;. Then, from point (i) and the Doeblin—Fortet
inequality established in point (ii), aftbm the fact that the canonical embedding
of (8,,N1,) into (B,,v(|-])) is compact (Lemma 5.4), we deduce by means
of the lonescu-Tulcea and Marinescu theorem or more precisely of Corollary 1

/no_ 0
in Hennion (1993) that, foir| < "%, P(¢) is quasi-compact, and that its

essential spectral radiusisK6.

(iv) Using the inequalityl f(gx)| < | fl, p(gx)" Tt < | fl, 8(g)" T p(x)r+1
(Lemma 4.1), we obtain

v(|P(t)f — Pf]) < fG fM|e”5<g*“ — 1| If (gx)drm(g) dv(x) <|fl, &),
with
e(r) = / / |e"5E0) —118(g) M p(x) Trdn () dv(x).
GJIM

Sincev(p?*1) < 400 and (§7+1) = M, 11 < M1 < +o0, it follows From
Lebesgue’s theorem thatis a continuous function oR, which vanishes at= 0.

Point 4 is deduced from the above inequality and the equivalence of the norms
Noo,y @andNy,. O

Now assertions (a) and (c) of Propositian 7ollow directly from the results of
Keller and Liverani (1999) which, moreover, assert that

1 _
M) = 5 /rl(z —P) tdz
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is a rank-1 bounded projection fronB8, onto KerP(r) — A(¢)), and that
V([T ()1 — T, (0)1]) = v(|I1,) (1)1 — 1]) converges to O with.
Therefore, for sufficiently smalt|, we havev(I1,(t)1) # 0, and we can set

vy () = ) (1)1

1
V(I () 1)
this function verifies condition (b) of Proposition 7.1. Assertion (d) and Corol-
lary 7.2 also follow from Keller and Liverani (1999).

We conclude this section with a result that will be useful for the study of the
nonarithmeticity o (cf. Section 9).

PrROPOSITION7.4. Assume that the conditions of Propositibd are satisfied
and reinforced by + 1 < y < yg and by the existence ¢f, y < y < yp, such
that JU;(O, §) < +oo. Lett € R be such thatfor P(z) acting on$8,, we have
r(P(t)) > 1. Thenr(P(¢)) =1and P(z) is quasi-compact otB,, .

PROOF Sinces + 1 < y < yo, wWe can suppose that verifiess + 1 +
(# — y) < y. For convenience, we S¥(f) = Neo,.5(f) = my(f) + | fl;
(Section 5.2).

The first inequality of Proposition 6.1, when appliedjtoand to the kernel
q(g, x) = €''¥&X) shows that

IP(1)fl; <470, D) fl5,

with 47 (0, 1) < 47°(0, 1) < 4+o0. Moreover, Proposition 6.7 applied to the couple
(v, y) = (n,n) asserts that there exists a const@nsuch that, forr € R and
f € 8, we have

my, (P(1)" f) < ko°my, (f) + Cltl| f15.-
SettingC’ = C|t| + 47(0, 1), we get
N(P@)™f) <ko® N +C'Ifl5.

From the fact thatP(r) is bounded on(8,,| - |;), and since the canonical
embedding of(8,, N) in (8By.]-|7) is compact (Lemma 5.4), we deduce by
means of Corollary 1 of Hennion (1993) that, under the conditigP(z)) > 1,
P(t) is quasi-compact omB,, and that its essential spectral radius<s«o.
Consequently, there exists an eigenvalwé P (¢) suchthatr| =r(P(¢)). Letw €

8B, be an eigenfunction associated withForn > 1, we haveA"w| = | P ()" w| <
P"|w[; hencelA| |w], <[ P"|w|], <l P"|w] |loc,y. The spectral decomposition
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in Theorem 5.5 together with the equivalence of the considered nors greld
sup, | P"|w] llee,y < +o00. Hencelr| <1, and atlast(P (1)) =1. O

8. Taylor expansionsfor v(-), ¢(-), N(-). The hypotheses in the subsequent
statements will imply those of Proposition 7.1 and of its corollaries; thus,
for small |¢|, the eigenelements of the spectral decomposition described in
Proposition 7.1 are defined. We are going to use the Taylor expansiaPé Jof
written in Proposition 6.3 to obtaithe Taylor expansions faf(-), ¢ (-) andN (-).

PrRoPOSITIONS8.1 (First-order Taylor expansions)Suppose thafor ' < n,
the following condition holds

Vi, m)is+1<n' <n'+r<n=<y 4" (R, R+ S) < +o0.

Then Propositiory.1 applies toP(z) acting on&,,, and the functions(-), ¢(-)
and N(-) from I,; in (8B,/, Neo ), £{7, and £L(8,/, 8,), respectivelyhave a
derivative atr = 0. Moreoverthere exists a constaikf; such that

Vaz1 Viely  [N@®" = NOly., < Kilrlwp)".

PrRoOPOSITION 8.2 (Second-order Taylor expansionspuppose thatfor
n’ < n, the following condition holds

Vo', mis+1<n'<n' +2r <n<yo
17" (R, R+ 8) + 4" (R?, (R + S)R) < +oc.

Then Proposition7.1 applies to P(¢) acting on 8B,/, and the functionsu(.),
¢(-)andN(.), from I,y in (B, No ), £,’7 and £L(B,, 8,), respectivelyhave
second-order Taylor expansions at 0. Moreovey we havefor all ¢ € 7, and
n>1,

/2

2
with Nl,n; NZ,ny en(t) € °C(£n” 377)! Iimt—>05u9121||8n(t)”n’,n = 0, and
SUR,>1 INjully .y < +oofor j=1,2.

N(®)"=N()" +1 N1, + =Na, + 126, (1),

The rest of this section is devoted to the proofs of these propositions. Recall that
R={z:2€C,|z| = kg, |z — 1| = 1 —«(}. Fory €10, yol, we set

J, =supl(z— P)7 Y|, <400  (Theorem 5.5)
ZER

Under conditiorV1 (7', ) or Vo(i', ), we haved” (0, §) < 4777 (0, §) < 400
ands + 1 < " < yo. Consequently, Proposition 7.1 appliesf@) acting onB,,.
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In particular, forr € 1, and forz € R, (z — P(1)) is invertible onB,/, and we have

My =sup|(z = P®) Y, t€ly. z€ R} < +oo.

We shall need the following formula. L& be a Banach space.lf andV are
bounded operators of such thaty andU — V are invertible, we have

() U-nrt=3wvut+utvyttu-v
k=0

Actually, if W € £(B), we havel — W+l =Y"_ Wk (I — W), and hence, if
I — W is invertible,

n
I-wy =Y wh+wtta —w) L
k=0

The claimed formula follows from the relatiqty — V) 1= 1 —v-1v)~1ly-1
and the above equality.

In the proofs below, we shall applyXwith U =z —- P,V = P(t) — P, and
thusU — V =z — P(r). Observe that, in the sequel, all the space parameters
are between + 1 andyyg, so that conditionQ4o(n’, n) and U, (', n), n > 1, of
Propositions 6.2 and 6.3 can be rewritten as

Uo(', )0’ <n, 470, ) < +00,
Un (', m) 20 +nr <n, 47 (R", (R+ S)R"™Y) < +oc.
Otherwise notice that, if < n1 < nandifT € L(B,,, B,),thenT € L(B,/, B;)

andiI T lly,y < 1T llyy,n-

PROOF OF PROPOSITION 8.1. The next lemma gives a first-order Taylor
expansion for the resolverit — P(r))~1. We setR(z,1) = (z — P(t))! and
Rz)=R(z.00=(z—P)"1.

LEMMA 8.3. Under conditionVy(n', n), there exists a continuous functi®i
from R to L(B,y, B,), such that we have

1 _
lim = sup|(z— P())) " —(z— P)"* =R,
1=01t] zem

w =0

PROOF Settingn to 1 andU andV to the values indicated a few lines above,
the formula §) gives, forz € R andr € I,

R(z,1) = R(2) + R(z)(P(t) — P)R(2) + R(z)(P(t) — P)R(z)(P(t) — P)R(z,1).
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As, by assumptiony’ + r < n, we can choose; suchthaty <ny <nm +r <.
ConditionUg(n’, n1) is verified because’ < n; and47 (0, S) < 477 (0, S) <
+o00; hence lim_o||P(t) — Pl , = 0. Condition U1(n1,n) holds because
nm+r<npandd™(R,R+S) <I""(R,R+ S) < +00; henceP(t) — P =
tL1 + Y1(t), with Ly, Y1(t) € L(By,, B;) and Iimt_>o|t|—1||T1(t)||,71,,7 =0

(Proposition 6.3). Now we write

R(z,1) = R(z) + 1R, + O1(z, 1) + O2(z,1),
with R = R(z)L1R(z), and
O1(z,1) = R(2)T1(H)R(2),
O2(z,1) = R(2)(P(t) — P)R(z)(P(t) — P)R(z,1).

SinceLy € L(By,, B;) C L(B,y, B,) and sinceR(:) is continuous fromR to
both £(8,/) and L(B,), R! is continuous fromR to L(B,y, B,). Fort € Iy,
O<|t] <1, andz € R, we have

1t HO1 Oy < 117HOLG Oy < Iy 1E17HTLE 1ygn I
1t HO2(z, )y < T (1Ll + 11701 ) Tng 1P ) = Pl gy Moy

The second members do not depend enR and converge to 0 with, this proves
the lemma. O

To establish Proposition 8.1, we now use the formulae of Corollary M@re
precisely, the linear mapd (r) and N(r) of the corollary are considered here as
elements of£(B,/, B,) since they may be viewed as integrals of functions with
values inL(8B,/, B,).

Then Lemma 8.3 shows thal(-) has a derivative at= 0 as ant(8B,/, 8;)-
valued function. ThudI(-)* has a derivative at =0 as anoC(IB,’,, B’ )-valued
function. This proves the first-order Taylor expansionsvoy and ¢(-). The
existence of a derivative fov(-) at ¢+ = 0 follows in a similar way from
Lemma 8.3. On the other hand, from the integral formdi@)” = % fro 7"z —
P(t))_ldz, we deduce the existence of a const&nsuch that, forn > 1 and
re 177”

k) "IN @" = N©)" Iy < sup|z = P@) == P)7Y,,

zelg

< |r|(sup||R;||,,/,n +K);

z€lg

hence the inequality of Proposition 8.1.]

PROOF OFPROPOSITION8.2. As above, we start with a Taylor expansion of
the resolventz — P (1)) L.
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LEMMA 8.4. Under conditionV,(n', n), there exist continuous functiong
andR! from R to L(8B,/, B,), such that we have

1
lim — su
1—01° zeR

PROOF Retaining the notation of Lemma 8.3 but settingp 2, the formula
(x) gives, forz € R andr € Iy,

R(z,t) = R(z) + R(z)(P(t) — P)R(2) + R(z)(P(t) — P)R(z)(P(t) — P)R(2)
+ R(2)(P(t) — P)R(2)(P(t) — P)R(z)(P(t) — P)R(z,1).
Sincen’ + 2r < n, we can choos®@; andn, suchthaty <ny <m +r <m <

n2+r<n.
The conditionU2 (%', n) is verified; hence by Proposition 6.3,

2
t
P(t)— P=tL,+ §L2 + Yo(1),

2

=0.
2

1

—P®) "= (—P)t—tR — =R/

/

n

with P, P(t), L1, L2, Y2(t) € L(B,y, B,) and Iim_>ot_2||T2(t)||n/,,] =0.

The conditionsU(n1, n2) andU1(n2, n) are satisfied since we haye + r <
n2, n2+r <nand 4"(R, R+ §) < 4"™2(R,R+ S) < 4" "(R,R + S). Then
Proposition 6.3 withh = 1 shows that

P(t)— P =tL1+ Y1(2),
lim; o 1]~ C2(t) 1l .y = O.

At last, sincet” (0, S) < 4777 (0, S) < +oo, the conditiorfo(y’, n1) holds and
Proposition 6.2 ensures that

lim | P(t) = Py, =0.
t—0

We get

2
R(z.1) = R(2) + R(z)(rL1 +oL+ T2(1)>R(Z)

+ R(z)(tL1+ Y1(t))R(z)(tL1+ YT1(2))R(2)

+ R(z)(tL1+ Y1(t))R(z)(tL1+ Y1(t))R(z)(P(t) — P)R(z,1),
hence

t2 5
R(z,t) = R(z) + 1R, + ER;/ + ) Oz, 1),
k=1
with
R;=R()L1R(z), R =R(z)L2R(z)+2R(z)L1R(z)L1R(2),
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and
O1(z,1) = R(2)T2(1)R(2),
©2(z,1) =tR(z)L1R(z) T1(1) R(2),
O3(z,1) =tR(2) T1(1) R(z) L1R(2),
Oa(z,1) = R(2)T1(H)R(2) T1() R(2),
Os(z,1) = R(2)(tL1+ T1()) R(2)(tL1+ Y1) R(2)(P () — P)R(z, 1).

SinceL € L(B,y, By) N L(Byy, Byy,) N L(Byy,, By), L2 € L(B,y, By) andR(:)
is continuous fromR to L(B,y), L(B,,), andL(B,), the functionsr! and R”
are continuous fronR to L(B,/, 8,).

We have, for e I,0< |f| < 1,andz € R

721012, Ollyp < Jn(t 212y ) Ty
1721020z, Dlly.y <t 2102(z, D) llye.s

< IgllL g T (1617 ngn) Tns.
172103(z, Dlly,y <t 21093z, Oy,

< (111702 ng.n) I 1L llgg. o Tinss
172104z, Olly,y < 121094z, Ollyy.

< Ty (1t HI0LO o) T (121 HICLE 1,m2) T
172105z, Olly.n < Jn K Jno Knp Ina | P@) = Pl My,

with Kgp = SURILallap + 1117 T2 llap, €1, 17] < 1),
This proves the lemma because the right-hand members do not depead®n
and tend to O with. O

Let us now complete the proof of Proposition 8.2. The Taylor expansions for
v(-), ¢(-) andN(-) can be deduced from the formulae of Corollary’ 7\®e just
specify how to get the expansion fof(-)". Using integration inf(8B,/, 8,), we
set

1 1
Ni,=— "R'dz and N =—/ "R dz.
L= oin /FOZ 4% 2= i FOZ 2 4%

+1 +1
We have ”Nl,n”n’,n = Kén SuQeFo ”R;”n’,n and ||N2,n||n’,n = Kén X

SURcr, IR Ily.,- Lemma 8.4 yields
2

-1 - t
len®llyn = 5 froz”((z—Pm) — = Pyt oiR - DRY)de|
n.n
K6n+l . . / t2 )
=7 SUP{(Z—PO)) —@=P)T iR - SR
R n'.n
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yn+1

Sincexy ' <1, we conclude that lim,, osup,~1 llen () ly,, =0. O

9. Extensionsand proofsof TheoremsA, B, C,S. We return to the context
of Sections 1 and 2. Theorems,MB’, C' below concern the behaviour of the
sequence of r.v.'§(Z,, S%)),.

9.1. TheoremsA’, B’, C', S. Neglecting the technical parameteg of the
preceding sections, we may defig as the space of locally Lipschiz-valued
functions f on M such that

(x) — ()
& () =Sup{ f®) = F O |
d(x, y)(1+d(x, x0))" (1 +d(y, x0))”
endowed with the norm

x,yeM,x;éy}<+oo,

|f(x)]
£ lloe.y =& () + SUp ==
this norm is clearly equivalent to the ones previously definedgon
Recall that, we sef(g) = 1+ c(g) + d(gxo, xo). As previously we can omit
Ao in the definition of the number$™ (U, V) (Section 6.2) by replacing now the
function § by §, that is, by replacingl™(U, V) by g7(U, V), already used in
Section 2, and defined by

47U V)= /G U(g)e()8(2)% dr(g) + /G V(©)§(9)™ L dn(g).

If (V,] - is a normed linear space anddf> 0, we shall denote by («)
the closed ball inV with radiusa: centered at 0. We nam@;»(R) the space of
C-valued continuous functiorison R such that lin,| - 40 u?h(u) = 0.

Under the hypotheses of the next statements, the real numbet
S JgE(g, x)dm(g)dv(x) is defined, and supposed to be zero.

Recall that Conditior# (yp) holds if there exisjp € R* andng € N* such that

Mypr1 =7 (870 < 400,
'M/2yo+1 = 7(c51°) < +00,

ey, =7 (cmaxc, 1}2) < 1.

THEOREMA' (Central limit). Assume¥(yp) with yo > r + maxXr, s + 1} and
that

/ R?dm < +oo, g (R, R+ S) < +o0.
G

Then there existsr2 > 0 such thatif the rv. Z satisfiesE[d(Z, x0)"° 1] < 400,
we havefor f >0, f € Uy<y0_, 8, , and for any bounded continuous functibn
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onkR,
z

. S
im E[ f(Zn)h(ﬁ)} —v(f) N0, 02 (h).

If h e C2(R), this convergence holds uniformly whep, f) ranges over
B (@) x By ().

THEOREM B’ (Central limit with a rate of convergence) Assume¥(yp) with
yo > 3r + max{r, s + 1} and that

/ R3dnm < +oo, g7 (R, R+ S) + 7% (R% (R + S)R) < +o00.
G

Thenif o2 > 0, the assertion of TheoreBiholds
Moreoverif Z has the distributiorv, then for 0 < y < yg — r, there exists a
positive constan€, such thatfor f € 8,, f > 0, satisfyingv(f) > 0, we have

53H9E[f(2n)1[s,%5uoﬁ]] — ()N (0, 1)(] — 00, ul)| < %

The statement of the local limit theorem appeals to the nonarithmeticity condition
for & with respect to the spaeg, fory els + 1, yo —r[:

ConDITION (N—A),. Thereisnor e R\ {0}, noA e€C, |A| =1, and no
bounded functiow in 8, with nonzero constant modulus on the suppaytof v,
such that we havdor all x € ¥, andfor alln > 1,

¢Siw(R,x) =2"w(x),  P-as.
THEOREMC' (Local central limit). Assume that the hypotheses of Theo#ém
are satisfiedLety be a real number verifyinmaxr, s + 1} < y < yo—r and such
that Condition(N-A),, is fulfilled.

If 02> 0, and if Z is such thatE[d(Z, x0)"**1] < 400, then for all f > 0,
fe®8B,,andforallr € C2(R), we have

lim sudo~27nELf (Z)h(SZ — u)] — e ™/ @9 (£).L(h)| =0,
T 4eR

and this convergence holds uniformly when f) ranges over:B)’,O(a) X By (a).

THEOREMS'. Assume¥ (yp) with yo > 2r + s + 1 and that
g7 (R, R+ S) + g7 (R?, (R + S)R) < +cc.

Then the assertions of Theor&old with&; € B,,—r in point (i).
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9.2. Proofs of TheoremA&’, B’, C'. These proofs are based on expansions of
the characteristic function of the rS¢.

ProOPOSITION9.1. 1.Assume thatthe hypotheses of Theofémare fulfilled
Let the parametey verifymaxXr,s + 1} <y <yo—r.

Then there exist an open interval containing:r = 0, a C-valued functior.(-)
and £ (8, )-valued functiond.(-), N(-), defined on this intervabuch thatif the
distribution p of the rv. Z verifiesu(d(-, xg)"*t1) < 400, we havefor n > 1,
tel,,andforf e B,

E[f(Zn)e'"™S' ] = (. P()" ) = A0 (v(f) + g, LX) 1)) + (. N ).

Forall r € I,, we havgA(r)| < 1;there exists a real positive numbef > m? such
that

2
t
At) =1+ imt — 025 + 0(t?),

and there exists a positive constantsuch that

(i) if, either f =1andu € B, or f € B, andu = v, then

(e, N@)" )] = ¢y () Inf{12], LI 2l oo,y I f oo,y »

(i) IN@O™ My <yl

(i) NL@ly.y < cyinf{jz], 1}.
Moreoverif m =0 ando? > 0, then for any real number such that’ € I,,, we
have

(i) (ML) <e 4

2. Suppose that the hypotheses of ThedBéimold. Then if m =0ando? > 0,
there exists a constadt; such that we havédor all real r such thata’—ﬁ el,
V) (G = ™72 = Shpppe /4,

g\/n

Assume this proposition for a while. To prove Theorems B/, C, we
have only to use the method of Hennion and Hervé [(2001), Section IV.2 and
Chapter VI], which is an adaptation of standard Fourier techniques for sums of
ii.d. r.v’s. As already mentioned in Section 4.2, we consider here the Fourier
kernels P(r) instead of the Fourier kernel®(r) associated withé and the
probability transitionQ on G x M defined in Section 4.2. Yet the needed changes
are obvious, and we shall not develop the argumentation; we only specify some
points.

First, the distributionu of Z defines an element OB)//O if and only if

E[d(Z, x0)"*1] < 400, and, in this case||ullc. o = El(L + d(Z, x0))70H1].
Actually, we have, forf € B,, | f1 < Il flloo,yo (L +d (-, x0))70*L; henceu (| f]) <
I f ooy EI(L+ d(Z, x0))°T1].
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Second, because of the topological embedding of the sg&cén the proofs of
Theorems Aand B, it will be sufficient to consider the case where the functfon
is in a spaceB, with y e maxr, s + 1}, yo —r|[.

At last, in the proof of Theorem'Cit is necessary to have some control on the
behavior of P (¢), for all t € R. The following lemma shows how this is related to
Condition (N-A), .

LEMMA 9.1. Assume conditions of Theoredh except Conditior(N-A), .
Then P(t) is a bounded operator of3, for all r € R. Let r € R such that
r(P(t)) = 1. Then there exist € C, |[A| = 1 and a bounded functiow € 8,,
with nonzero constant modulus on the supytof v, such that we haydor all
xeX,andalln>1,

ESiw(R,x) = V'w(x),  P-as.

Consequentlyjunder Condition(N-A),,, for all t e R\ {0}, we haver(P(t)) < 1.

PROOFE Lety €ls+1, yo—r[. Theinequalityg? (0, S) < g7 (0, S) < +o0
together with Proposition 7.1 shows that the Fourier kerRél3 act continuously
onB, forallr e R.

By Propositim 7.4, if r(P(t)) > 1, thenr(P(¢t)) = 1, and P(¢) is quasi-
compact. Consequently, there existe B, \ {0}, andA € C, |A| =1, such that,
forall n > 1, we have

P®)"w=A"w.

It follows that |w| < P"|w|. Since, by Theorem 5.1, the sequené¥|w|),>1
converges pointwise to(|w|), we getfjw| < v(Jw|), so thatw is bounded. From the
above and equality(v(Jw|)1y — |w|) = 0, we deduce that({x:x € M, jlw(x)| =
v(Jw|)}) = 1; thus|jw| is a nonzero constant function @i . Forx € X, andn > 1,
we write

itSy n
E|:1— el w(R,,x)] . P w(x) _
Aw(x) At (x)

. itSy . o
Since|“ra)| = 1, it follows thate!"S w (R, x) = A"w(x), P-a.s. 0

To be complete on the properties required for local theorem, one needs to
establish the following.

LEMMA 9.1”. Under the conditions of Theore®@', for every compact
subsetk of R*:

(i) We have'x =supr(P(t)),te K} < 1.
(i) There existsC > 0 and px < 1 such that we havefor all » > 1,
SUpck IIP@)" | < Cp -
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PROOF (i) Suppose that sypggr(P(r)) > 1. Then, by Lemma 91
supcx r(P(t)) = 1, thus there exists a sequence); in K such that
lim, r(P (1)) = 1. For eacltk > 1 consider a spectral valug of P (1) satisfying
x| =r(P(tr)). By compactness, one can suppose {hat and(i;); converge.
Setrg = limg i, A =limy Ag, and observe thag € K, thusrg # 0, and|A| = 1.

We are going to show that the perturbation theorem of Keller and Liverani
(1999) applies to the action, on a certain spa&g of the family {P (1), € R}
whent — 1. It will follows from this result, see page 145 of the above cited paper,
thata is a spectral value aP (7g). But sincerg # 0 and|A| = 1, this will contradict
Lemma 9.1, so we shall get point (i).

Lety,y be suchthat +1+ (y —y) <y <y < yo — r. We establish that
{P(1),t € R} acting onB, satisfies the four assertions of Lemma 7.3, where O is
replaced byo € R*, and the norniVy , () [resp.v(-)] is replaced by , 5 (resp.
|- 15)

1. Using the inequalityP ()" f| < P"| f| < | fl; P"(p”*1) and assertion (c) of
Lemma 4.2 (observe thai’ and 1+ ¢, are equivalent), one easily proves that
SUP,=1 1P (p” TH]; < +oo0. It follows that{P(#)", ¢ € R,n > 1} is uniformly
bounded on(B, . | - |;).

2. Proposition 6.7 implies theesond point of Lemma 7.3 [with- |; instead of
v(| - D]

3. f r(P@®)) > ﬁé/"o, where g < 1 is the real numbemi Proposition 6.7, it
follows from Lemma 5.4, from the preceding assertion, and from Hennion
(1993), that the essential spectral radiu$¢f) is < z&‘é/"o. If r(P()) < z&‘é/”o,

this is also valid because the essential spectral radius is always less than the

spectral radius.

4. In the same way as Proposition 6.2, it can be proved that there exists a real
continuous functiore(-), vanishing atr = g, such that we hav§P(r) f —
P(10) flloo.y < @) I flloo,y for all f e By,. Sincell - lloo,y < Cll - llo.y.5
(Proposition 5.2), we obtain

|P(@) f — P(to) fly < |P(t) f = P(to) flloo,7 = CeDI flloo,y,7-

(i) Let px be such that ma()fz‘é/"o, rx} < pg < 1, and letl" be the oriented
circle {|z| = px} in C. Forr € K, we haver(P(t)) <rg < pk, thus P(1)" =
%fr 7"(z — P(t))~1dz. Moreover, the theorem of Keller-Liverani ensures
that, for anyr € K, there exists an open intervd| containingzy, such that
suf|i(z — P(t))‘1||y,z € l,|z| = px} < +o0. By compactness, we get Uiz —
P))7Y,,t €K, |zl = pk } < +oo. This gives (ii). O

Proof of assertiorl of Proposition9.1. Lety, maXr,s+1} <y <yo—r.

We haves + 1 <y < yp and g7 (0, S) < g"~"(0, S) < +oo. Thus Proposi-
tion 7.1 applies toP(¢) acting onB,,. For convenience, the interval will be
denoted byl .
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LEMMA 9.2. The mapsv(-), ¢(-), and N(-) have derivatives at = 0 as
functions with values 8, , || - llco.y), 8B;,, and L(B,, B,,), respectivelyand
there exists a constat such that we havdor alln > 1andallzr € I,

IN@®" = N(©)"ll,y0 < Ktl(x0)".

Moreoverthere existg», 0 < y» < y, such thatP (-) has a derivative at =0 as
an £L(8,,, 8,)-valued function

PROOF Wehaves+1<y <y +r <y andg”” " (R,R+ S) < +00, SO
that the conditior1(y, yo) is fulfilled and the assertions upei), ¢ (-) andN (-)
follow from Proposition 8.1.

Sincer <y < y9 — r, there existsy, such that O< y» <y +r <y <
Yy +r <Yo.

To establish thaP (r) has a derivative, we apply Proposition 6.3. Actually, the
conditionU1(y2, y) holds: we haven +r <y,s+ 1<y andg"?(R, R+ S) <
g (R,R+S) <4o0. O

The formula forE[e!*5 f(X,)] is obtained by using the basic lemma stated in
Section 4.2, the decomposition &f(¢) given in Proposition 7.1, and by setting
L) f = (o), flv@) — (v, f)1.

Under the conditions of (i), we havge, N(0)" ) = 0, so that the considered
inequality follows from Lemma 9.2.

Inequality (ii) already appears in Corollary 7.2

To obtain (iii), it suffices to remark that, since the functiarig and¢(-) have
derivatives in(8By, || - ll.1,) andB,,, there exist constants; and C; such that,
for f e B,,

IL(®) flloo,ro = K@), )TV = Lloo,yy + (@) = v, )] 1 Llloo,y0
< Calt[llg O lloo,y I flloe,y + C2ltl 1l flloo,y 1 1loo,yo-

It remains to prove the properties of-).

From Proposition 7, we have.(0) = 1 andi ()" = (v, P(¢)"v(¢)). Appealing
to the invariance of, we get|A(1)|" < (v, P*|v(?)|) = (v, |[v(®)]). It follows that
A1) < 1.

To prove thaf.(-) can be expanded to the second order and to identify the terms
of its expansion, we proceed as in Lemma \6fiHennion and Hervé (2001).

LEMMA 9.3. Fortel,setp(t) = (¢p@), 1), v@) = (v, P()1) and u(r) =
P®)1—-7@®)1.Thenu(0) =0, (v,u(t))=0,and
1

)\, =
® p(t)

(@) — v, u(0) +v().
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PrROOF The two first equalities are obvious. From the decomposition of
Proposition 7.1, we have (1)1 = A() p(t)v(t) + N(@)1. As{(¢(t), v(¢)) =1 and
¢ ()N (t) =0, the formula for.(r) follows from

(p(0), u()) = (¢ @), L) p(v(1) + N)1 —v(1)1) =1@0) p(1) —v(@) p(r). U

Notice thatv(-) is the characteristic function gfunder the distributior ® v, so
that the next lemma results from the moment propecti(-, xo)”°*1) < +o0.

LEMMA 9.4. Letn € N*. Assume thaf; R(g)" dn(g) < +oo and thatr <

yo+1
Eaa

Then 7(-) has continuous derivatives up to order, with 9% (0) =
i* [ &g, x)*dn(g)dv(x)fork=1,...,n.

We can now obtain the second-order Taylor expansion(of

LEMMA 9.5. u(:) has a derivative at = 0 as a8, -valued functionand we
have
12
A@)=1+imt — 025 +0(t?),

with
o2 = (1 ®V)(E%) — 2(¢'(0), u'(0)) > m?.

PROOF By assumption, we havg; R(g)?dn(g) < +oo andr < @ < %“

so thatvi(r) =1+ imt — (7 @ v)(gz)é + o(t?). From Lemma 9.2, we know
that P(-)1 and (v, P(-)1) have derivatives at = 0 as functions with values in
8B, andC, respectively. Thereforg(-) has a derivative at= 0 as a8, -valued
function.

We get, first in8,, ¢ (1) —v = ¢ (1) — ¢(0) =1¢'(0) + o(r); second inB,,,
u(t) =tu’(0) +o(t), and thirdly inC, p(¢) = 1+ O(z). Settingc = 2(¢’(0), u’(0)),
we have

00— v = (1+00)( i ) 2 o)
— —v = — =c— .
>0 U c 2 o) c > 17)
We obtain the Taylor expansion @f-) by adding the expansion 6fto the last
one.

We now prove that2 > m. Settingv(r)(-) = v(r)(-), we haveP(—)v(t) =
A() v(r) and, by uniqueness [cf. Proposition 7.1(a)], we gétr) = A(r). It
follows thato? € R. As 1> [A())]2 =1 — (62 — m?)12 + o(t?), we obtain
02 —m?>0.Lemma9.5is proved.O]

Whenm = 0 ando 2 > 0, it follows from the preceding expansion that, for small
1], (B < 1— 2 4+ & < e~*/4 thatis, (iv).
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Proof of the assertior2 of Propostion 9.1. The claimed inequality follows
[cf., e.g., Hennion and Hervé (2001)] from the fact that, under the additional
hypotheses in 2, the remainder of the second-order expansiaf-)otan be
specified as follows.

PROPOSITIONS.6. We have\(r) = 1+ imt — Gz% + 0(3).
PrROOF We need the following lemma.

LEMMA 9.7. There exist < y» < yp such that the functiong(-) and P(-)1
have a second-order Taylor expansiort at 0 as functions with values iﬁa;z and
in 8,,, respectively

PROOF By assumption, we have > 3r + maxr, s + 1}; therefore, 4 < o
ands + 1+ r < yg — 2r. It follows that there exisy4 andy» such that O< y4 <
Va+2r <yr<yr+2r <pyoands+1+r <.

To establish the assertion @n(-), we apply Proposition 8.2. This is possible
since the conditiorV»(y», yo) Is satisfied; indeed, we have+ 1<s+1+r <
Y2 < yo+ 2r < yo, and g7 (R, R + S) + 972(R?, (R + S)R) < +oo because
Y2<yo—2r.

Moreover, the conditiorila(ys, y2) is verified: we have G< y4 < ya + 2r <
v2, s+ 1471 <y, and theng?”(R2, (R + S)R) < 400 sinceys < yo — 2r.
Proposition 6.3 shows tha(-) has a second-order Taylor expansion at0 as
an<L(8,,, 8,,)-valued function, hence the claimed property for)1. [0

To conclude, we appeal once more to the formula of Lemma 9.3. Since
I R(g)%dn(g) < +o0 andr < @ < VOT“ the characteristic functiofi(-) has
now three continuous derivatives, so that the remainder of its second-order Taylor
expansion isO(z3). Using the preceding lemma, we hawér) = v + 1¢/(0) +
22 + o(t?) in B}, and u(r) = tu'(0) + r’uz + o(t?) in B,,. Consequently,

,,Tlt)(qb(t) —v,u(r)) =1+ 0(¢))(C§ +0(t3) = c% + 0(r3). It follows that the
remainder of the second-order expansion©f atr =0is 0(t3). O

9.3. Proof of Theorens'.
PROPOSITION9.8. Assume¥ (yp) with yo > r + maxr, s + 1} and that

[ R@?dn(g) <+o0.  §PT(R R+ <+ov,
G

and thatm = 0.
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(i) We seb(x) = [;&(g,x)dm(g), x € M. There exists a unique real-valued
functionw € 8,,,_, such that

(v, w) =0, 1-Pw=96,

and we haver? = (7 @ v)(£(& + 2w o j)).
(i) Moreoversuppose thayg > 2r + s + 1 and that

972" (R?, (R + S)R) < +o00.
Suppose that thewr Z has a distributiornu which defines an elementﬁfm. Then

forall n > 1,the characteristic functiow, () = E[e"’snz] = (u, P(+)"1) has the
Taylor expansiom, (1) = 1+ ayt +bn§ + 0, (t%), With sup,~.1 |b, +no?| < +o0.

Recall thatj defines the action aff on M.

PROOF OF PROPOSITION 9.8. The hypothesig,; R(g)%dm(g) < +oo im-
plies that) is well defined.

Proof of assertion(i). To begin, we state the differential properties that we
shall use.

Lety be such that mdx, s +1} < y < yo —r. Then there existy, y’ such that
O<y<y+r<y <y <y+r<yands+ 1<y’ ltis easily checked that
we have the following properties and their consequences:

1. Vi(y, yo); therefore¢ (-) has a derivative at = 0 as a:B}’,-vaIued function
(Proposition 8.1).

2. U1(y2, y"); therefore P(-) has the derivativelL; at + = 0 as anL(B,,,
8,)-valued function (Proposition 6.3).

3. Ua(y’, yo); therefore P(-) has the derivativeL; at r = 0 as anL(8,,
8,,)-valued function (Proposition 6.3).

4. Uo(y’, y); therefore P(-) is continuous at = 0 as an.L(B,, B,)-valued
function (Proposition 6.2).

Lemma 9.4 asserts thét-) has a continuous derivative, wifi(0) = im = 0.
The property 2 above ensures thdt) has a derivative at =0 as a8, /-valued
function, and that:'(0)(x) = L11(x) — ¥'(0) =i [; &(g. x) dn(g) = if(x); thus
u’(0) = i6. It follows that® € B,. Since(v,0) =im = 0, Theorem 5.5 shows
that there exists a unique € 8,/ such that(v, w) =0 and(1 - P)w =6, and
thatw is the sum inB, of the seriesy ", .o P"6. As 0 is real valued, so is. At
last, sincey’ < yp — r, we havew € 8,,,.

On the basis of the formula of Lemma 9.5, we get

o= (7 ®V)(E%) — 2i{$'(0),0) = (1 @ v)(£2) — 2i(¢/(0), (L — P)w).

The following lemma allows us to conclude.
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LEMMA 9.9. We have
(9'(0), A—P)w)=i(r @v)(Ewo ).
ProOOFE It is known that, for smallz|, (A (#) — P(@))* ¢ () = ¢ () (A(¢) —
P(t)) =0. Hence, setting(¢r) = A(¢t) — P(t), we have

(¢(t) - ¢(0)) SOw — S(O)w) _90SOw -9 OSOw _
t t t

0.

SHw +¢(0)(

Observe thak(r) has a derivative at= 0 because the conditions of point (1) in
Proposition 9.1 hold. Therefore, sinegc B, and¢(0) =v € :B;O, the above
properties (1) and (4), and then (3) enable us to pass to the limit in the equality.
We get

¢'(0)(SO)w) +v(S'(O)w) =0,

or else ¢'(0)(1 — P)w = v[(L1 — M (O)w] = v(Liw) =i [, [5E(g.x) X
w(gx)dm(g)dv(x). O

Proof of assertion(ii). We know thati(r) = 1 — 02% + o(t2). Otherwise,
sinces + 1 < y9 — 2r, there exists; such thats + 1 < n < n + 2r < yp. Since
g (R,R+ §) < +oo and§"(R?, (R + S)R) < +oo ( because) < yo — 2r),
the conditionVz (1, y0) holds. Consequently, Proposition 8.2 applies. It follows
thatv(-), ¢(-), N(-) have second-order Taylor expansions at 0 as functions
with values in(B;, Noo, ), iN B;, and inL(B,, B,,), respectively. We get, for
alln>1,

2

(d)(t),l)(u,v(t)):1+IB+%C+0(IZ) (A, BeC),

2

(0, N0Y'1) = (e, N(OY'L) + £{e, Npp1) + ’Ew, Nond) + 0n(£2).

SinceN (0)1 =0 andy, (1) = (1, P()"1) = A(1)" (¢ (1), 1) (e, v(@®)) + (u, N ()"1),
with A())" =1 — nozg + 0,(t%), the coefficientb, of % in the Taylor
expansion ofp, is C — no? + (u, N2 ,1). This enables us to conclude because
SuR>1 ||N2,n||n,yo <+4o0. U

End of the proof of Theore.

Proof of (ii). Let us prove thaE[(5%)?] < +oo. Actually, since 2 < yp, we
have, fork > 1,

EI£(Yy, Zi-1)] < E[R(Yi)?IE[Y (Zk_1)] = fG R?dm /M Pty ap,
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with ¥ (x) = (14-d(x, x0))"°. Sinceyr € Byy—1 C By, P € L(B,,), andu € :B;O,
we getE[£(Yi, Zr—1)?] < +00; hence the claimed property. The functigy(-) has
therefore a second-order derivative at 0 andy! (0) = —E[(5Z)?]. With the help

of Proposition 9.8(ii), we obtaift[(S?)?] = —b,, hencer? = lim,, 2E[(57)?].

Proof of (). The method of the proof of Theorem V.7 of Hennion and Hervé
(2001) applies here to the transition probabili@yintroduced in Section 4.2, yet
we give below an adaptation of this method only usihgSet

§=§+woj,

wherew is the function in Proposition 9.8 (it can be checked that Q& = &).
Recall thato? = (7 ® v)[E(£ + 2w o j)] (Proposition 9.8). From the equality
E24+2woj=(+wo ) —(wo j)?=E%—(wo j)? we get

o?= (1 ®v)(E*— (wo j)?).

Assume that)(wz) < +00. Then, using the invariance of we can write
2_ g2y 2y _ z 2 2
o= ®E) —vw?) = [ avw [ Eg0? - w?) drie).
But
| Eexdne)= [ a0 dnie) + Pue) =60 + (w0 —6() = w).
so that

o2 = /M dv(x) /G (g x) — w)2dr(g)

- / dv(x) / (E(g. 1) + w(gx) — wx))2dr(g).
M G

If 02 =0, we therefore get(g, x) = w(x) — w(gx) 7 Qv a.e.

To complete the proof of Theorem’,St now suffices to show that the
hypothesiso? = 0 implies v(w?) < +o00. We know that, for allx € M,
w(x) =Y ,50P"0(x). Since P"0(x) = E[0(R,x)] = E[[&(g, Ryx)dn(g)] =
E[£(Y,+1, Ryx)], we have, for alk € M, w(x) =Ilim, E[S}].

Assume thatZ has the distributiony and thato? = 0. Then the point (i) of
Proposition 9.8 and the fact that = —E,[(S7)?] show that supE[(5%)?] =
¥ < +oo. From the inequalitieg E[S¥1?dv(x) < [E[(S})?]dv(x) = E[(57)?]
and Fatou’s Lemma, we deduce tlnaiuz) < 9.

EXAMPLE (Study ofo? for sequences of typ&:(Y,) x (Z,—1)),). Suppose
that the functiore is of the formé&(g, x) = u(g) x (x), whereu is a nonzero real
valued measurable function @handy is a real-valued locally Lipschitz function
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on M satisfying|x (x) — x ()| < Cd(x, y)(1+d(x, xo) +d(y, x0))*. Observe that
Condition RS holds with = s + 1 andR(s) = S(g) = Clu(g)|.

In this context, the next statement, based on both Theofean®5.5, gives a
simple sufficient condition fos? > 0.

PROPOSITION S”. Suppose that the conditions of Theor&rhold [with
r=s+1landR(s) = S(g) = u(g)l], that [; u(g) dm(g) =0, and thaty (x) # 0
for somex in the supporte, of the P-invariant measure. Theno2 > 0.

PROOF Observe thain = 7 ® v(£) = 0. By Theorem § we shall get2 > 0
if we prove that there is no real-valued functign in 8,,_, such that, for all

x € Xy, we havet(g, x) = u(g) x (x) = &1(x) — &1(gx) w-a.e.

Let&1 be such a function. Then, by integrating the above equality with respectto
the measurer, we geté1(x) = [; &1(gx) dm(g) = (P&1)(x) for all x € %,,. Since
3, is an absorbing set [for all € &,,, we haveP (x, X,) = 1], this can be rewritten
aséyx, = Py, (é1%,), where Py, denotes the kernel induced ®yon %,. From
Ker(P — 1) = C -1 (Theorem 5.5), it can be easily proved that the functions of
B,,—r Whose restriction orx, is Py, -invariant are constant on,. It follows that

&1z, is constant; thus, forall € X, u(g) x (x) =0 m-a.e. This is impossible.[]
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