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INFINITE HORIZON BACKWARD STOCHASTIC DIFFERENTIAL
EQUATIONS AND ELLIPTIC EQUATIONS IN HILBERT SPACES

BY MARCO FUHRMAN1 AND GIANMARIO TESSITORE2

Politecnico di Milano and Università di Parma

Solutions of semilinear elliptic differential equations in infinite-dimen-
sional spaces are obtained by means of forward and backward infinite-
dimensional stochastic evolution equations. The backward equation is
considered on an infinite time horizon and a suitable growth condition re-
places the final condition. Elliptic equations are intended in a mild sense,
suitable also for applications to optimal control. We finally notice that, due
to the lack of smoothing properties, the elliptic partial differential equation
considered here could not be treated by analytic methods.

1. Introduction. In this article we study a class of semilinear partial differen-
tial equations on a Hilbert space. We adopt a probabilistic approach, generalizing
the theory started with the article by Pardoux and Peng [24] to an infinite-
dimensional framework. We continue our previous works [12, 13], where the case
of an equation of parabolic type was treated.

Our starting point is a stochastic evolution equation of the form

dXτ = AXτ dτ + F(Xτ ) dτ + G(Xτ ) dWτ, τ ≥ t,
(1.1)

Xt = x,

for a process X in a Hilbert space H , where t ≥ 0, x ∈ H , W is a cylindrical Wiener
process in another Hilbert space �, A is the generator of a strongly continuous
semigroup of bounded linear operators (etA)t≥0 in H , and F and G are functions
with values in H and L(�,H), respectively, satisfying appropriate Lipschitz
conditions. Under suitable assumptions, a unique solution {X(τ, t, x), τ ≥ t}
exists and defines a Markov process with transition function (Pt )t≥0 acting on
measurable functions φ :H → R (satisfying suitable growth conditions) according
to the formula

Pτ−t [φ](x) = Eφ
(
X(τ, t, x)

)
, x ∈ H,τ ≥ t ≥ 0.
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The generator L corresponding to (Pt ) is, at least formally, the operator

Lφ(x) = 1
2 Trace

(
G(x)G(x)∗∇2φ(x)

) + 〈Ax,∇φ(x)〉 + 〈F(x),∇φ(x)〉,
where ∇φ(x) ∈ H ∗ denotes the Gâteaux derivative at point x ∈ H and ∇2φ is
the second Gâteaux derivative, identified with an element of L(H). Notice that the
above formula is, a priori, meaningful only if φ is sufficiently regular. In general,
the characterization of the domain of L is difficult (refer to [7], [8] and [31] for
a detailed exposition of these facts and related matters).

In [12] we gave an “infinite-dimensional” generalization of the results on
nonlinear parabolic partial differential equations (PDEs) contained, for instance,
in [23, 24, 27]. Namely we considered the nonlinear version of the Kolmogorov
equation for X,

∂u(t, x)

∂t
+ Lu(t, x) = ψ

(
x,u(t, x),∇u(t, x)G(x)

)
,

t ∈ [0, T ], x ∈ H,
(1.2)

u(T , x) = φ(x),

where T > 0 is fixed and ψ :H ×R×�∗ → R and φ :H → R are given functions.
Then we associate to (1.2) the backward stochastic evolution equation

dYτ = Zτ dWτ + ψ(Xτ ,Yτ ,Zτ ) dτ, τ ∈ [t, T ],
(1.3)

YT = φ(XT ),

where X is the solution of (1.1). Under suitable assumptions on ψ and φ, there
exists a unique adapted process (Y,Z) in R × �∗, a solution of (1.3). The
processes X, Y , Z depend on the values of x and t , occurring as initial conditions
in (1.1): We may denote them by X(τ, t, x), Y (τ, t, x), Z(τ, t, x), τ ∈ [t, T ].
Finally it turns out that, if we define u(t, x) = Y (t, t, x), then the function u is
the unique solution of (1.2), in a suitable mild sense.

In this article, instead of (1.2), we are concerned with the nonlinear ellip-
tic equation

Lu(x) = λu(x) + ψ
(
x,u(x),∇u(x)G(x)

)
, x ∈ H,(1.4)

where ψ :H × R × �∗ → R is as before and λ ∈ R. In this article we call (1.4)
the nonlinear stationary Kolmogorov equation. Notice the occurrence of G in the
nonlinear term: This does not imply any loss of generality in the nondegenerate
case, that is, when G is boundedly invertible, whereas it involves a genuine
restriction in the general case. Equations of the type of (1.4) have been studied by
backward stochastic differential equations (BSDEs) techniques in several finite-
dimensional situations (see [2, 10, 23, 25, 27]). However, none of the concepts of
solution to (1.4) used in these articles seems suitable for immediate extension to the
infinite-dimensional case. More precisely, to obtain classical solutions as in [2, 27],
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that is, functions which are twice differentiable, we would be forced to impose
heavy assumptions on the nonlinearity ψ as well as trace conditions on second
derivatives. On the contrary, viscosity solutions can be obtained under much
weaker assumptions on the coefficients than those we assume here (see [10, 23]).
The main drawback is that, in comparison to the finite-dimensional case, very
few uniqueness results are available for viscosity solutions and all of them,
obtained by analytic techniques, impose strong assumptions on operator G such as
nondegeneracy and finite trace conditions (see [14, 15, 18, 28, 29]). Moreover, in
view of applications to optimal control theory, it is important to show the existence
of ∇u, since this allows us to characterize optimal control by feedback laws. Since,
in general, viscosity solutions are not differentiable, this characterization is not
immediately available. However, we have to mention that the analytic approach
and viscosity solutions allow us, in certain cases, to treat fully nonlinear equations
(see [18, 28, 29] and references therein), while backward stochastic equations
techniques are, in any case, limited to semilinear PDEs.

Developing the idea introduced in [12], we consider mild solutions of (1.4) in
the following sense: A function u :H → R, Gâteaux differentiable and having
polynomial growth, is a mild solution of (1.4) if the equality

u(x) = e−λT PT [u](x) −
∫ T

0
e−λτ Pτ

[
ψ

(·, u(·),∇u(·)G(·))](x) dτ(1.5)

holds for all x ∈ H and T > 0. To motivate this definition, consider the equation
Lu − λu = ψ , for u, ψ elements of a Banach space and L generator of a strongly
continuous semigroup of bounded linear operators (Pt )t≥0: If λ is sufficiently
large, then

u = −
∫ ∞

0
e−λτPτψ dτ,

and, for arbitrary T ≥ 0, by a change of variable,

e−λT PT u = −
∫ ∞
T

e−λτPτψ dτ = u +
∫ T

0
e−λτPτψ dτ.

We notice that formula (1.5) is meaningful provided u is only once differentiable
with respect to x and, of course, provided ψ , u and ∇u satisfy appropriate
measurability and growth conditions. Thus, mild solutions are, in a sense,
intermediate between classical and viscosity solutions. Mild solutions of a similar
type have been considered by more analytic methods in various situations
(see [4, 14] and references within), but never in connection with the backward
equations approach.

The main result of this article is the proof of existence and uniqueness of the
mild solution u of (1.4), under the mere requirement of existence and boundedness
(or growth conditions) of first derivatives of ψ ; compare Theorem 6.1. We wish to
stress that in no way do we impose nondegeneracy assumptions on the operator G;
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this can even be equal to zero. As far as we know, in all the results that exist in
the literature, whenever differentiable solutions of (1.4) are obtained, smoothing
properties on the semigroup (Pt ) associated to the operator L are also required
and, consequently, nondegeneracy assumptions on G are needed; see, for example,
[4] and [14]. So the results of this article represent an example in which backward
equations give a genuine new contribution to the study of PDEs, and lead to
results that cannot be obtained by more analytical approaches. As a general fact,
it seems that infinite-dimensional PDEs offer, in comparison to finite-dimensional
PDEs, many more cases in which the treatment by backward stochastic differential
equations is the only one available.

The existence and uniqueness result is obtained for sufficiently large values
of λ: this kind of restriction is natural and common to all the literature where
the BSDE approach is used (see [2, 10, 23, 25, 27]). Conditions on λ also have to
be expected so as to obtain some regularity (e.g., differentiability) for the solution
to degenerate nonlinear elliptic equations of the type we are considering here; see,
for instance, [19].

Moreover, to separate difficulties, we assume that F is Lipschitz (although many
of the estimates are expressed in terms of its dissipativity constant). We remark
that the same assumption is required in [2] and [27]. On the contrary, in [10] the
assumption is replaced by the weaker requirement that F is monotone and has
linear growth.

We also mention that in [2, 10, 23, 25, 27] the finite-dimensional analogue
of (1.4) is studied in general domains by BSDE techniques, while here we consider
only equations on the whole space. We believe that this method can give new
results for elliptic equations on domains of a Hilbert space, but we do not address
this problem here. Even in the linear case, such extensions, considered since the
works of Gross [17] and Daleckij [5], possess special features and difficulties:
see [6, 30] for recent results in the parabolic case, or Chapter 8 in [9].

We finally notice that in our article the derivatives are always understood in the
sense of Gâteaux. This is important in view of applications where H is a space of
summable functions and nonlinear terms are Nemytskii (evaluation) operators.

Coming now to more technical aspects of the present work we point out that
the main difference between the elliptic case considered here and the parabolic
case treated in [12] is that, following [2, 10, 23, 27], we have replaced the final
condition for the process Y that occurred in (1.3) by an infinite horizon growth
condition. Namely (see Proposition 5.1) we prove that we can find λ > 0, β < 0
and p > 2 with λ large enough such that for all x ∈ H there exists a unique adapted
process (Y,Z) in R × �∗ such that

dYτ = λYτ dτ + ψ(Xτ ,Yτ ,Zτ ) dτ + Zτ dWτ, τ ≥ 0,
(1.6)

E sup
τ≥0

epβτ |Yτ |p + E

(∫ ∞
0

epβτ |Zτ |2 dτ

)p/2

< +∞.



ELLIPTIC PDEs, BSDEs AND CONTROL 611

In the above formulae, X is the solution to (1.1) starting from x ∈ H at time t = 0.
Moreover, the constants β and λ depend on the asymptotic behavior of X as well
as on the nonlinearity ψ .

To stress dependence on x, let us denote by {Xτ (x),Yτ (x),Zτ (x), τ ≥ 0} the
solution processes. Then, following again [10] or [27], we set

u(x) = Y0(x)

and prove that u is a mild solution to (1.4).
In particular, to prove that u is differentiable, we have to study regular

dependence of X(x), Y (x) and Z(x) on x. Notice that we can limit ourselves
to first order Gâteaux derivatives. As a matter of fact, the generality of our
assumptions on A and G, the lack of classical tools such as the Kolmogorov
continuity theorem and the fact that we are dealing with processes on an
unbounded interval make the treatment of first derivatives already very delicate.

Another key point is the formula that identifies Z:

Zτ (x) = ∇u
(
Xτ (x)

)
G

(
Xτ (x)

)
.(1.7)

In [12], we proved the corresponding result in the parabolic case by deriving
the equation for the Malliavin derivative of X, Y and Z. Here we argue as
follows: We first compute the joint quadratic variation of u(X(x)) and W in an
interval [t, T ] to obtain ∫ T

t
∇u

(
Xσ(x)

)
G

(
Xσ(x)

)
dσ.

This is done by an application of the Malliavin calculus (on a finite time horizon).
On the other hand, the joint quadratic variation of Y (x) and W is

∫ T
t Zσ (x) dσ .

Finally, Markovianity of the process X yields Y (x) = u(X(x)). Thus we can
identify the two quadratic variations and deduce (1.7). Once (1.7) has been
established, it is not difficult to verify that u is a mild solution to (1.4). Notice
that, in this way, we avoid studying Malliavin differentiability of Y and Z.

Uniqueness is proved by showing that if u is any mild solution of (1.4) and
we set

Yτ = u
(
Xτ (x)

)
, Zτ = ∇u

(
Xτ (x)

)
G

(
Xτ (x)

)
,

then (Y,Z) verifies (1.6). Then this is done again by computing the joint quadratic
variation of u(X(x)) and W .

As in the parabolic case, it turns out that mild solutions to (1.4), together with
their probabilistic representation formula, are particularly suitable for applications
to optimal control of infinite-dimensional nonlinear stochastic systems. In Sec-
tion 7, we consider a controlled process Xu solution of

dXu
τ = AXu

τ dτ + F(Xu
τ ) dτ + C(Xu

τ )uτ dτ + G(Xτ) dWτ , τ ≥ 0,
(1.8)

Xu
0 = x ∈ H,
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where this time u denotes the control process, taking values in a given subset U of
another Hilbert space U , and C is a function with values in L(U,H). The aim is
to choose a control process u, within a set of admissible controls, in such a way to
minimize an infinite horizon cost functional of the form

J (x,u) = E

∫ ∞
0

e−λσ g(Xu
σ ,uσ ) dσ,

where g is a given real function, λ is large enough and the control problem
is understood in the usual weak sense (see [11] and Section 7). There is a
vast literature on such control problems in infinite dimensions: Here we report
only a couple of recent references that are most closely connected with our
approach and refer the reader to the bibliographies therein. Namely, in [14]
and [4], the authors provide a direct differentiable (in some sense) solution of
the Hamilton–Jacobi–Bellman equation for the value function v(x), x ∈ H , of
the control problem, which is then used to prove that the optimal control u is
related to the corresponding optimal trajectory X by a feedback law involving ∇v.
As we already said, such results are obtained using the smoothing properties of the
semigroup (Pt) and are therefore restricted to the case in which G is independent
on x and (weakly) nondegenerate. Here we are able to remove the restriction on
constancy of the coefficient G and any nondegeneracy assumption on G.

On the other hand, we have to assume that the control term is of the form

C(X) = G(X)R(X),

where R is a function with values in L(U,�). This structural requirement ensures
that the Hamilton–Jacobi–Bellman equation for the value function v is of the
form (1.2), provided we set

ψ0(x,p) = inf{g(x,u) + pu :u ∈ U}, x ∈ H,p ∈ U∗,(1.9)

and ψ(x, z) = −ψ0(x, zR(x)) for z ∈ �∗.
Thus we are able to prove that, letting v denote the unique mild solution of (1.4),

we have J (x,u) ≥ v(x) and the equality holds if and only if the feedback law

uτ ∈ 	
(
Xu

τ ,∇v(Xu
τ )G(Xu

τ )R(Xu
τ )

)
,

where 	(x,p) is the set of minimizers in (1.9), is verified by u and Xu. Thus we
can characterize optimal controls by a feedback law. We refer to Theorem 7.3
for precise statements and additional results. For a result proving, in a greater
generality, only existence of “quasi-optimal” controls in the finite horizon case,
see [3].

The plan of this article is as follows. In Section 2, some notation is fixed.
In Section 3, existence and uniqueness of a solution to (1.6) is proved. In Section 4,
(1.1) is studied with an infinite time horizon; in particular, regular dependence
on x, Malliavin differentiability and asymptotic bounds are proved. In Section 5,
(1.1) and (1.3) are studied as a system. In Section 6, we prove our main result on
existence and uniqueness of a mild solution of (1.4), and Section 7 is devoted to
applications to optimal control.
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2. Notation. The norm of an element x of a Banach space E will be
denoted |x|E or simply |x|, if no confusion is possible. If F is another Banach
space, L(E,F ) denotes the space of bounded linear operators from E to F ,
endowed with the usual operator norm.

The letters �, H and K will always denote Hilbert spaces. Scalar product is
denoted 〈·, ·〉, with a subscript to specify the space, if necessary. All Hilbert spaces
are assumed to be real and separable. The space of Hilbert–Schmidt operators
from � to K is L2(�,K), which is endowed with the Hilbert–Schmidt norm that
makes it a separable Hilbert space.

By a cylindrical Wiener process with values in a Hilbert space �, defined on
a probability space (
,F ,P), we mean a family {Wt, t ≥ 0} of linear mappings
� → L2(
), denoted ξ 	→ 〈ξ,Wt〉, such that:

1. for every ξ ∈ �, {〈ξ,Wt〉, t ≥ 0} is a real (continuous) Wiener process;
2. for every ξ1, ξ2 ∈ � and t ≥ 0, E (〈ξ1,Wt 〉 · 〈ξ2,Wt 〉) = 〈ξ1, ξ2〉� t .

We let (Ft )t≥0 denote, except in Section 7, the natural filtration of W ,
augmented with the family of P-null sets. The filtration (Ft ) satisfies the
usual conditions. All the concepts of measurability for stochastic processes
(e.g., predictability, etc.) refer to this filtration. By P we denote the predictable
σ -algebra and by B(�) we denote, the Borel σ -algebra of any topological
space �.

Next we define several classes of stochastic processes with values in a Hilbert
space K :

• Expression L2
P (
×R+;K) denotes the space of equivalence classes of proces-

ses Y ∈ L2(
 × R+;K), admitting a predictable version. L2
P (
 × R+;K) is

endowed with the norm

|Y |2
L2

P (
×R+;K)
= E

∫ ∞
0

|Yτ |2K dτ.

• Expression L
p
P (
;L

q
β(K)), defined for β ∈ R and p,q ∈ [1,∞), denotes the

space of equivalence classes of processes {Yt , t ≥ 0}, with values in K , such
that the norm

|Y |p
L

p
P (
;Lq

β(K))
= E

(∫ ∞
0

eqβσ |Yσ |qK dσ

)p/q

is finite, and Y admits a predictable version.
• Variable K

p
β denotes the space L

p
P (
;L2

β(K)) × L
p
P (
;L2

β(L2(�,K))).

The norm of an element (Y,Z) ∈ K
p
β is |(Y,Z)|Kp

β
= |Y |Lp

P (
;L2
β(K)) +

|Z|Lp
P (
;L2

β(L2(�,K))).

• Expression L
p
P (
;C([0, T ];K)), defined for T > 0 and p ∈ [1,∞), denotes

the space of predictable processes {Yt, t ∈ [0, T ]} with continuous paths in K ,
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such that the norm

|Y |p
L

p
P (
;C([0,T ];K))

= E sup
τ∈[0,T ]

|Yτ |pK

is finite. Elements of L
p
P (
;C([0, T ];K)) are identified up to indistingui-

shability.
• Expression L

q
P (
;Cη(K)), defined for η ∈ R and q ∈ [1,∞), denotes the

space of predictable processes {Yt, t ≥ 0} with continuous paths in K , such that
the norm

|Y |q
L

q
P (
;Cη(E))

= E sup
τ≥0

eηqτ |Yτ |qK

is finite. Elements of L
q
P (
;Cη(K)) are identified up to indistinguishability.

• Finally, for η ∈ R and q ∈ [1,∞), we define H
q
η as the space L

q
P (
;L

q
η(K)) ∩

L
q
P (
;Cη(K)), endowed with the norm

|Y |Hq
η

= |Y |Lq
P (
;Lq

η(K)) + |Y |Lq
P (
;Cη(K)).

Clearly, similar definitions and notations also apply to processes with values in
other Hilbert spaces, different from K .

Given a process � that belongs to L2
P (
 × [0, T ];L2(�,K)) for every T > 0,

the Itô stochastic integral
∫ t

0 �σ dWσ , t ≥ 0, can be defined; it is a K-valued
martingale that belongs to L2

P (
;C([0, T ];K)) for every T > 0.
In the rest of this section we recall notations and basic facts on a class of

differentiable maps acting among Banach spaces that are particularly suitable for
our purposes. This class was introduced in [12], to which we refer the reader for
details and properties not proved here, although similar classes of differentiable
functions were already used in this context (see, e.g., [31]).

Let now X, Y , Z and V denote Banach spaces. We say that a mapping
F :X → V belongs to the class G1(X,V ) if it is continuous, Gâteaux differentiable
on X and its Gâteaux derivative ∇F :X → L(X,V ) is strongly continuous.

The last requirement is equivalent to the fact that for every h ∈ X, the map
∇F(·)h :X → V is continuous. Note that ∇F :X → L(X,V ) is not continuous,
in general, if L(X,V ) is endowed with the norm operator topology; clearly,
if this happens, then F is Fréchet differentiable on X. It can be proved that
if F ∈ G1(X,V ), then (x,h) 	→ ∇F(x)h is continuous from X × X to V . If,
in addition, G is in G1(V,Z), then G(F) belongs to G1(X,Z) and the chain
rule holds: ∇(G(F ))(x) = ∇G(F(x))∇F(x). In addition to the ordinary chain
rule, a chain rule for the Malliavin derivative operator holds: see the proof of
Proposition 4.5.

Generalization of these definitions and properties to functions depending on
several variables is immediate. For a function F :X × Y → V , we denote
by ∇xF (x, y) the partial Gâteaux derivative with respect to the first argument, at
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point (x, y) and in the direction h ∈ X, and we say that a mapping F :X × Y → V

belongs to the class G1,0(X × Y ;V ) if it is continuous, Gâteaux differentiable
with respect to x on X × Y and ∇xF :X × Y → L(X,V ) is strongly continuous.
Then we can prove that the mapping (x, y,h) 	→ ∇xF (x, y)h is continuous from
X × Y × X to V , and analogues of the previously stated chain rules hold.
When F depends on additional arguments, further generalizations can be given.

To study regular dependence of solution of stochastic equations on their initial
data we will use the parameter depending contraction principle, which is stated in
the following proposition and proved in [31], Theorems 10.1 and 10.2.

PROPOSITION 2.1 (Parameter depending contraction principle). Let F :X ×
Y → X be a continuous mapping satisfying

|F(x1, y) − F(x2, y)| ≤ α|x1 − x2|
for some α ∈ [0,1) and every x1, x2 ∈ X, y ∈ Y . Let φ(y) denote the unique
fixed point of the mapping F(·, y) :X → X. Then φ :Y → X is continuous. If, in
addition, F ∈ G1(X × Y,X), then φ ∈ G1(Y,X) and

∇φ(y) = ∇xF
(
φ(y), y

)∇φ(y) + ∇yF
(
φ(y), y

)
, y ∈ Y.

3. The backward equation on an infinite horizon. Let {Wτ, τ ≥ 0} be
a cylindrical Wiener process with values in a Hilbert space �, defined on
a probability space (
,F ,P). Let K be another Hilbert space and let
� :
 × R+ × K × L2(�,K) → K be a function, measurable with respect
to P ⊗ B(K) ⊗ B(L2(�,K)) and B(K). As defined in Section 2, P denotes the
predictable σ -algebra and B(�) denotes the Borel σ -algebra of any topological
space �. In this section we study the backward equation, P-a.s.,

Yτ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ

(3.1)

= −
∫ T

τ
�(σ,Yσ ,Zσ ) dσ +

∫ T

τ
fσ dσ, 0 ≤ τ ≤ T < ∞,

where λ is a given real parameter and f :
 × R+ → K is a predictable process
with integrable paths. Notice that it follows immediately from the equation that any
process Y satisfying (3.1) has a continuous modification. We assume the following.

HYPOTHESIS 3.1. There exist µ ∈ R, p ∈ [2,∞) and nonnegative constants
Ly,Lz such that

|�(t, y1, z1) − �(t, y2, z2)| ≤ Ly |y1 − y2| + Lz|z1 − z2|,
〈�(t, y1, z) − �(t, y2, z), y1 − y2〉K ≥ µ|y1 − y2|2,(3.2)

E

(∫ ∞
0

e2βσ |�(σ,0,0)|2 dσ

)p/2
< ∞

for every t ∈ [0, T ], y1, y2 ∈ K and z, z1, z2 ∈ L2(�,K).
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Our aim is to prove the existence and uniqueness result in Theorem 3.7.
We believe that further generalizations of Theorem 3.7 can be proved, for instance,
in the case in which a subdifferential term occurs in the equation or in the case
in which � is not necessarily Lipschitz in Y . Such extensions could be based
on the finite-dimensional results in [25] and [10] and the finite horizon results
in [26] and [3]. Nevertheless, we report here a complete proof in the generality
required for the applications to the nonlinear elliptic Kolmogorov equation (1.4).

We start from some a priori estimates for the solutions of (3.1). The spaces
L

p
P (
;L2

β(H)), defined for β ∈ R, p ∈ [1,∞) and for any Hilbert space H , were
introduced in Section 2.

THEOREM 3.2. Suppose that � satisfies Hypothesis 3.1 for some p ∈ (2,∞)

and assume that for some β ∈ R, λ ∈ R there exist processes

Y 1, Y 2, f 1, f 2 ∈ L
p
P

(

;L2

β(K)
)
, Z1,Z2 ∈ L

p
P

(

;L2

β

(
L2(�,K)

))
,

such that, P-a.s., for i = 1,2,

Y i
τ − Y i

T +
∫ T

τ
Zi

σ dWσ + λ

∫ T

τ
Y i

σ dσ

(3.3)

= −
∫ T

τ
�(σ,Y i

σ ,Zi
σ ) dσ +

∫ T

τ
f i

σ dσ, 0 ≤ τ ≤ T < ∞.

Then for every λ > −(β + µ − L2
z/2) there exists C > 0 such that, for λ > λ,

(λ − λ)|Y 1 − Y 2|Lp
P (
;L2

β(K)) + (λ − λ )1/2|Z1 − Z2|Lp
P (
;L2

β(L2(�,K)))

(3.4)

+ (λ − λ )1/2
(

E sup
τ≥0

eβτp|Y 1
τ − Y 2

τ |p
)1/p

≤ C|f 1 − f 2|Lp
P (
;L2

β(K)).

The constant C depends only on β,µ,Lz,p and λ.

PROOF. Let us set for brevity

Y τ = Y 1
τ − Y 2

τ , Zτ = Z1
τ − Z2

τ , f τ = f 1
τ − f 2

τ ,

�τ = �(τ,Y 1
τ ,Z1

τ ) − �(τ,Y 2
τ ,Z2

τ ).

Applying the Itô formula to the process e2βτ |Y τ |2, τ ≥ 0, we obtain

e2βτ |Yτ |2 − e2βT |YT |2 +
∫ T

τ
e2βσ [2(β + λ)|Yσ |2 + |Zσ |2]dσ

= −2
∫ T

τ
e2βσ 〈Yσ ,Zσ dWσ 〉 + 2

∫ T

τ
e2βσ 〈Yσ ,f σ 〉dσ

− 2
∫ T

τ
e2βσ 〈Yσ ,�σ 〉dσ.
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By Hypothesis 3.1 and an elementary inequality, we have

2〈Yσ ,�σ 〉 ≥ 2µ|Yσ |2 − 2Lz|Yσ | |Zσ | ≥ (2µ − L2
z/ρ)|Yσ |2 − ρ|Zσ |2,

where ρ is an arbitrary number in (0,1] that will be chosen later. Substituting in
the previous equation yields

e2βτ |Y τ |2 − e2βT |YT |2

+
∫ T

τ
e2βσ

[
(2β + 2λ + 2µ − L2

z/ρ)|Yσ |2 + (1 − ρ)|Zσ |2]
dσ(3.5)

≤ −2
∫ T

τ
e2βσ 〈Yσ ,Zσ dWσ 〉 + 2

∫ T

τ
e2βσ 〈Yσ ,f σ 〉dσ.

We split the rest of the proof into several steps.

STEP 1. We claim that E supτ≥0 eβτp|Y τ |p < ∞.

By the inequality 2〈h, k〉 ≤ ε|h|2 + 1
ε
|k|2, for all ε > 0, we have

2
∫ T

τ
e2βσ 〈Yσ ,f σ 〉dσ ≤ ε

∫ T

τ
e2βσ |Yσ |2 dσ + 1

ε

∫ T

τ
e2βσ |f σ |2 dσ.

From (3.5), setting ρ = 1, it follows that

e2βτ |Y τ |2 − e2βT |YT |2 +
∫ T

τ
e2βσ (2β + 2λ + 2µ − L2

z − ε)|Yσ |2 dσ

≤ −2
∫ T

τ
e2βσ 〈Yσ ,Zσ dWσ 〉 + 1

ε

∫ T

τ
e2βσ |f σ |2 dσ.

Since we assume λ > λ, we have 2β + 2λ + 2µ − L2
z > 0, and taking ε > 0

sufficiently small, we obtain

e2βτ |Yτ |2 − e2βT |YT |2
(3.6)

≤ −2
∫ T

τ
e2βσ 〈Yσ ,Zσ dWσ 〉 + 1

ε

∫ T

τ
e2βσ |f σ |2 dσ.

The quadratic variation of the stochastic integral in (3.6) can be estimated as(∫ T

τ
e4βσ |Yσ |2|Zσ |2 dσ

)1/2

≤ e2|β|T sup
σ∈[τ,T ]

|Yσ |
(∫ T

τ
|Zσ |2 dσ

)1/2

≤ 1
2e2|β|T sup

σ∈[τ,T ]
|Yσ |2 + 1

2e2|β|T
∫ T

τ
|Zσ |2 dσ.

The right-hand side of this inequality is an integrable random variable by our
assumptions [the fact that E supσ∈[τ,T ] |Yσ |2 < ∞ follows easily from (3.3)]. Thus
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the stochastic integral in (3.6) is an integrable random variable. Conditioning both
sides of (3.6) to Fτ , we obtain

e2βτ |Yτ |2 ≤ e2βT
E

Fτ |YT |2 + 1

ε
E

Fτ

∫ T

τ
e2βσ |f σ |2 dσ.(3.7)

Since we assume that
∫ ∞

0 e2βσ
E|Y i

σ |2 dσ < ∞, we can find a sequence Tn → ∞
such that e2βTnE|YTn |2 → 0. Setting T = Tn in (3.7) and letting n → ∞,
we arrive at

e2βτ |Y τ |2 ≤ 1

ε
E

Fτ

∫ ∞
τ

e2βσ |f σ |2 dσ

≤ 1

ε
E

Fτ

∫ ∞
0

e2βσ |f σ |2 dσ =: M(τ).

Since M is a martingale, then for all p > 2, by Doob and Jensen inequalities, there
exists cp > 0 such that

E sup
τ∈[0,T ]

eβτp|Y τ |p ≤ cpE
(|M(T )|)p/2

≤ cp

εp/2 E

(∫ T

0
e2βσ |f σ |2 dσ

)p/2

< ∞ ∀T > 0.

Setting T ↗ ∞, the inequality

E sup
τ≥0

eβτp|Y τ |p ≤ cp

εp/2 E

(∫ ∞
0

e2βσ |f σ |2 dσ

)p/2

< ∞

follows and the proof of Step 1 is concluded.

STEP 2. We claim that

e2βτ |Y τ |2 +
∫ ∞
τ

e2βσ
[
(2β + 2λ + 2µ − L2

z/ρ)|Yσ |2 + (1 − ρ)|Zσ |2]
dσ

(3.8)
≤ −2

∫ ∞
τ

e2βσ 〈Yσ ,Zσ dWσ 〉 + 2
∫ ∞
τ

e2βσ 〈Yσ ,f σ 〉dσ.

We have

E

(∫ ∞
0

e4βσ |Yσ |2|Zσ |2 dσ

)p/4

≤ E

[
sup
τ≥0

eβτp/2|Y τ |p/2
(∫ ∞

0
e2βσ |Zσ |2 dσ

)p/4]

≤
{
E sup

τ≥0
eβτp|Y τ |p

}1/2{
E

(∫ ∞
0

e2βσ |Zσ |2 dσ

)p/2}1/2
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and the right-hand side is finite by Step 1. It follows that the limit of the stochastic
integral

∫ T
0 e2βσ 〈Yσ ,Zσ dWσ 〉 for T → ∞ exists in Lp/2(
;R) and, for some

constant cp > 0,

E

∣∣∣∣
∫ ∞

0
e2βσ 〈Yσ ,Zσ dWσ 〉

∣∣∣∣p/2

(3.9)

≤ cp

{
E sup

τ≥0
eβτp|Y τ |p

}1/2{
E

(∫ ∞
0

e2βσ |Zσ |2 dσ

)p/2}1/2

.

Choosing a sequence Tn → ∞ such that e2βTnE|YTn |2 → 0, as in the previous
step, the required inequality (3.8) follows from (3.5) by setting T = Tn and letting
n → ∞. Step 2 is finished.

STEP 3. Conclusion. We set, for brevity,

|Z|L2
β(L2(�,K)) =

(∫ ∞
0

e2βσ |Zσ |2L2(�,K) dσ

)1/2

,

|Y |L2
β(K) =

(∫ ∞
0

e2βσ |Yσ |2K dσ

)1/2

,

and we define |f |L2
β(K) in a similar way. Conditioning both sides of (3.8) to Fτ ,

we obtain

e2βτ |Yτ |2 ≤ 2E
Fτ

∫ ∞
τ

e2βσ 〈Yσ ,f σ 〉dσ

≤ 2E
Fτ

∫ ∞
0

e2βσ |Yσ ||f σ |dσ ≤ 2E
Fτ

(|Y |L2
β(K) |f |L2

β(K)

)
,

and by the Burkholder–Davis–Gundy inequalities, there exists a constant cp > 0
such that

E sup
τ≥0

eβτp|Y τ |p ≤ cpE

(
|Y |p/2

L2
β(K)

|f |p/2
L2

β(K)

)
.(3.10)

Now we consider again (3.8). Taking into account the inequality∫ ∞
0

e2βσ 〈Yσ ,f σ 〉dσ ≤ |Y |L2
β(K)|f |L2

β(K)

and choosing ρ < 1 so close to 1 that 2β +2µ−L2
z/ρ > −2λ, we obtain, for some

constant c > 0,

2(λ − λ)|Y |2
L2

β(K)
+ c|Z|2

L2
β(L2(�,K))

≤ 2|Y |L2
β(K)|f |L2

β(K) + 2
∣∣∣∣
∫ ∞

0
e2βσ 〈Yσ ,Zσ dWσ 〉

∣∣∣∣.



620 M. FUHRMAN AND G. TESSITORE

Raising to the power p/2, taking expectation, and recalling (3.9) and (3.10),
we obtain, for suitable constants ci ,

(λ − λ )p/2
E|Y |p

L2
β(K)

+ c1E|Z|p
L2

β(L2(�,K))

≤ c2E
(
|Y |p/2

L2
β(K)

|f |p/2
L2

β(K)

)

+ c3

{
E|Z|p

L2
β(L2(�,K))

}1/2{
E

(
|Y |p/2

L2
β(K)

|f |p/2
L2

β(K)

)}1/2

≤ c2E
(
|Y |p/2

L2
β(K)

|f |p/2
L2

β(K)

)

+ εE|Z|p
L2

β(L2(�,K))
+ (

c2
3/(4ε)

)
E

(
|Y |p/2

L2
β(K)

|f |p/2
L2

β(K)

)
for every ε > 0. Choosing ε sufficiently small and using the Cauchy–Schwarz
inequality, we obtain, for some c > 0,

(λ − λ)p/2
E |Y |p

L2
β(K)

+ cE|Z|p
L2

β(L2(�,K))

≤ c
{
E|Y |p

L2
β(K)

}1/2{
E|f |p

L2
β(K)

}1/2
.

It follows that

(λ − λ )1/2|Y |Lp
P (
;L2

β(K)) + c|Z|Lp
P (L2

β(L2(�,K)))

≤ c|Y |1/2
L

p
P (
;L2

β(K))
|f |1/2

L
p
P (
;L2

β(K))
,

and the conclusion (3.4) follows immediately by taking into account (3.10)
once more. �

In the linear case � = 0 we immediately obtain:

COROLLARY 3.3. Assume that for some β ∈ R, p ∈ (2,∞), λ ∈ R there
exist processes Y,f ∈ L

p
P (
;L2

β(K)) and Z ∈ L
p
P (
;L2

β(L2(�,K))) such
that, P-a.s.,

Yτ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ =

∫ T

τ
fσ dσ,(3.11)

0 ≤ τ ≤ T < ∞.

Then for every λ > −β , there exists a constant C > 0 (depending only on β,p

and λ ) such that, for λ > λ,

(λ − λ)|Y |Lp
P (
;L2

β(K)) + (λ − λ )1/2|Z|Lp
P (
;L2

β(L2(�,K)))

+ (λ − λ )1/2
(

E sup
τ≥0

eβτp|Yτ |p
)1/p

≤ C|f |Lp
P (
;L2

β(K)).
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The next step toward Theorem 3.7 consists of proving that the solution exists
for large values of λ (see Proposition 3.6). We start with some lemmas.

LEMMA 3.4. Suppose that p ∈ [2,∞), and let κ > 0 and f ∈ L
p
P (
;L2

κ(K)).
Then there exists a unique pair (Y,Z) such that

Y ∈ L
p
P

(

;L2

κ(K)
)
,

(3.12)
Z ∈ L

p
P

(

;L2

κ

(
L2(�,K)

))
that satisfies the equation, P-a.s.,

Yτ − YT +
∫ T

τ
Zσ dWσ =

∫ T

τ
fσ dσ, 0 ≤ τ ≤ T < ∞.

PROOF. Since κ > 0, the equation is equivalent to, P-a.s.,

Yτ +
∫ ∞
τ

Zσ dWσ =
∫ ∞
τ

fσ dσ, τ ≥ 0.(3.13)

The assertion of the lemma, in the case p = 2, follows from [27], Lemma 2.1, in the
finite-dimensional case (dim� < ∞, dimK < ∞), but the arguments are the same
in the infinite-dimensional case. In the general case, but with finite horizon, the
result is contained in [12] and in [26].

To complete the proof, it remains to show that if Y and Z belong to
L2

P (
;L2
κ(K)) and L2

P (
;L2
κ(L2(�,K))), respectively, and if f ∈ L

p
P (
;

L2
κ(K)), then (3.12) holds.
Conditioning both sides of (3.13) to Fτ , we obtain Yτ = E

Fτ
∫ ∞
τ fσ dσ and it

follows that

|Yτ | ≤ E
Fτ

∫ ∞
τ

|fσ |dσ ≤ e−κτ

√
2κ

E
Fτ

(∫ ∞
τ

e2κσ |fσ |2 dσ

)1/2

.

By the Burkholder–Davis–Gundy inequalities, there exists a constant c > 0,
depending only on p and κ , such that

E sup
τ≥0

eκτp|Yτ |p ≤ cE

(∫ ∞
0

e2κσ |fσ |2 dσ

)p/2

.(3.14)

Next, applying the Itô formula to the process eκτYτ , τ ≥ 0, we obtain

eκτYτ − eκT YT +
∫ T

τ
eκσZσ dWσ + κ

∫ T

τ
eκσYσ dσ

=
∫ T

τ
eκσfσ dσ, 0 ≤ τ ≤ T < ∞.
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Again by the Burkholder–Davis–Gundy inequalities, there exists a constant
cp > 0, depending only on p, such that

E

(∫ T

τ
e2κσ |Zσ |2 dσ

)p/2

≤ cpE sup
t∈[τ,T ]

∣∣∣∣
∫ t

τ
eκσZσ dWσ

∣∣∣∣p

≤ cpE

∣∣∣∣2 sup
t∈[τ,T ]

eκt |Yt | + κ

∫ T

τ
eκσ |Yσ |dσ +

∫ T

τ
eκσ |fσ |dσ

∣∣∣∣p

≤ cE sup
t∈[τ,T ]

eκtp|Yt |p + cE

(∫ T

τ
e2κσ |fσ |2 dσ

)p/2

,

where c > 0 denotes a constant that may depend on τ , T and κ as well. It follows
from (3.14) that

E

(∫ T

τ
e2κσ |Zσ |2 dσ

)p/2

< ∞.(3.15)

We apply the Itô formula to the process e2κτ |Yτ |2, τ ≥ 0, obtaining

e2κτ |Yτ |2 − e2κT |YT |2 +
∫ T

τ
e2κσ

[
2κ|Yσ |2 + |Zσ |2]

dσ

(3.16)

= −2
∫ T

τ
e2κσ 〈Yσ ,Zσ dWσ 〉 + 2

∫ T

τ
e2κσ 〈Yσ ,fσ 〉dσ.

We estimate the right-hand side as follows. First, for every ε > 0,

2
∫ T

τ
e2κσ 〈Yσ ,fσ 〉dσ ≤ ε

∫ T

τ
e2κσ |Yσ |2 dσ + 1

ε

∫ T

τ
e2κσ |fσ |2 dσ.

Next we can estimate the stochastic integral as

cpE

∣∣∣∣
∫ T

τ
e2κσ 〈Yσ ,Zσ dWσ 〉

∣∣∣∣p/2

≤ E

(∫ T

τ
e4κσ |Yσ |2|Zσ |2 dσ

)p/4

≤ E

[
sup
τ≥0

eκτp/2|Yτ |p/2
(∫ T

τ
e2κσ |Zσ |2 dσ

)p/4]

≤ 1

2ε
E sup

τ≥0
eκτp|Yτ |p + ε

2
E

(∫ T

τ
e2κσ |Zσ |2 dσ

)p/2

.

Note that the right-hand side is finite, by (3.14) and (3.15). Raising both sides
of (3.16) to the power p/2 and taking expectation, we obtain, for some constant
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c > 0 independent of τ, T and ε,

Eepκτ |Yτ |p + cE

(∫ T

τ
e2κσ [|Yσ |2 + |Zσ |2]dσ

)p/2

≤ cεE

(∫ T

τ
e2κσ |Zσ |2 dσ

)p/2

+ c

ε
E sup

τ≥0
eκτp|Yτ |p + cεp/2

E

(∫ T

τ
e2κσ |Yσ |2 dσ

)p/2

+ c

εp/2 E

(∫ T

τ
e2κσ |fσ |2 dσ

)p/2

+ EepκT |YT |p.

Taking ε sufficiently small and recalling (3.14), we conclude that

E

(∫ T

τ
e2κσ [|Yσ |2 + |Zσ |2]dσ

)p/2

≤ c1E sup
τ≥0

eκτp|Yτ |p + c2E

(∫ T

τ
e2κσ |fσ |2 dσ

)p/2

≤ c3E

(∫ ∞
0

e2κσ |fσ |2 dσ

)p/2

for constants ci independent of τ , T . This proves that Y belongs to
L

p
P (
;L2

κ(K)) and Z belongs to L
p
P (
;L2

κ(L2(�,K))), and concludes the proof
of the lemma. �

LEMMA 3.5. Suppose that p ∈ [2,∞) and let f ∈ L
p
P (
;L2

β(K)) for some
real number β . Then for every λ > −β there exists a unique pair (Y,Z) such that

Y ∈ L
p
P

(

;L2

β(K)
)
, Z ∈ L

p
P

(

;L2

β

(
L2(�,K)

))
,(3.17)

and satisfying the equation, P-a.s.,

Yτ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ =

∫ T

τ
fσ dσ, 0 ≤ τ ≤ T < ∞.

PROOF. Setting Yλ
τ = e−λτYτ , Zλ

τ = e−λτZτ and f λ
τ = e−λτfτ , by the Itô

formula the equation of the lemma is equivalent to

Yλ
τ − Yλ

T +
∫ T

τ
Zλ

σ dWσ =
∫ T

τ
f λ

σ dσ.

Moreover, we have

Y,f ∈ L
p
P

(

;L2

β(K)
)
, Z ∈ L

p
P

(

;L2

β

(
L2(�,K)

))
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if and only if

Yλ,f λ ∈ L
p
P

(

;L2

β+λ(K)
)
, Zλ ∈ L

p
P

(

;L2

β+λ

(
L2(�,K)

))
.

Since β + λ > 0, the result follows immediately from the previous lemma. �

PROPOSITION 3.6. Suppose that � satisfies Hypothesis 3.1 for some
p ∈ (2,∞), and assume that f ∈ L

p
P (
;L2

β(K)) for some β ∈ R. Then there ex-
ists λ1 ∈ R such that for λ ≥ λ1 the equation (3.1) has a unique solution (Y,Z)

such that

Y ∈ L
p
P

(

;L2

β(K)
)
, Z ∈ L

p
P

(

;L2

β

(
L2(�,K)

))
.

PROOF. Let us recall the space

K
p
β = L

p
P

(

;L2

β(K)
) × L

p
P

(

;L2

β

(
L2(�,K)

))
,

endowed with the norm |(Y,Z)|Kp
β

= |Y |Lp
P (
;L2

β(K)) + |Z|Lp
P (
;L2

β(L2(�,K)))

introduced in Section 2. For every λ we define a map 	 :Kp
β → K

p
β , setting

(Y,Z) = 	(U,V ) if (Y,Z) is the solution of the equation, P-a.s.,

Yτ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ

= −
∫ T

τ
�(σ,Uσ ,Vσ ) dσ +

∫ T

τ
fσ dσ, 0 ≤ τ ≤ T < ∞.

By the previous lemma, 	 is well defined for all sufficiently large values of λ.
If, for i = 1,2, (Ui,V i) ∈ K

p
β , (Y i,Zi) = 	(Ui,V i), then, by Corollary 3.3,

we have

(λ − λ )|Y 1 − Y 2|Lp
P (
;L2

β(K)) + (λ − λ)1/2|Z1 − Z2|Lp
P (
;L2

β(L2(�,K)))

≤ C

{
E

(∫ ∞
0

e2βσ |�(σ,U1
σ ,V 1

σ ) − �(σ,U2
σ ,V 2

σ )|2 dσ

)p/2}1/p

and by the Lipschitz condition on � , we have, for some constant c > 0 independent
of λ,

(λ − λ )|Y 1 − Y 2|Lp
P (
;L2

β(K)) + (λ − λ)1/2|Z1 − Z2|Lp
P (
;L2

β(L2(�,K)))

≤ c|U1 − U2|Lp
P (
;L2

β(K)) + c|V 1 − V 2|Lp
P (
;L2

β(L2(�,K))).

This shows that 	 is a contraction in K
p
β for all λ sufficiently large. Its unique

fixed point is the required solution. �
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THEOREM 3.7. Suppose that � satisfies Hypothesis 3.1 for some p ∈ (2,∞)

and assume that f ∈ L
p
P (
;L2

β(K)) for some β ∈ R. Then for λ > −(β +
µ − L2

z/2), (3.1) has a unique solution (Y,Z) such that

Y ∈ L
p
P

(

;L2

β(K)
)
, Z ∈ L

p
P

(

;L2

β

(
L2(�,K)

))
.

Moreover, for every λ > −(β + µ − L2
z/2) there exists C > 0 such that, for λ > λ,

(λ − λ)|Y |Lp
P (
;L2

β(K)) + (λ − λ )1/2|Z|Lp
P (
;L2

β(L2(�,K)))

+ (λ − λ )1/2
(

E sup
τ≥0

eβτp|Yτ |p
)1/p

(3.18)

≤ C

{
E

(∫ ∞
0

e2βσ |�(σ,0,0)|2 dσ

)p/2}1/p

+ C|f |Lp
P (
;L2

β(K)).

The constant C depends only on β , µ, Lz, p and λ.

PROOF. Let us consider again the space K
p
β used in the previous proof. We fix

λ > −(β + µ − L2
z/2) and we define Q as the set of those real numbers λ > λ

such that for every f ∈ L
p
P (
;L2

β(K)) there exists a unique solution (Y,Z) ∈ K
p
β

corresponding to λ and f . Letting C be the constant whose existence is asserted
in Theorem 3.2, we also set

C(λ) = C[(λ − λ )−1 ∨ (λ − λ)−1/2].
We claim that if Q contains a number λ0, then it contains every number λ > λ

belonging to the interval (λ0 −C(λ0)
−1, λ0 +C(λ0)

−1). Indeed, for any λ > λ, let
us define a map 	 :Kp

β → K
p
β , setting (Y,Z) = 	(U,V ) if (Y,Z) is the solution

of the equation, P-a.s., for 0 ≤ τ ≤ T < ∞,

Yτ − YT +
∫ T

τ
Zσ dWσ + λ0

∫ T

τ
Yσ dσ

= −
∫ T

τ
�(σ,Yσ ,Zσ ) dσ +

∫ T

τ
[(λ0 − λ)Uσ + fσ ]dσ.

Thus, an element (Y,Z) ∈ K
p
β is a solution of (3.1) if and only if (Y,Z) is a

fixed point of 	; if, for i = 1,2, (Ui,V i) ∈ K
p
β and (Y i,Zi) = 	(Ui,V i), then,

by Theorem 3.2, we have

|(Y 1 − Y 2,Z1 − Z2)|Kp
β

≤ C(λ0)|λ − λ0||U1 − U2|Lp
P (
;L2

β(K))

≤ C(λ0)|λ − λ0||(U1 − U2,V 1 − V 2)|Kp
β
,

which shows that 	 is a contraction if C(λ0) |λ − λ0| < 1, and the claim follows
immediately from the Banach contraction principle.
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Starting from this claim, we will show that Q coincides with (λ,∞). If λn ∈ Q,
λ∞ > λ and λn → λ∞, then for n sufficiently large, we have

λ∞ ∈ (
λn − C(λn)

−1, λn + C(λn)
−1)

and by the claim, we conclude that λ∞ ∈ Q. Therefore, Q is a closed topological
subspace of (λ,∞). Further, invoking the claim once more, it is immediate
to see that Q is also an open subspace of (λ,∞). Finally Q is nonempty,
since by Proposition 3.6 it contains an interval [λ1,∞). We conclude that
Q = (λ,∞). Existence and uniqueness of the solution is now proved for every
λ > −(β + µ − L2

z/2).
The final estimate in the statement of the theorem follows from (3.4), noting that

the solution corresponding to fτ = �(τ,0,0) is the trivial solution (Y,Z) = (0,0).
�

REMARK 3.8. It follows from (3.18) that if (Y,Z) is the mild solution
to (3.1), then Y ∈ L

p
P (
,Cβ(K)). Nevertheless uniqueness holds in the larger

class Y ∈ L
p
P (
,L2

β(K)).

REMARK 3.9. In this section we have allowed process Y to take values in an
infinite-dimensional space. Such a generality will be needed in the sequel to treat
the gradient, with respect to data, of backward equations in which process Y is
real valued.

3.1. Regular dependence on an auxiliary process. Let us now consider
a backward equation of special form, P-a.s.,

Yτ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ

(3.19)

= −
∫ T

τ
ψ(Xσ ,Yσ ,Zσ ) dσ, 0 ≤ τ ≤ T < ∞,

where ψ :H × K × L2(�,K) → K is a given measurable function, X is a
predictable process with values in another Hilbert space H and λ is a real number.
We want to investigate the dependence of the solution on the process X. We assume
the following.

HYPOTHESIS 3.10. (i) There exist µ ∈ R and nonnegative constants Ly,Lz

such that

|ψ(x, y1, z1) − ψ(x, y2, z2)| ≤ Ly |y1 − y2| + Lz|z1 − z2|,
〈ψ(x, y1, z) − ψ(x, y2, z), y1 − y2〉K ≥ µ|y1 − y2|2

for every x ∈ H , y1, y2 ∈ K and z, z1, z2 ∈ L2(�,K).
(ii) ψ ∈ G1(H × K × L2(�,K),K).
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(iii) There exist L > 0 and m ≥ 0 such that

|∇xψ(x, y, z)h| ≤ L|h|(1 + |z|)(1 + |x| + |y|)m
for every x,h ∈ H , y ∈ K , z ∈ L2(�,K).

If the process X satisfies

E

(∫ ∞
0

e2βσ |ψ(Xσ ,0,0)|2 dσ

)p/2

< ∞
for some p > 2 and β ∈ R, then it follows immediately from Theorem 3.7
that for λ > −(β + µ − L2

z/2), (3.19) has a unique solution in the space K
p
β

used in the previous section. In fact, to reach this conclusion only point (i) of
Hypothesis 3.10 is needed.

Proposition 3.11 below shows that the dependence of (Y,Z) on X is regular,
provided the values of the various parameters are suitably chosen (in particular,
we may need larger values of λ) and X is considered as an element of appropriate
spaces of processes. Process X will be taken in the spaces L

q
P (
;L

q
η(H)),

L
q
P (
;Cη(H)) and H

q
η ; these spaces were introduced in Section 2 for every η ∈ R

and q ∈ [1,∞), and for arbitrary Hilbert space H . Clearly, similar definitions and
notations also apply to processes with values in other Hilbert spaces.

PROPOSITION 3.11. Assume Hypothesis 3.10. Let r > 2 and δ < 0 be given,
and choose

q ≥ (m + 1)r, η > δ/(m + 1).(3.20)

Then the following hold:

(i) For X ∈ L
q
P (
;L

q
η(H)) and λ > −(δ + µ − L2

z/2), (3.19) has a unique
solution in Kr

δ that will be denoted by (Yτ (X),Zτ (X)), τ ≥ 0.
(ii) The estimate

E sup
τ≥0

|Yτ (X)|rerδτ + E

(∫ ∞
0

e2δσ |Yσ (X)|2 dσ

)r/2

(3.21)

+ E

(∫ ∞
0

e2δσ |Zσ (X)|2 dσ

)r/2

≤ c
(
1 + |X|m+1

L
q
P (
;Lq

η(H))

)r

holds for a suitable constant c. In particular, Y (X) ∈ Lr
P (
;Cδ(K)).

(iii) The map X → (Y (X),Z(X)) is continuous from L
q
P (
;L

q
η(H)) to Kr

δ

and X → Y (X) is continuous from L
q
P (
;L

q
η(H)) to Lr

P (
;Cδ(K)).
(iv) The statements of points (i), (ii) and (iii) still hold true if the space

L
q
P (
;L

q
η(H)) is replaced by the space L

q
P (
;Cη(H)).

Now suppose that p > 2 and β < 0 are given, and choose

q ≥ (m + 1)(m + 2)p, η > β(m + 1)−1(m + 2)−1.(3.22)



628 M. FUHRMAN AND G. TESSITORE

Then the following hold:

(v) For λ > −(β + µ − L2
z/2), the map X → (Y (X),Z(X)) is in

G1(L
q
P (
;Cη(H)),K

p
β ) and the map X → Y (X) is in G1(L

q
P (
;Cη(H)),

L
p
P (
;Cβ(H)).

(vi) At every point X ∈ L
q
P (
;Cη(H)), the directional derivative process

of (Y (X),Z(X)) in the direction N ∈ L
q
P (
;Cη(H)), denoted by (∇Yτ (X)N,

∇Zτ (X)N), τ ≥ 0, is the unique solution in K
p
β of the backward equation,

P-a.s., for 0 ≤ τ ≤ T < ∞,

∇Yτ (X)N − ∇YT (X)N + λ

∫ T

τ
∇Yσ (X)N dσ +

∫ T

τ
∇Zσ (X)N dWσ

= −
∫ T

τ
∇xψ

(
Xσ ,Yσ (X),Zσ (X)

)
Nσ dσ

−
∫ T

τ
∇yψ

(
Xσ ,Yσ (X),Zσ (X)

)∇Yσ (X)N dσ

−
∫ T

τ
∇zψ

(
Xσ ,Yσ (X),Zσ (X)

)∇Zσ (X)N dσ.

Moreover, ∇Y (X)N is in L
p
P (
;Cβ(H)).

(vii) Finally the following estimate holds:

E sup
τ≥0

epβτ |∇Yτ (X)N |p + E

(∫ ∞
0

e2βσ |∇Yσ (X)N |2 dσ

)p/2

+ E

(∫ ∞
0

e2βσ |∇Zσ (X)N |2 dσ

)p/2

(3.23)

≤ c|N |p
L

q
P (
;Cη(H))

(
1 + |X|[(m+1)2]

L
q
P (
;Cη(H))

)p
.

PROOF. It follows from Hypothesis 3.10 that

|ψ(x,0,0)| ≤ c(1 + |x|)m+1, x ∈ H.

Here and in the rest of this proof, c denotes a positive constant, whose value may
vary from line to line. Choosing δ′ such that δ < δ′ < η(m + 1) ∧ 0, we obtain

E

(∫ ∞
0

e2δσ |ψ(Xσ ,0,0)|2 dσ

)r/2

≤ c + cE

(∫ ∞
0

e2δσ |Xσ |2(m+1) dσ

)r/2

≤ c + cE

∫ ∞
0

erδ′σ |Xσ |r(m+1) dσ(3.24)
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≤ c + c

(
E

∫ ∞
0

eqησ |Xσ |q dσ

)r(m+1)/q

= c
[
1 + |Xσ |r(m+1)

L
q
P (
;Lq

η(H))

]
.

Now existence of a unique solution in Kr
δ of (3.19), for λ > −(δ +µ−L2

z/2), and
the estimate (3.21) follows from Theorem 3.7.

To prove continuous dependence stated in point (iii), let us first note that
Hypothesis 3.10 also yields the inequality

|ψ(x, y, z)| ≤ c(1 + |x|m+1 + |y| + |z|), x ∈ H, y ∈ K, z ∈ L2(�,K).

By estimates analogous to (3.24), we can prove that the map (X,Y,Z) 	→
ψ(X,Y,Z), which is a Nemytskii (or superposition) operator, is well defined
and bounded from L

q
P (
;L

q
η(H)) × Lr

P (
;L2
δ(K)) × Lr

P (
;L2
δ(L2(�,K)))

to Lr
P (
;L2

δ(K)). Continuity of this map follows in a similar way by adapting the
classical argument that proves continuity of Nemytskii operators in this framework
(see, e.g., [1]).

Coming back to the proof of point (iii), we take X1,X2 ∈ L
q
P (
;L

q
η(H))

and let (Y 1,Z1) and (Y 2,Z2) be the corresponding solutions. Then (Y ,Z) :=
(Y 1 − Y 2,Z1 − Z2) solves the equation

Y τ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Y σ dσ

= −
∫ T

τ

[
ψ(X1

σ , Y 1
σ ,Z1

σ ) − ψ(X2
σ , Y 1

σ − Yσ ,Z1
σ − Zσ )

]
dσ.

The estimate of Theorem 3.7 gives

|Y |rLr
P (
;Cδ(K)) + |Y |r

Lr
P (
;L2

δ (K))
+ |Z|r

Lr
P (
;L2

δ (L2(�,K)))

≤ cE

(∫ ∞
0

e2δσ |ψ(X1
σ , Y 1

σ ,Z1
σ ) − ψ(X2

σ , Y 1
σ ,Z1

σ )|dσ

)r/2

.

The right-hand side of this inequality can be made arbitrarily small provided
|X1 −X2|Lq

P (
;Lq
δ (K)) is chosen sufficiently small, due to the continuity of the map

(X,Y,Z) 	→ ψ(X,Y,Z) introduced above.
Point (iv) follows trivially from the previous ones, since L

q
P (
;Cη(H)) ⊂

L
q
P (
;L

q
η−ε(H)) for every ε > 0.

Now we address points (v)–(vii). We choose r = (m + 2)p and δ = β/(m + 2).
Since r > p and β < δ, therefore Kr

δ ⊂ K
p
β , Lr

P (
;Cδ(H)) ⊂ L
p
P (
;Cβ(H)),

so that existence, uniqueness and continuity with respect to X ∈ L
q
P (
;Cη(H))

of a solution (Y (X),Z(X)) ∈ K
p
β with Y (X) ∈ L

p
P (
;Cβ(H)) follow from the
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previous points. Before proceeding, we prove the inequality

E

(∫ ∞
0

e2βσ |∇xψ(σ,Xσ ,Yσ ,Zσ )Nσ |2 dσ

)p/2

≤ c
(
1 + |Z|Lr

P (
;L2
δ (L2(�,K)))

)p(3.25)

× (
1 + |X|Lq

P (
;Cη(H)) + |Y |Lr
P (
;Cδ(K))

)mp|N |p
L

q
P (
;Cη(H))

.

Using Hypothesis 3.10(iii), an elementary inequality and the Hölder inequality
with conjugate exponents r/p and r/(r − p), we obtain

E

(∫ ∞
0

e2βσ |∇xψ(σ,Xσ ,Yσ ,Zσ )Nσ |2 dσ

)p/2

≤ cE

(∫ ∞
0

e2βσ (1 + |Zσ |)2(1 + |Xσ | + |Yσ |)2m|Nσ |2 dσ

)p/2

≤ cE

(
sup
τ≥0

ep(β−δ)τ (1 + |Xτ | + |Yτ |)pm|Nτ |p(3.26)

×
(∫ ∞

0
e2δσ (1 + |Zσ |)2 dσ

)p/2)

≤ cI
p/r
1 I

(r−p)/r
2 ,

where

I1 = E

(∫ ∞
0

e2δσ (1 + |Zσ |)2 dσ

)r/2

,

I2 = E

(
sup
τ≥0

epr(β−δ)/(r−p)τ (1 + |Xτ | + |Yτ |)pmr/(r−p)|Nτ |pr/(r−p)

)
.

Assuming for the moment that m > 0, we write

exp
(

pr(β − δ)

r − p
τ

)
= exp

(
δrpm

r − p
τ

)
exp

(
pr(β − δ(1 + m))

r − p
τ

)

and use the Hölder inequality again, with conjugate exponents (r − p)/(pm) and
(r − p)/(r − p(m + 1)), to obtain

I2 ≤ I
pm/(r−p)
21 I

(r−p(m+1))/(r−p)
22 ,

where

I21 = E

(
sup
τ≥0

eδrτ (1 + |Xτ | + |Yτ |)r
)
,

I22 = E

(
sup
τ≥0

epr(β−δ(m+1))/(r−p(m+1))τ |Nτ |pr/(r−p(m+1))

)
.
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Taking into account that δ < 0, we have

I1 ≤ c
(
1 + |Z|Lr

P (
;L2
δ (L2(�,K)))

)r
,

I21 ≤ c
(
1 + |X|Lr

P (
;Cδ(H)) + |Y |Lr
P (
;Cδ(K))

)r
≤ c

(
1 + |X|Lq

P (
;Cη(H)) + |Y |Lr
P (
;Cδ(K))

)r
,

I22 = E

(
sup
τ≥0

epδ(m+2)|Nτ |p(m+2)

)
= |N |p(m+2)

L
p(m+2)
P (
;Cδ(H))

≤ |N |p(m+2)

L
q
P (
;Cη(H))

= |N |r
L

q
P (
;Cη(H))

.

Substituting into the previous inequalities yields (3.25). The proof of (3.25) in the
case m = 0 is even easier.

By similar passages one can prove more, namely that the Nemytskii operator
(X,N,Y,Z) → ∇xψ(X,Y,Z)N is bounded and continuous from the space

K# := L
q
P

(

;Cη(H)

) × L
q
P

(

;Cη(H)

)
× Lr

P

(

;Cδ(K)

) × Lr
P

(

;L2

δ

(
L2(�,K)

))
to L

p
P (
;L2

β(K)).
It is convenient now to introduce another backward stochastic equation; we

will eventually show that it is satisfied by the derivatives of (Y,Z) with respect
to X. For any (X,N,Y,Z) ∈ K#, we look for (Ŷ (X,N,Y,Z), Ẑ(X,N,Y,Z)) =
(Ŷ , Ẑ) ∈ K

p
β solving

Ŷτ − ŶT + λ

∫ T

τ
Ŷσ dσ +

∫ T

τ
Ẑσ dWσ

= −
∫ T

τ
∇xψ(Xσ ,Yσ ,Zσ )Nσ dσ(3.27)

−
∫ T

τ
∇yψ(Xσ ,Yσ ,Zσ )Ŷσ dσ −

∫ T

τ
∇zψ(Xσ ,Yσ ,Zσ )Ẑσ dσ.

Hypothesis 3.10(iii) implies that ∇yψ and ∇zψ are bounded and that

〈∇yψ(x, y, z)k, k〉 ≥ µ|k|2, x ∈ H,y, k ∈ K,z ∈ L2(�,K).

Together with (3.25) this shows that Theorem 3.7 applies to (3.27) and yields
existence and uniqueness of a solution in K

p
β for λ > −(β +µ−L2

z/2). Moreover,

we have Ŷ ∈ L
p
P (
;Cβ(H)) and the following estimate holds:

E sup
τ≥0

epβτ |Ŷτ |p + E

(∫ ∞
0

e2βσ |Ŷσ |2 dσ

)p/2

+ E

(∫ ∞
0

e2βσ |Ẑσ |2 dσ

)p/2

≤ c
(
1 + |Z|Lr

P (
;L2
δ (L2(�,K)))

)p(3.28)

× (
1 + |X|Lq

P (
;Cη(H)) + |Y |Lr
P (
;Cδ(K))

)mp|N |p
L

q
P (
;Cη(H))

.
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The continuity of the map (X,N,Y,Z) → (Ŷ (X,N,Y,Z), Ẑ(X,N,Y,Z))

from K# to K
p
β and the continuity of the map (X,N,Y,Z) → Ŷ (X,N,Y,Z)

from K# to L
p
P (
;Cβ(H)) can be verified directly as in point (iii) above.

It remains to prove that if X,N ∈ L
q
P (
;Cη(H)), then the directional derivative

of the process (Y (X),Z(X)) in the direction N is given by (Ŷ (X,N,Y (X),Z(X)),

Ẑ(X,N,Y (X),Z(X))). Let us define

Y
ε := 1

ε
[Y (X + εN) − Y (X)] − Ŷ

(
X,N,Y (X),Z(X)

)
,

Z
ε := 1

ε
[Z(X + εN) − Z(X)] − Ẑ

(
X,N,Y (X),Z(X)

)
.

We will prove that (Y
ε
,Z

ε
) → 0 in K

p
β and Y

ε → 0 in L
p
P (
;Cβ(H)) for ε → 0.

For short, we let Y = Y (X), Z = Z(X), Y ε = Y (X + εN), Zε = Z(X + εN),
Ŷ = Ŷ (X,N,Y (X),Z(X)) and Ẑ = Ẑ(X,N,Y (X),Z(X)). Then (Y

ε
,Z

ε
) is

a solution of

Y
ε
τ − Y

ε
T + λ

∫ T

τ
Y

ε
σ dσ +

∫ T

τ
Z

ε
σ dσ = −

∫ T

τ
νε(σ ) dσ,

where νε = νε
1 + νε

2 and

νε
1(σ ) = 1

ε
[ψ(Xσ + εNσ ,Y ε

σ ,Zε
σ ) − ψ(Xσ ,Y ε

σ ,Zε
σ )] − ∇xψ(Xσ ,Yσ ,Zσ )Nσ ,

νε
2(σ ) = 1

ε
[ψ(Xσ ,Y ε

σ ,Zε
σ ) − ψ(Xσ ,Yσ ,Zσ )]

− ∇yψ(Xσ ,Yσ ,Zσ )Ŷσ − ∇zψ(Xσ ,Yσ ,Zσ )Ẑσ .

Writing

ψ(Xσ + εNσ ,Y ε
σ ,Zε

σ ) − ψ(Xσ ,Y ε
σ ,Zε

σ ) =
∫ 1

0

d

dζ
ψ(Xσ + εζNσ ,Y ε

σ ,Zε
σ ) dζ

gives

νε
1(σ ) =

∫ 1

0
∇xψ(Xσ + εζNσ ,Y ε

σ ,Zε
σ )Nσ dζ

(3.29)

−
∫ 1

0
∇xψ(σ,Xσ ,Yσ ,Zσ )Nσ dζ.

Similarly, starting from

ψ(Xσ ,Y ε
σ ,Zε

σ ) − ψ(Xσ ,Yσ ,Zσ )

=
∫ 1

0

d

dζ
ψ

(
Xσ ,Yσ + ζ(Y ε

σ − Yσ ),Zσ + ζ(Zε
σ − Zσ )

)
dζ,
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evaluating the integrals and rearranging terms, we conclude that

Y
ε

τ − Y
ε

T + λ

∫ T

τ
Y

ε

σ dσ +
∫ T

τ
Z

ε

σ dσ

(3.30)

= −
∫ T

τ

[
νε

1(σ ) + νε
3(σ ) + ψε

1 (σ )Y
ε

σ + ψε
2 (σ )Z

ε

σ

]
dσ,

where

νε
3(σ ) =

∫ 1

0

[∇yψ
(
Xσ ,Yσ + ζ(Y ε

σ − Yσ ),Zσ + ζ(Zε
σ − Zσ )

)
− ∇yψ(Xσ ,Yσ ,Zσ )

]
Ŷσ dζ

+
∫ 1

0

[∇zψ
(
Xσ ,Yσ + ζ(Y ε

σ − Yσ ),Zσ + ζ(Zε
σ − Zσ )

)
− ∇zψ(Xσ ,Yσ ,Zσ )

]
Ẑσ dζ,

ψε
1 (σ ) =

∫ 1

0
∇yψ

(
Xσ ,Yσ + ζ(Y ε

σ − Yσ ),Zσ + ζ(Zε
σ − Zσ )

)
dζ,

ψε
2 (σ ) =

∫ 1

0
∇zψ

(
Xσ ,Yσ + ζ(Y ε

σ − Yσ ),Zσ + ζ(Zε
σ − Zσ )

)
dζ.

Theorem 3.7 applies to the backward equation (3.30) and gives, in particular,
the estimate, for λ > −(β + µ − L2

z/2),

E sup
τ≥0

epβτ |Y ε

τ |p + E

(∫ ∞
0

e2βσ |Yε

σ |2 dσ

)p/2

+ E

(∫ ∞
0

e2βσ |Zε

σ |2 dσ

)p/2

≤ cE

(∫ ∞
0

e2βσ |νε
1(σ )|2 dσ

)p/2

+ cE

(∫ ∞
0

e2βσ |νε
3(σ )|2 dσ

)p/2

.

Now we check that the right-hand side tends to 0 as ε → 0. For the term
containing νε

3 , this follows from the dominated convergence theorem since we
have |νε

3(σ )| ≤ c|Ŷσ | + c|Ẑσ |.
To treat the other term, we first define, for all x,g,n ∈ H , y ∈ K and

z ∈ L2(�,K), the function χ(x, g,n, y, z) = ∫ 1
0 ∇xψ(x + ζg, y, z)ndζ , and note

that from (3.29) it follows that νε
1 can be written as

νε
1(σ ) = χ(Xσ , εNσ ,Nσ ,Y ε

σ ,Zε
σ ) − χ(Xσ ,0,Nσ ,Yσ ,Zσ ).

Let us consider the Nemytskii operator (X,M,N,Y,Z) → χ(X,M,N,Y,Z)

associated to χ . We can show that it is a bounded and continuous mapping from
the space

L
q
P

(

;Cη(H)

) × L
q
P

(

;Cη(H)

) × L
q
P

(

;Cη(H)

)
× Lr

P

(

;Cδ(K)

) × Lr
P

(

;L2

δ

(
L2(�,K)

))
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to L
p
P (
;L2

β(K)). The proof of this fact is based on the continuity of χ

and the estimate |χ(x, g,n, y, z)| ≤ L|n|(1 + |z|)(1 + |x| + |g| + |y|)m, which
follow from Hypothesis 3.10, and it is obtained in the same way as for the
operator (X,N,Y,Z) → ∇xψ(X,Y,Z)N introduced before. The convergence
(X, εN,N,Y ε,Zε) → (X,0,N,Y,Z) in the appropriate space follows from
point (iii) proved above and implies

E

(∫ ∞
0

e2βσ |νε
1(σ )|2 dσ

)p/2

= |νε
1 |p/2

L
p
P (
;L2

β(K))
→ 0.

Finally, (3.23) follows plugging (3.21) into (3.28). �

REMARK 3.12. If, in addition to Hypothesis 3.10, we suppose that ψ(·,0,0)

is bounded [i.e., supx∈H |ψ(x,0,0)| < ∞], then, with identical proof, points
(i)–(iv) in Proposition 3.11 can be improved by dropping the limitation imposed
by (3.20) on the choice of q and η. More precisely, for arbitrary r > 2, δ < 0,
q ∈ [1,∞) and η ∈ R, the statements of points (i)–(iv) remain true with the
estimate (3.21) replaced by

E sup
τ≥0

|Yτ (X)|rerδτ + E

(∫ ∞
0

e2δσ |Yσ (X)|2 dσ

)r/2

(3.31)

+ E

(∫ ∞
0

e2δσ |Zσ (X)|2 dσ

)r/2

≤ c,

where c is a constant independent from the process X.

REMARK 3.13. Now let us assume that ψ(·,0,0) is bounded and that
Hypothesis 3.10 holds with m = 0. Then the restriction (3.22) can be weakened
and points (v)–(vii) in Proposition 3.11 can be improved as follows. If, given p > 2
and β < 0, we choose q and η satisfying

q > p, η > β,

then the statements of points (v)–(vii) remain true with the estimate (3.23)
replaced by

E sup
τ≥0

epβτ |∇Yτ (X)N |p + E

(∫ ∞
0

e2βσ |∇Yσ (X)N |2 dσ

)p/2

(3.32)

+ E

(∫ ∞
0

e2βσ |∇Zσ (X)N |2 dσ

)p/2

≤ c|N |p
L

q
P (
;Cη(H))

.

Indeed, let us take r > 2 so large and δ < 0 so small that

r > p,
pr

r − p
≤ q, β < δ, β − δ < η.
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Then from (3.26) and (3.31) it follows that

E

(∫ ∞
0

e2βσ |∇xψ(σ,Xσ ,Yσ ,Zσ )Nσ |2 dσ

)p/2

≤ c

[
E

(
sup
τ≥0

epr(β−δ)/(r−p)τ |Nτ |pr/(r−p)

)](r−p)/r

≤ c|N |p
L

q
P (
;Cη(H))

.

Starting from this inequality, which improves (3.25), the proof of points (v)–(vii)
in Proposition 3.11 can be repeated with minor changes and (3.32) follows as well.

4. The forward equation. As in the previous sections, we denote by
{Wτ, τ ≥ 0} a cylindrical Wiener process with values in a Hilbert space �, defined
on a probability space (
,F ,P). Now we consider the Itô stochastic differential
equation for an unknown process {Xτ, τ ≥ 0} with values in a Hilbert space H :

Xτ = eτAx +
∫ τ

0
e(τ−σ)AF (Xσ ) dσ

(4.1)
+

∫ τ

0
e(τ−σ)AG(Xσ )dWσ , τ ≥ 0.

(See [22] as a reference starting study on forward SDEs in Hilbert spaces.)
We will first consider solvability of this equation for τ varying in an

interval [0, T ] and later for τ ∈ R+. In both cases our assumptions will be
the following:

HYPOTHESIS 4.1. (i) The operator A is the generator of a strongly
continuous semigroup etA, t ≥ 0, in the Hilbert space H . We denote by M , a two
constants such that |etA| ≤ Meat for t ≥ 0.

(ii) The mapping F :H → H satisfies, for some constant L > 0,

|F(x) − F(y)| ≤ L |x − y|, x, y ∈ H.

(iii) The variable G denotes a mapping from H to L(�,H) such that for
every ξ ∈ � the map G(·)ξ :H → H is measurable, etAG(x) ∈ L2(�,H) for
every t > 0 and x ∈ H , and

|etAG(x)|L2(�,H) ≤ Lt−γ eat(1 + |x|),
(4.2)

|etAG(x) − etAG(y)|L2(�,H) ≤ Lt−γ eat |x − y|, t > 0, x, y ∈ H,

|G(x)|L(�,H) ≤ L(1 + |x|), x ∈ H,(4.3)

for some constants L > 0 and γ ∈ [0,1/2).
(iv) For every t > 0, we have F(·) ∈ G1(H,H) and etAG(·) ∈ G1(H,L2(�,

H)).

We start by recalling a well-known result on solvability of (4.1) on a bounded
interval; see, for example, [7].
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PROPOSITION 4.2. Under the assumptions of Hypothesis 4.1 [only points
(i)–(iii) are needed ], for every q ∈ [2,∞) and T > 0 there exists a unique process
X ∈ L

q
P (
;C([0, T ];H)) solution of (4.1). Moreover,

E sup
τ∈[0,T ]

|Xτ |q ≤ C(1 + |x|)q(4.4)

for some constant C depending only on q , γ , T , L, a and M .

More generally, in the following discussion we need to consider a stochastic
equation on an arbitrary interval [t, T ] ⊂ [0, T ]:

Xτ = e(τ−t)Ax +
∫ τ

t
e(τ−σ)AF (Xσ ) dσ

(4.5)
+

∫ τ

t
e(τ−σ)AG(Xσ )dWσ , τ ∈ [t, T ].

We set Xτ = x for τ ∈ [0, t) and we denote by X(τ, t, x), τ ∈ [0, T ], the solution.
Our next aim is to prove Proposition 4.5, which is basic for the proof of

one of our main results, Theorem 6.1. To this end, we need to recall the
following results from [12]. The first result deals with regularity of {X(τ, t, x),

τ ∈ [0, T ]} with respect to x; the second with its regularity in the sense of the
Malliavin calculus.

PROPOSITION 4.3. Assume Hypothesis 4.1. Then, for every q ∈ [2,∞) and
T > 0, the following properties hold.

(i) The map (t, x) 	→ X(·, t, x) belongs to G0,1([0, T ] × H,L
q
P (
;

C([0, T ];H))).
(ii) Denoting by ∇xX the partial Gâteaux derivative, for every direction

h ∈ H , the directional derivative process ∇xX(τ, t, x)h, τ ∈ [0, T ], solves, P-a.s.,
the equation

∇xX(τ, t, x)h = e(τ−t)Ah +
∫ τ

t
e(τ−σ)A∇xF

(
σ,X(σ, t, x)

)
× ∇xX(σ, t, x)hdσ

+
∫ τ

t
∇x

(
e(τ−σ)AG

(
σ,X(σ, t, x)

))
(4.6)

× ∇xX(σ, t, x)hdWσ , τ ∈ [t, T ],
∇xX(τ, t, x)h = h, τ ∈ [0, t).

(iii) Finally, |∇xX(τ, t, x)h|Lq
P (
;C([0,T ];H)) ≤ c|h| for some constant c.

To state the following result, we need to recall some basic definitions from the
Malliavin calculus. We refer the reader to [20] for a detailed exposition; [16] treats
the extensions to Hilbert space-valued random variables and processes.



ELLIPTIC PDEs, BSDEs AND CONTROL 637

For every h ∈ L2([0, T ];�) we denote by W(h) the integral
∫ T

0 〈h(t), dW(t)〉�.
Given a Hilbert space K , let SK be the set of K-valued random variables F of
the form

F =
m∑

j=1

fj

(
W(h1), . . . ,W(hn)

)
ej ,

where h1, . . . , hn ∈ L2([0, T ];�), {ej } is a basis of K and f1, . . . , fm are infinitely
differentiable functions R

n → R bounded together with all their derivatives. The
Malliavin derivative DF of F ∈ SK is defined as the process DsF , s ∈ [0, T ],

DsF =
m∑

j=1

n∑
k=1

∂kfj

(
W(h1), . . . ,W(hn)

)
ej ⊗ hk(s),

with values in L2(�,K). By ∂k we denote the partial derivatives with respect
to the kth variable and by ej ⊗ hk(s) denote the operator u 	→ ej 〈hk(s), u〉�.
It is known that the operator D :SK ⊂ L2(
;K) → L2(
 × [0, T ];L2(�;K))

is closable. We denote by D
1,2(K) the domain of its closure, and use the same

letter to denote D and its closure:

D : D1,2(K) ⊂ L2(
;K) → L2(

 × [0, T ];L2(�;K)

)
.

The adjoint operator of D,

δ : dom(δ) ⊂ L2(

 × [0, T ];L2(�;K)

) → L2(
;K),

is called the Skorohod integral. It is known that dom(δ) contains L2
P (
 × [0, T ];

L2(�;K)) and the Skorohod integral of a process in this space coincides with
the Itô integral; dom(δ) also contains the class L

1,2(L2(�;K)), the latter being
defined as the space of processes u ∈ L2(
 × [0, T ];L2(�;K)) such that
ur ∈ D

1,2(L2(�,K)) for a.e. r ∈ [0, T ] and there exists a measurable version
of Dsur satisfying

‖u‖2
L1,2(L2(�;K))

= ‖u‖2
L2(
×[0,T ];L2(�;K))

+ E

∫ T

0

∫ T

0
‖Dsur‖2

L2(�,L2(�,K)) dr ds < ∞.

Moreover, ‖δ(u)‖2
L2(
;K)

≤ ‖u‖2
L1,2(L2(�;K))

. The definition of L
1,2(K) for an

arbitrary Hilbert space K is entirely analogous.
Finally, we recall that if F ∈ D

1,2(K) is Ft -adapted, then DF = 0 a.s.
on 
 × (t, T ].

With the previous notation we have the following result, proved in [12].

PROPOSITION 4.4. Assume Hypothesis 4.1. Then the following proper-
ties hold.
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(i) The process X = {X(τ, t, x), τ ∈ [0, T ]} belongs to L
1,2(H).

(ii) The variables X(τ, t, x) ∈ D
1,2(H) for every τ ∈ [0, T ].

(iii) For a.a. s, τ such that t ≤ s ≤ τ ≤ T , we have

DsX(τ, t, x) = ∇xX
(
τ, s,X(s, t, x)

)
G

(
s,X(s, t, x)

)
, P-a.s.(4.7)

(iv) For a.a. s ∈ [t, T ], we have

DsX(T, t, x) = ∇xX
(
T, s,X(s, t, x)

)
G

(
s,X(s, t, x)

)
, P-a.s.(4.8)

Now, for ξ ∈ �, denote by Wξ the real Wiener process defined by W
ξ
τ :=

〈ξ,Wτ 〉, τ ∈ [0, T ]. We also set Xτ = X(τ,0, x) for simplicity. Given a
function u :H → R, we investigate the existence of the joint quadratic variation
of the process {u(Xτ ), τ ∈ [0, T ]} with Wξ . As usual, this is defined for every
τ ∈ [0, T ] as the limit in probability of

n∑
i=1

(
uτi

− uτi−1

)(
Wξ

τi
− Wξ

τi−1

)
,

where {τi}, 0 = τ0 < τ1 < · · · < τn = τ , is an arbitrary subdivision of [0, τ ] whose
mesh tends to 0. Existence of the joint quadratic variation is not trivial. Indeed,
due to the occurrence of convolution type integrals in (4.5), it is not obvious that
the process X is a semimartingale. Moreover, even in this case, the process u(X)

might fail to be a semimartingale if u is not twice differentiable, since the Itô
formula does not apply. Nevertheless, the following result holds true. Its proof
could be deduced from generalization of some results obtained in [21] to the
infinite-dimensional case, but we prefer to give a simpler direct proof.

PROPOSITION 4.5. Assume Hypothesis 4.1 and let u be a function
in G1(H,R) having polynomial growth together with its derivative. Then the
process {u(Xτ ), τ ∈ [0, T ]} admits a joint quadratic variation process V with Wξ ,
given by

Vτ =
∫ τ

0
∇u(Xσ )G(Xσ )ξ dσ, τ ∈ [0, T ].

PROOF. Let us denote uτ = u(Xτ ) for simplicity. A chain rule for the
class G1 and the Malliavin derivative operator holds; see [12] for details. It follows
that, by the assumptions on u for every τ ∈ [0, T ], we have uτ ∈ D

1,2(R) and
Duτ = ∇u(Xτ )DXτ . Taking into account (4.7) for a.e. s ∈ [0, τ ], we obtain

Dsuτ ξ = ∇u(Xτ )∇xX(τ, s,Xs)G(Xs)ξ, P-a.s.,(4.9)

whereas Dsuτ ξ = 0 P-a.s. for a.e. s ∈ (τ, T ].
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Let us now compute the joint quadratic variation of u and Wξ . Let t = τ0 <

τ1 < · · · < τn = τ be a subdivision of [0, τ ] ⊂ [0, T ]. By well-known rules of
Malliavin calculus (see [21], Theorem 3.2, or [16], Proposition 2.11), we have(

uτi
− uτi−1

)(
Wξ

τi
− Wξ

τi−1

)
= (

uτi
− uτi−1

) ∫ τi

τi−1

〈ξ, dWs〉

=
∫ τi

τi−1

Ds

(
uτi

− uτi−1

)
ξ ds +

∫ τi

τi−1

(
uτi

− uτi−1

)〈ξ, d̂Ws〉,

where we use the symbol d̂W to denote the Skorohod integral. We note that
Dsuτi−1 = 0 for s > τi−1, so recalling (4.9) and setting Un(s) = ∑n

i=1(uτi
−

uτi−1)1(τi−1,τi ](s), we obtain

n∑
i=1

(
uτi

− uτi−1

)(
Wξ

τi
− Wξ

τi−1

)

=
∫ τ

0
Un(s) 〈ξ, d̂Ws〉 +

n∑
i=1

∫ τi

τi−1

∇u(Xτi
)∇xX(τi, s,Xs)G(Xs)ξ ds.

By (4.9) and the continuity properties asserted in Proposition 4.3, it is easily
verified that the maps τ 	→ uτ and τ 	→ Duτξ are continuous on [0, T ] with
values in L2(
;R) and L2(
 × [0, T ];R), respectively. In particular, Un → 0
in L

1,2(R), which implies that the Skorohod integral in the last equation tends to
zero in L2(
;R). Letting the mesh of the subdivision tend to 0, we obtain

n∑
i=1

(
uτi

− uτi−1

)(
Wξ

τi
− Wξ

τi−1

) → Vτ

in probability, which completes the proof of the proposition. �

In the rest of this section we consider (4.1) for τ varying in R+. By Propo-
sition 4.2 and the arbitrariness of T in its statement, the solution is defined for
every τ ≥ 0. To stress dependence on the parameter x ∈ H , the solution starting
from X0 = x will be denoted by X(x). Notice that, with the notation previously
used in this section, Xτ (x) = X(τ,0, x).

We recall that the spaces L
q
P (
;L

q
η(H)), Lq

P (
;Cη(H)) and H
q
η were defined

for arbitrary η ∈ R and q ∈ [1,∞) in Section 2.

PROPOSITION 4.6. Assume that Hypothesis 4.1 holds. Then for all q ∈ [1,∞),
there exists a constant η(q), depending also on γ , L, a and M , with the follow-
ing properties:

(i) For all x ∈ H , the process X(x), solution of (4.1), is in H
q
η(q).
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(ii) For a suitable constant C > 0, we have

E sup
τ≥0

eη(q)qτ |Xτ |q + E

∫ ∞
0

eη(q)qσ |Xσ |q dσ ≤ C(1 + |x|)q .(4.10)

(iii) The map x 	→ X(x) belongs to G1(H,H
q
η(q)) and its derivative is

uniformly bounded,

|∇X(x)h|Hq
η(q)

≤ C|h|, x, h ∈ H,(4.11)

for a suitable constant C.

PROOF. In the following, the letters M , a, L and γ denote the constants that
appear in Hypothesis 4.1. Clearly it is enough to prove the claim for q large, so we
can assume that q > (1 − 2γ )−1.

We define a mapping � :Hq
η × H → H

q
η by

�(X,x)τ = eτAx +
∫ τ

0
e(τ−σ)AF (Xσ ) dσ +

∫ τ

0
e(τ−σ)AG(Xσ )dWσ ,(4.12)

τ ≥ 0.

We are going to show that, provided η is suitably chosen, �(·, x) is well defined
and that it is a contraction in H

q
η , uniformly in x, that is, there exists c < 1 such

that for every x ∈ H ,

|�(X1, x) − �(X2, x)|Hq
η

≤ c |X1 − X2|Hq
η
, X1,X2 ∈ Hq

η .(4.13)

For simplicity, we only treat the case F = 0; the general case is handled in a similar
way. We use the so-called factorization method (see, e.g., [8], Theorem 5.2.5).
By the assumption on q we can take α ∈ (0,1) such that

1

q
< α <

1

2
− γ,

and we define

c−1
α =

∫ τ

σ
(τ − s)α−1(s − σ)−α ds.

Then, by the stochastic Fubini theorem,

�(X,x)τ = eτAx + cα

∫ τ

0

∫ τ

σ
(τ − s)α−1(s − σ)−α

× e(τ−s)Ae(s−σ)A ds G(σ,Xσ ) dWσ

= eτAx + �′(X)τ ,

where we set

�′(X)τ = cα

∫ τ

0
(τ − s)α−1e(τ−s)AYs ds,

Ys =
∫ s

0
(s − σ)−αe(s−σ)AG(σ,Xσ ) dWσ .
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Since |eτAx| ≤ Meaτ |x|, the process eτAx, τ ≥ 0, belongs to H
q
η provided

a + η < 0. Next we estimate �′(X) as

|�′(X)τ | ≤ cα

∫ τ

0
(τ − s)α−1Mea(τ−s)|Ys |ds,

so that

eητ |�′(X)τ x| ≤ cαM

∫ τ

0
(τ − s)α−1e(a+η)(τ−s)eηs |Ys |ds.(4.14)

Applying the Young inequality for convolutions in the space Lq(0,∞), we obtain(∫ ∞
0

eητq |�′(X)τ |q dτ

)1/q

≤ cαM

(∫ ∞
0

eηsq |Ys |q ds

)1/q ∫ ∞
0

sα−1e(a+η)s ds

and we conclude that

|�′(X)|Lq
P (
;Lq

η(H)) ≤ cαM|Y |Lq
P (
;Lq

η(H))

∫ ∞
0

sα−1e(a+η)s ds.(4.15)

If we start again from (4.14) and apply the Hölder inequality, setting q ′ = q
q−1 ,

we obtain

eητ |�′(X)τ x| ≤ cαM

(∫ τ

0
eηsq |Ys |q ds

)1/q(∫ τ

0
s(α−1)q ′

e(a+η)sq ′
ds

)1/q ′

and we conclude that

|�′(X)|Lq
P (
;Cη(H))

(4.16)

≤ cαM|Y |Lq
P (
;Lq

η(H))

(∫ ∞
0

s(α−1)q ′
e(a+η)sq ′

ds

)1/q ′
.

By the Burkholder–Davis–Gundy inequalities, taking into account the assump-
tion (4.2), we have, for some constant cq depending only on q ,

E|Ys |q ≤ cqE

(∫ s

0
(s − σ)−2α

∣∣e(s−σ)AG(σ,Xσ)
∣∣2
L2(�,H) dσ

)q/2

≤ LqcqE

(∫ s

0
(s − σ)−2α−2γ e2a(s−σ)(1 + |Xσ |)2 dσ

)q/2

.

It follows that

[E|Ys |q ]2/q ≤ L2c2/q
q

∫ s

0
(s − σ)−2α−2γ e2a(s−σ)[E(1 + |Xσ |)q ]2/q dσ

so that

e2ηs[E|Ys |q ]2/q ≤ C1

∫ s

0
(s − σ)−2α−2γ e2(a+η)(s−σ)e2ησ dσ

+ C2

∫ s

0
(s − σ)−2α−2γ e2(a+η)(s−σ)e2ησ [E|Xσ |q ]2/q dσ
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for suitable constants C1,C2. Applying the Young inequality for convolutions in
the space Lq/2(0,∞), we obtain(∫ ∞

0
eqηs

E|Ys |q ds

)2/q

≤ C1

∫ ∞
0

s−2α−2γ e2(a+η)s ds

(∫ ∞
0

eqηs ds

)2/q

+ C2

∫ ∞
0

s−2α−2γ e2(a+η)s ds

(∫ ∞
0

eqηs
E|Xσ |q ds

)2/q

.

This shows that |Y |Lq
P (
;Lq

η(H)) is finite provided we assume η < 0, a +η < 0, and
so the map � is well defined.

If X1, X2, are processes belonging to H
q
η , and Y 1, Y 2 are defined accordingly,

entirely analogous passages show that

|Y 1 − Y 2|Lq
P (
;Lq

η(H))

≤ Lc1/q
q |X1 − X2|Lq

P (
;Lq
η(H))

(∫ ∞
0

s−2α−2γ e2(a+η)s ds

)1/2

.

Recalling the inequalities (4.15) and (4.16), and noting that the map Y 	→ �′(X)

is linear, we arrive at an explicit expression for the constant c in (4.13), and it
is immediate to verify that c < 1 provided η < 0 is chosen sufficiently large.
Let us fix such a value η(q). The statement of point (i) is a consequence of
the contraction principle. The estimate (4.10) also follows from the contraction
property of �(·, x).

Now we come to the regular dependence of the solution on the initial
datum. To prove that the map x 	→ X(x) belongs to G1(H,H

q
η(q)), by the

parameter depending contraction principle (Proposition 2.1), it suffices to show
that � ∈ G1(H

q
η(q) × H,H

q
η(q)). This follows easily from the following steps

(see [12], Lemma 2.1, for details).

STEP 1. The variable � is continuous. This follows immediately from the
contraction property of �(·, x) mentioned above and the fact that �(X, ·) is
continuous from H to H

q
η(q), which is easy to verify.

STEP 2. We claim that the directional derivative ∇X�(X,x;N) with respect
to X ∈ H

q
η(q) in the direction N ∈ H

q
η(q) is the process

∇X�(X,x;N)τ =
∫ τ

0
e(τ−σ)A∇F(Xσ )Nσ dσ

+
∫ τ

0
∇(

e(τ−σ)AG(Xσ )
)
Nσ dWσ , τ ≥ 0,
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and, moreover, the mappings (X,x) 	→ ∇X�(X,x;N) and N 	→ ∇X�(X,x;N)

are continuous.
We limit ourselves to proving this claim in the special case F = 0; the general

case is a straightforward extension. For fixed x ∈ H and for all τ ≥ 0, we define

I ε
τ = 1

ε
�(X + εN,x)τ − 1

ε
�(X,x)τ −

∫ τ

0
∇x

(
e(τ−σ)AG(Xσ )

)
Nσ dWσ

=
∫ τ

0

(∫ 1

0

(
∇x

(
e(τ−σ)AG(Xσ + ζεNσ )

)
Nσ

− ∇x

(
e(τ−σ)AG(Xσ )

)
Nσ

)
dζ

)
dWσ .

Using the identity ∇(e(τ−σ)AG(x)) = e(τ−s)A(e(s−σ)AG(x)) and applying the
factorization method as in the proof of Proposition 4.6, we get, for 1/q <

α < 1/2 − γ ,

|I ε|q
H

q
η(q)

≤ cE

∫ ∞
0

|Y ε
s |q ds,

where

Y ε
s :=

∫ s

0
(s − σ)−α

∫ 1

0

(
∇(

e(s−σ)AG(Xσ + ζεNσ )
)
Nσ

− ∇(
e(s−σ)AG(Xσ )

)
Nσ

)
dζ dWσ

and c, here and in the rest of this proof, denotes a suitable constant, whose value
may change from line to line. Next we obtain, by the Burkholder–Davis–Gundy
inequalities,

E|Y ε
s |q ≤ cE

(∫ s

0
(s − σ)−2α

×
∣∣∣∣
∫ 1

0

(
∇(

e(s−σ)AG(Xσ + ζεNσ )
)
Nσ

− ∇(
e(s−σ)AG(Xσ )

)
Nσ

)
dζ

∣∣∣∣2
L2(�,H)

dσ

)q/2

,

and setting

f ε(σ, s, ζ ) = esη(q)(s − σ)−α
∣∣∇(

e(s−σ)AG(Xσ + ζεNσ )
)
Nσ

− ∇(
e(s−σ)AG(Xσ )

)
Nσ

∣∣
L2(�,H),

we arrive at the inequality

E

∫ ∞
0

esη(q)q |Y ε
s |q ds ≤ c

∫ ∞
0

E

(∫ s

0

∣∣∣∣
∫ 1

0
f ε(σ, s, ζ ) dζ

∣∣∣∣2 dσ

)q/2

ds.
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To conclude that E
∫ ∞

0 |Y ε
s |q ds → 0 as ε → 0, we use the dominated convergence

theorem. Since we assume that ∇(etAG(x))h is continuous in x for every h ∈ H ,
t > 0, therefore f ε → 0 pointwise. Next we note that from Hypothesis 4.1(iii)
and (iv) it follows that |∇(etAG(x))h|L2(�,H) ≤ Lt−γ eat |h|, which implies
|f ε(σ, s, ζ )| ≤ cesη(q)(s − σ)−α−γ ea(s−σ)|Nσ |, and it remains to show that
the integral ∫ ∞

0
E

(∫ s

0

∣∣esη(q)(s − σ)−α−γ ea(s−σ)|Nσ |∣∣2 dσ

)q/2

ds

is finite. This is less than or equal to∫ ∞
0

(∫ s

0
(s − σ)−2α−2γ e2(a+η(q))(s−σ)e2η(q)σ [E|Nσ |q]2/q dσ

)q/2

ds

≤
(∫ ∞

0
s−2α−2γ e2(a+η(q))s ds

)q/2 ∫ ∞
0

eqη(q)s
E|Ns |q ds

≤ c|N |q
H

q
η(q)

< ∞,

where we have used again Young’s inequality for convolution in the space
Lq/2(0,∞).

Now the existence and the required formula for ∇X�(X,x;N) have been
proved. Continuity of the mappings (X,x) 	→ ∇X�(X,x;N) and N 	→
∇X�(X,x;N) can be checked in a similar way.

STEP 3. Finally, it is clear that the directional derivative ∇x�(X,x;h) in
the direction h ∈ H is the process ∇x�(X,x;h)τ = eτAh, τ ≥ 0, and that the
mappings (X,x) 	→ ∇x�(X,x;h) and h 	→ ∇x�(X,x;h) are continuous.

It remains to prove inequality (4.11). Recalling that X(x) is a fixed point
of �(·, x), by the contraction property of �, we obtain, for some c < 1 and for
every x, y ∈ H ,

|X(x) − X(y)| ≤ ∣∣�(
X(x), x

) − �
(
X(y), x

)∣∣
+ ∣∣�(

X(y), x
) − �

(
X(y), y

)∣∣
≤ c|X(x) − X(y)| + ∣∣�(

X(y), x
) − �

(
X(y), y

)∣∣.
Since the directional derivative process in the direction h ∈ H is ∇x�(X,x;h)τ =
eτAh, τ ≥ 0, it follows that the norm of ∇x�(X,x) is bounded by a constant c1
independent of X and x. Then we obtain |X(x) −X(y)| ≤ c1(1 − c)−1|x − y| and
the required inequality follows immediately. �

REMARK 4.7. Denoting by ∇X the Gâteaux derivative whose existence is
asserted in Proposition 4.6, for every direction h ∈ H , the directional derivative
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process ∇Xτ (x)h, τ ≥ 0, is the unique solution in H
q
η(q) of the equation, P-a.s.,

∇Xτ (x)h = eτAh +
∫ τ

0
e(τ−σ)A∇F

(
Xσ (x)

)∇Xσ (x)hdσ

+
∫ τ

0
∇(

e(τ−σ)AG
(
Xσ (x)

))∇Xσ (x)hdWσ, τ ≥ 0.

Indeed, this follows from the parameter depending contraction principle and the
explicit form of ∇X� and ∇x� found in the previous proof.

5. The forward–backward system. As usual, we denote by {Wτ, τ ≥ 0}
a cylindrical Wiener process with values in a Hilbert space � and denote by (Fτ )

its natural filtration, augmented in the usual way. In this section, we consider
the system of stochastic differential equations, P-a.s.,

Xτ = eτAx +
∫ τ

0
e(τ−σ)AF (Xσ ) dσ +

∫ τ

0
e(τ−σ)AG(Xσ )dWσ ,

τ ≥ 0,
(5.1)

Yτ +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ = −

∫ T

τ
ψ(Xσ ,Yσ ,Zσ ) dσ,

0 ≤ τ ≤ T < ∞,

where X takes values in a Hilbert space H , Y is real valued and (accordingly)
Z takes values in L2(�,R) (which coincides with �∗), ψ :H × R × �∗ → R is
a given measurable function, x is in H and λ is a real number.

We will give existence, uniqueness and regularity results for the solution,
that we will denote by {Xτ (x),Yτ (x),Zτ (x), τ ≥ 0} when we want to stress
dependence on the parameter x ∈ H . Note that the forward equation can be solved
independently. Moreover, since the filtration (Fτ ) is generated by the Wiener
process, and since Y is adapted, it follows that Y0(x) is deterministic. In the
following discussion we set u(x) = Y0(x).

The equations are the same as in the previous section, in the particular
case K = R. So, if we assume that Hypotheses 4.1 and 3.10 are verified, we can
immediately describe a class of processes where the system is uniquely solvable,
as follows.

For any q ∈ [1,∞), we choose η(q) as in Proposition 4.6. Then, for
every x ∈ H , there exists a unique solution {Xτ (x), τ ≥ 0} in H

q
η(q) of the forward

equation and the map x 	→ X(x) belongs to G1(H,H
q
η(q)).

Then we fix p > 2 and choose q and β satisfying

q ≥ p(m + 1)(m + 2), β < η(q)(m + 1)(m + 2), β < 0.(5.2)

If we set λ̂ = −(β + µ − L2
z/2), then, according to Proposition 3.11, for eve-

ry λ > λ̂ and for arbitrary X ∈ H
q
η(q) there exists a unique solution (Y (X),Z(X))
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in K
p
β of the backward equation; moreover Y (X) is in L

q
P (
;Cβ(R)), the map

X → (Y (X),Z(X)) belongs to G1(H
q
η(q),K

p
β ) and the map X → Y (X) belongs

to G1(H
q
η(q),L

q
P (
;Cβ(R))). Therefore, with the present notation, the solution of

the backward equation in (5.1) is

Y (x) = Y (X(x)), Z(x) = Z(X(x)).(5.3)

PROPOSITION 5.1. Assume that Hypothesis 4.1 holds and that ψ satisfies the
conditions in Hypothesis 3.10 (with K = R). For p > 2, β and q satisfying (5.2),
and for every λ > λ̂ = −(β + µ − L2

z/2), the following hold:

(i) For every x ∈ H there exists a unique solution (X(x),Y (x),Z(x))

of the forward–backward system (5.1) such that X(x) ∈ H
q
η(q) and (Y (x),

Z(x)) ∈ K
p
β . Moreover, Y (x) ∈ L

p
P (
;Cβ(R)).

(ii) The maps x → X(x) and x → (Y (x),Z(x)) and x → Y (x) belong to the
spaces G1(H,H

q
η(q)), G1(H,K

p
β ) and G1(H,L

p
P (
;Cβ(R))), respectively.

(iii) Setting u(x) = Y0(x), we have u ∈ G1(H,R), and u and ∇u have
polynomial growth. More precisely, there exists a constant C > 0 such that

|u(x)| ≤ C(1 + |x|)m+1, |∇u(x)h| ≤ C|h|(1 + |x|)[(m+1)2], x, h ∈ H.

PROOF. Point (i) is already proved, and point (ii) follows from (5.3) and the
chain rule. Since the (linear) functional Y → Y0 is continuous on L

p
P (
;Cβ(R)),

it also follows that x → u(x) = Y0(x) is in G1(H,R). The estimate on u is a
consequence of (3.21) and (4.10). The estimate on ∇u follows from the chain rule
and (3.23), (4.10) and (4.11). �

REMARK 5.2. Notice that we have shown that the system (5.1) admits a
unique solution [in suitable spaces H

q
η(q), K

p
β with parameters satisfying p > 2

and condition (5.2)] for all λ > λ̂, where

λ̂ = −µ + L2
z/2 − sup

{
η(q)(m + 1)(m + 2) ∧ 0 :q > 2(m + 1)(m + 2)

}
.(5.4)

REMARK 5.3. If, in addition to Hypothesis 3.10, we suppose that ψ(·,0,0) is
bounded and satisfies Hypothesis 3.10 with m = 0, then the above results can be
improved in the following way, according to Remarks 3.12 and 3.13. Instead of
invoking (5.2), it is enough to require q > p > 2 and β < η(q) ∧ 0. Then the
conclusions of Proposition 5.1 still hold for λ > −(β + µ − L2

z/2). Thus, instead
of (5.4), we have

λ̂ = −µ + L2
z/2 − sup{η(q) ∧ 0 :q > 2}.(5.5)

Moreover, we have |u(x)| ≤ C and |∇xu(x)h| ≤ C|h| for all x,h ∈ H .
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6. Mild solutions of the Kolmogorov nonlinear equation. Let us consider
again the forward equation

Xτ = eτAx +
∫ τ

0
e(τ−σ)AF (Xσ ) dσ

(6.1)
+

∫ τ

0
e(τ−σ)AG(Xσ )dWσ , τ ≥ 0,

studied in the previous sections. Assuming that Hypothesis 4.1 holds and denoting
{Xτ (x), τ ≥ 0} as the solution, we define in the usual way the transition
semigroup (Pt )t≥0, associated to the process X:

Pt [φ](x) = Eφ
(
Xt(x)

)
, x ∈ H,(6.2)

for every bounded measurable function φ :H → R. By Proposition 4.2, φ can be
taken unbounded, with polynomial growth. Formally, the generator L of (Pt) is
the operator

Lφ(x) = 1
2 Trace

(
G(x)G(x)∗∇2φ(x)

) + 〈Ax + F(x),∇φ(x)〉.
In this section, we address solvability of the nonlinear stationary Kolmogorov
equation

Lu(x) − λu(x) = ψ
(
x,u(x),∇u(x)G(x)

)
, x ∈ H,(6.3)

where the function ψ :H ×R×�∗ → R satisfies the conditions in Hypothesis 3.10
(with K = R) and λ is a given number. Note that, for x ∈ H , ∇u(x) belongs to H ∗,
so that ∇u(x)G(x) is in �∗.

As it is written, (6.3) is only formal. We give the following definition of solution,
already mentioned in the Introduction (recall that the class G1 was defined in
Section 2):

DEFINITION 6.1. We say that a function u :H → R is a mild solution of the
nonlinear stationary Kolmogorov equation (6.3) if the following conditions hold:

(i) Function u ∈ G1(H,R).
(ii) For all x ∈ H , h ∈ H , we have

|u(x)| ≤ C(1 + |x|)C, |∇xu(x)h| ≤ C|h|(1 + |x|)C

for some constant C > 0.
(iii) The following equality holds, for every x ∈ H and T ≥ 0:

u(x) = e−λT PT [u](x) −
∫ T

0
e−λτPτ

[
ψ

(·, u(·),∇u(·)G(·))](x) dτ.(6.4)
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Together with (6.1), we also consider the backward equation

Yτ − YT +
∫ T

τ
Zσ dWσ + λ

∫ T

τ
Yσ dσ

(6.5)

= −
∫ T

τ
ψ(Xσ ,Yσ ,Zσ ) dσ, 0 ≤ τ ≤ T < ∞,

where ψ :H × R × �∗ → R and λ are the same that occur in the nonlinear
stationary Kolmogorov equation. Under the stated assumptions, Proposition 5.1
gives a unique solution {Xτ(x),Yτ (x),Zτ (x), τ ≥ 0} of the forward–backward
system (6.1) and (6.5). We can now state one of our main results.

THEOREM 6.1. Assume that Hypothesis 4.1 holds and that ψ satisfies the
conditions in Hypothesis 3.10 (with K = R). Then there exists λ̂ ∈ R such that,
for every λ > λ̂, the nonlinear stationary Kolmogorov equation (6.3) has a unique
mild solution. The solution u is given by the formula

u(x) = Y0(x),(6.6)

where {Xτ (x),Yτ (x),Zτ (x), τ ≥ 0} is the solution of the backward–forward
system (6.1) and (6.5), and it satisfies

|u(x)| ≤ C (1 + |x|)m+1, |∇u(x)h| ≤ C |h|(1 + |x|)[(m+1)2]

for some constant C and every x,h ∈ H .

PROOF. We need to consider the equation [which is slightly more general
than (6.1)]

Xτ = e(τ−t)Ax +
∫ τ

t
e(τ−σ)AF (Xσ ) dσ +

∫ τ

t
e(τ−σ)AG(Xσ )dWσ(6.7)

for τ varying on an arbitrary time interval [t,∞) ⊂ [0,∞). We set Xτ = x

for τ ∈ [0, t) and we denote by {X(τ, t, x), τ ≥ 0} the solution, to indicate
dependence on x and t . By an obvious extension of the results in the previ-
ous sections, we can solve the backward equation (6.5) with X given by (6.7);
we denote the corresponding solution (Y,Z) by {Y (τ, t, x),Z(τ, t, x), τ ≥ 0}.
Thus, {X(τ,0, x), Y (τ,0, x),Z(τ,0, x), τ ≥ 0} coincides with the process
{Xτ (x),Yτ (x),Zτ (x), τ ≥ 0} that occurs in the statement of the theorem. Note
that for bounded measurable φ :H → R, we have

Pτ−t [φ](x) = Eφ
(
X(τ, t, x)

)
, x ∈ H, 0 ≤ t ≤ τ,

since the coefficients of (6.7) do not depend on time.
We first prove that u, given by (6.6), is a solution. The solutions of (6.7) satisfy

the well-known property, for 0 ≤ t ≤ s, P-a.s.,

X
(
τ, s,X(s, t, x)

) = X(τ, t, x) for τ ∈ [s,∞).
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Since the solution of the backward equation is uniquely determined on an
interval [s,∞) by the values of the process X on the same interval, for 0 ≤ t ≤ s

we have, P-a.s.,

Y
(
τ, s,X(s, t, x)

) = Y (τ, t, x) for τ ∈ [s,∞),
(6.8)

Z
(
τ, s,X(s, t, x)

) = Z(τ, t, x) for a.a. τ ∈ [s,∞).

In particular, for every τ ≥ 0,

Y
(
τ, τ,X(τ,0, x)

) = Y (τ,0, x), P-a.s.(6.9)

Since the coefficients of (6.7) do not depend on time, we have

X(·,0, x)
(d)= X(· + t, t, x), t ≥ 0,

where
(d)= denotes equality in distribution [both sides of the equality are viewed

as random elements with values in the space C(R+;H)]. As a consequence,
we obtain(

Y (·,0, x),Z(·,0, x)
) (d)= (

Y (· + t, t, x),Z(· + t, t, x)
)
, t ≥ 0,

where both sides of the equality are viewed as random elements with values in the

space C(R+;R) × L2
loc(R+;�∗). In particular, Y (0,0, x)

(d)= Y (t, t, x) and since
they are both deterministic, we have

u(x) = Y (0,0, x) = Y (t, t, x), x ∈ H, t ≥ 0.

Denoting for simplicity

(Xτ ,Yτ ,Zτ ) = (
X(τ,0, x), Y (τ,0, x),Z(τ,0, x)

)
, τ ≥ 0,

then it follows from (6.9) and path continuity that, P-a.s.,

u(Xτ ) = Yτ , τ ≥ 0.

It follows from the backward equation that

u(Xτ ) = Yτ

= Y0 +
∫ τ

0
Zσ dWσ + λ

∫ τ

0
Yσ dσ +

∫ τ

0
ψ(Xσ ,Yσ ,Zσ ) dσ,(6.10)

τ ≥ 0.

For ξ ∈ �, we denote by Wξ the real Wiener process defined by W
ξ
τ := 〈ξ,Wτ 〉,

τ ≥ 0. The joint quadratic variation of the right-hand side of (6.10) with Wξ is the
process

∫ τ
0 Zσ ξ dσ , τ ≥ 0. By Proposition 4.5, the joint quadratic variation of the

left-hand side of (6.10) with Wξ is
∫ τ

0 ∇u(Xσ )G(Xσ )ξ dσ , τ ≥ 0. It follows that,
P-a.s. for a.a. τ ≥ 0,

Zτ = ∇u(Xτ )G(Xτ ).



650 M. FUHRMAN AND G. TESSITORE

Applying the Itô formula to the backward equation gives

e−λτYτ − e−λT YT +
∫ T

τ
e−λσZσ dWσ = −

∫ T

τ
e−λσψ(Xσ ,Yσ ,Zσ ) dσ,

0 ≤ τ ≤ T < ∞,

and it follows that∫ T

0
e−λτPτ

[
ψ

(·, u(·),∇u(·)G(·))](x) dτ

= E

∫ T

0
e−λτψ

(
Xτ ,u(Xτ ),∇u(Xτ )G(Xτ )

)
dτ

= E

∫ T

0
e−λτψ(Xτ ,Yτ ,Zτ ) dτ

= E

[
−Y0 + e−λT YT −

∫ T

0
e−λτZτ dWτ

]

= −u(x) + e−λT
E[u(XT )]

= −u(x) + e−λT PT [u](x).

This completes the proof of the existence part.
Now we prove uniqueness of the solution. Assume that u is a solution. For

any y ∈ H , 0 ≤ τ ≤ T , we have

u(y) = e−λ(T −τ) PT −τ [u](y) −
∫ T −τ

0
e−λtPt

[
ψ

(·, u(·),∇u(·)G(·))](y) dt.

Set y = X(τ,0, x), that we denote Xτ for simplicity. By the Markov property of X,
denoting by E

Fτ the conditional expectation with respect to Fτ , we obtain

u(Xτ ) = e−λ(T −τ)
E

Fτ u(XT )

−
∫ T −τ

0
e−λt

E
Fτ ψ

(
Xt+τ , u(Xt+τ ),∇u(Xt+τ )G(Xt+τ )

)
dt,

and by a change of variable, we obtain

e−λτu(Xτ ) = e−λT
E

Fτ u(XT )

−
∫ T

τ
e−λσ

E
Fτ ψ

(
Xσ ,u(Xσ ),∇u(Xσ )G(Xσ )

)
dσ.

Now let T > 0 be fixed and let us define

ψσ = ψ
(
Xσ ,u(Xσ ),∇u(Xσ )G(Xσ )

)
, σ ∈ [0, T ],

ξ = e−λT u(XT ) −
∫ T

0
e−λσψσ dσ.
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Then we obtain

e−λτu(Xτ ) = E
Fτ ξ + E

Fτ

∫ τ

0
e−λσψσ dσ = E

Fτ ξ +
∫ τ

0
e−λσψσ dσ,

where the last equality holds since
∫ τ

0 e−λσψσ dσ is Fτ -adapted. Since we assume
polynomial growth for u and ∇u, therefore ξ is square-integrable. Since (Ft ) is
generated by the Wiener process W , it follows that there exists a square-integrable,
(Ft )-predictable process Z̃τ , τ ∈ [0, T ], with values in �∗, such that, P-a.s.,

E
Fτ ξ = E ξ +

∫ τ

0
Z̃σ dWσ, τ ∈ [0, T ].

An application of the Itô formula gives

u(Xτ ) = Eξ +
∫ τ

0
eλσ Z̃σ dWσ + λ

∫ τ

0
u(Xσ ) dσ +

∫ τ

0
ψσ dσ.(6.11)

This shows that u(Xτ ), τ ∈ [0, T ], is a semimartingale. For ξ ∈ �, let us define Wξ

as above and let us consider the joint quadratic variation process of Wξ with both
sides of (6.11). Applying Proposition 4.5, we obtain, P-a.s.,∫ τ

0
∇u(Xσ )G(Xσ )ξ dσ =

∫ τ

0
eλσ Z̃σ ξ dσ, τ ∈ [0, T ], ξ ∈ �,

and we deduce that ∇u(Xτ )G(Xτ ) = eλτ Z̃τ , P-a.s. for almost all τ ∈ [0, T ].
Now setting

Y ′
τ = u(Xτ ), Z′

τ = eλτ∇u(Xτ )G(Xτ ), τ ≥ 0,

it follows from (6.11) that, P-a.s.,

Y ′
τ = Y ′

0 +
∫ τ

0
Z′

σ dWσ + λ

∫ τ

0
Y ′

σ dσ +
∫ τ

0
ψ(Xσ ,Y ′

σ ,Z′
σ ) dσ, τ ∈ [0, T ].

Since T is arbitrary, we conclude that the process (Y ′,Z′) is a solution of
the backward equation, so that, by uniqueness, it must coincide with (Y,Z).
In particular,

u(x) = u(X0) = Y ′
0 = Y0.

This concludes the proof of the theorem. �

REMARK 6.2. The constant λ̂ in the statement of Theorem 6.1 can be chosen
equal to (5.4).

REMARK 6.3. From Remark 5.3 it follows immediately that if, in addition
to Hypotheses 4.1 and 3.10, we assume that ψ(·,0,0) is bounded and ψ satisfies
Hypothesis 3.10 with m = 0, then λ̂ can be chosen equal to (5.5) instead of (5.4).
Moreover, in this case, we have |u(x)| ≤ C, |∇u(x)h| ≤ C |h| for some constant C

and every x,h ∈ H .
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REMARK 6.4. The results of Sections 5 and 6 can be generalized to allow the
process Y and the function u to take values in a real separable Hilbert space K .

More precisely suppose that a function ψ :H × K × L2(�,K) → K is given
and satisfies Hypothesis 3.10. Then we can look for a solution (X,Y,Z) of the
forward–backward system (5.1) with values in H ×K ×L2(�,K). Proposition 5.1
still holds with identical proof relying on the results of Section 3, where we already
considered Hilbert-valued BSDE.

We can then consider the nonlinear elliptic Kolmogorov system, with unknown
function u :H → K ,

Lui = λui(x) + ψi

(
x,u(x),∇u(x)G(x)

)
, x ∈ H, i = 1,2, . . . ,(6.12)

where ui = 〈u, ki〉 and ψi = 〈ψ,ki〉 for a fixed orthonormal basis {ki : i ∈ N} of K .
We say that a function u is a mild solution of (6.12) if it belongs to G1(H,K),

it satisfies

|u(x)|K ≤ C(1 + |x|H )C, |∇u(x)| ≤ C|h|(1 + |x|H )C, x,h ∈ H,

for some C > 0 and (6.4) holds for every x ∈ H and T ≥ 0. Note that the definition
of Pt [φ] given in (6.2) is meaningful for a measurable function φ :H → K that has
polynomial growth.

Then the obvious analogue of Theorem 6.1 holds with the same proof.

7. Applications to optimal control. We wish to apply the above results to
perform the synthesis of the optimal control for a general nonlinear control system
on an infinite time horizon. To be able to use nonsmooth feedback, we settle the
problem in the framework of weak control problems (see [11]).

We fix the canonical space 
 of continuous maps ω : R+ → � and endow it with
the Borel σ -field E and the canonical filtration (Ft )t≥0, where Ft is generated by
the maps ω → ω(s) and s ∈ [0, t]. Again H , � and U denote Hilbert spaces.
For fixed x0 ∈ H , an admissible control system (a.c.s.) is given by (P,Wt, u),
where:

• P is a probability measure on (
,E).
• The variable {Wt : t ≥ 0} is a �-valued cylindrical Wiener process relative to the

filtration (Ft ) and the probability P.
• The variable u ∈ L2

P (
 × R+;U) satisfies the constraint ut ∈ U P-a.s. for a.a.
t ≥ 0, where U is a fixed bounded subset of U ; let |u| ≤ LU for all u ∈ U and
some constant LU.

To each a.c.s. we associate the mild solution Xu ∈ Lr(
;C([0, T ];H)) (for arbi-
trary T > 0 and arbitrary r ≥ 1) of the state equation

dXu
τ = (

AXu
τ + F(Xu

τ ) + G(Xu
τ )R(Xu

τ )uτ

)
dτ + G(Xτ ) dWτ, τ ≥ 0,

(7.1)
X0 = x0 ∈ H
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and the cost:

J (x0, u) = E

∫ +∞
0

e−λσg(Xu
σ ,uσ ) dσ,(7.2)

where g :H × U → R. Our purpose is to minimize the functional J over all a.c.s.
Notice the occurrence of the operator G in the control term. This special structure
of the state equation is imposed by our techniques. On the contrary, the presence
of the operator R allows more generality.

We define in a classical way the Hamiltonian function relative to the above
problem: for all x ∈ H and p ∈ U∗,

ψ0(x,p) = inf{g(x,u) + pu :u ∈ U}
(7.3)

	(x,p) = {u ∈ U :g(x,u) + pu = ψ0(x,p)}.
We make the following assumption.

HYPOTHESIS 7.1. The following hold:

1. Variables A, F and G verify Hypothesis 4.1.
2. The map R :H → L(U,�) enjoys the following situation zR is in G1(H,U∗)

for every z ∈ �∗; moreover, |R(x)|L(U,�) ≤ KR and |∇x(zR(x))h|U∗ ≤
LR|z||h| for suitable constants KR,LR > 0 and all z ∈ �∗, x,h ∈ H .

3. The map g :H × U → R is continuous and satisfies |g(x,u)| ≤ Kg(1 + |x|mg )

for suitable constants Kg > 0, mg ≥ 0 and all x ∈ H , u ∈ U.
4. The variable ψ0 belongs to G1(H × U∗,R) with |∇xψ0(x,p)h| ≤ L0

x |h| ×
(1 + |p|)(1 + |x|mψ ) for suitable constants L0

x > 0, mψ ≥ 0 and all x,h ∈ H

and p ∈ U∗. [Notice that by its definition |ψ0(x,p1) − ψ0(x,p2)| ≤
LU|p1 − p1| for all x ∈ H , p1, p2 ∈ U∗.]

5. Finally, we fix here p > 2, q and β verifying (5.2) with m = mψ and such
that q > mg .

We also define

ψ(x, z) = −ψ0
(
x, zR(x)

)
, x ∈ H,z ∈ �∗,

and we notice that |∇zψ(x, z)h| ≤ Lz|h| and |∇xψ(x, z)h| ≤ Lx |h|(1 + |z|) ×
(1 + |x|mψ ) for Lz := KRLU and Lx := L0

x(1 ∨ KR) + LULR .
In the following discussion, η(q) is the constant introduced in Proposition 4.6.

EXAMPLE 7.1.1. If U is the ball {v ∈ U : |v| ≤ r} for some fixed r > 0, and
g(x,u) = g0(|u|α) + g1(x) with g0 ∈ C1(R+;R

+) convex, g′
0(0) > 0, α > 1,

g1 ∈ G1(H,R) with |∇g1(x)h| ≤ L|h|(1 + |x|m) for suitable constants L > 0,
m ≥ 0 and all x,h ∈ H , then the conditions on g and ψ0 in Hypothesis 7.1
hold true. Moreover, ψ0(x,p) is Fréchet differentiable with respect to p and
	(x,p) = {∇pψ0(x,p)} turns out to be always a singleton and a continuous
function of p only.
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LEMMA 7.2. Assume that λ > 0 verifies

λ >
LUKRmg

2(q − mg)
− η(q)mg.(7.4)

Then the cost functional is well defined and J (x0, u) < ∞ for all x0 ∈ H and
all a.c.s.

PROOF. Fix an a.c.s. (P,W,u) and let Xu be the unique mild solution of (7.1)
[existence and uniqueness of a solution in Lr

P (
;C([0, T ];H)) for arbitrary r ≥ 1
and T > 0 follows from an immediate extension of Proposition 4.2]. Clearly it is
enough to show that, for a suitable C > 0,

E(|Xu
τ |mg ) ≤ Ce(LUKRmg(2q−2mg)−1−η(q)mg)τ , τ ≥ 0.

Note that the process {R(Xu
τ )uτ , τ ≥ 0} is bounded by KRLU and denote by ρ(T )

the Girsanov density

ρ(T ) = exp
(
−

∫ T

0
〈R(Xu

σ )uσ , dWσ 〉� − 1
2

∫ T

0
|R(Xu

σ )uσ |2� dσ

)
.(7.5)

Let P̃ be the unique probability (which exists by the Kolmogorov theorem) that
extends to the whole E the probabilities

P̃
∣∣
FT

= ρ(T )P
∣∣
FT

.(7.6)

We notice that under P̃, the process

W̃τ :=
∫ τ

0
R(Xu

σ )uσ dσ + Wτ, τ ≥ 0,(7.7)

is a cylindrical Wiener process. Thus (7.1) can be rewritten as

dXu
τ = (

AXu
τ + F(τ,Xu

τ )
)
dτ + G(τ,Xτ ) dW̃τ , τ ≥ 0,

(7.8)
X0 = x0 ∈ H,

and, by Proposition 4.6(ii), we obtain Ẽ(supτ≥0 eη(q)qτ |Xu
τ |q) < +∞. Moreover,

by the Hölder inequality,

E(|Xu
T |mg) = Ẽ

(
ρ−1(T )|Xu

T |mg
)

(7.9)
≤ C

(
Ẽ

(
ρ−q/(q−mg)(T )

))(q−mg)/q
e−η(q)mgT .

Since

ρ(T )−1 = exp
(∫ T

0
〈R(Xu

σ )uσ , dW̃σ 〉� − 1
2

∫ T

0
|R(Xu

σuσ )|2� dσ

)

forms an exponential P̃-martingale, it is easy to show that for all r ≥ 1,(
Ẽ

(
ρ−r (T )

))1/r ≤ e(1/2)KRLU(r−1)T

and the claim follows from (7.9), choosing r = q/(q − mg). �
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By Theorem 6.1, for all λ > λ̂ [the constant λ̂ can be chosen equal to (5.4)
with Lz = KRLU] the stationary Hamilton–Jacobi–Bellman equation relative to
the above stated problem, written formally

Lv(x) = λv(x) + ψ
(
x,∇v(x)G(x)

)
, x ∈ H,(7.10)

admits a unique mild solution, in the sense of Definition 6.1.
We are in a position to prove the main result of this section:

THEOREM 7.3. Assume Hypothesis 7.1 and suppose that λ verifies

λ >

(
−β + K2

RL2
U

2

)
∨

(
−β + KRLU

2(p − 1)

)
∨

(
LUKRmg

2(q − mg)
− η(q)mg

)
.(7.11)

Then the following hold:

1. For all a.c.s., we have J (x0, u) ≥ v(x0).
2. The equality holds if and only if the following feedback law is verified by u

and Xu:

uτ ∈ 	
(
Xu

τ ,∇v(Xu
τ )G(Xu

τ )R(Xu
τ )

)
, P-a.s. for a.a. τ ≥ 0.(7.12)

3. If 	0(x,p) ∈ 	(x,p) is a measurable selection of 	, there exists an a.c.s.
for which

dXτ = AXτ dτ + G(Xτ)R(Xτ )	0
(
Xτ ,∇v(Xτ )G(Xτ )R(Xτ )

)
dτ

+ F(Xτ ) dτ + G(Xτ) dWτ , τ ≥ 0,(7.13)

X0 = x0 ∈ H,

admits a solution and if uτ = 	0(Xτ ,∇v(Xτ )G(Xτ )R(Xτ )), then the cou-
ple (u,X) is optimal for the control problem.

PROOF. Let P̃ and W̃ be defined as in (7.5)–(7.7). Relative to W̃ , (7.1) can
be written:

dXu
τ = AXu

τ dτ + F(τ,Xu
τ ) dτ + G(τ,Xτ ) dW̃τ , τ ≥ 0,

Xt0 = x0.

By Proposition 5.1, the system of infinite horizon forward–backward equations

X̃τ (x) = eτAx +
∫ τ

0
e(τ−σ)AF

(
X̃σ (x)

)
dσ +

∫ τ

0
eσAG

(
X̃σ (x)

)
dW̃σ ,

τ ≥ 0,
(7.14)

Ỹτ (x) − ỸT (x) +
∫ T

τ
Z̃σ (x) dW̃σ + λ

∫ T

τ
Ỹσ (x) dσ

= −
∫ T

τ
ψ

(
X̃σ (x), Z̃σ (x)

)
dσ, 0 ≤ τ ≤ T,
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admits a unique solution with X(x) ∈ H
q
η(q) and (Y (x),Z(x)) ∈ K

p
β (with respect

to P̃). Moreover, by Theorem 6.1,

Yτ (x) = v
(
Xτ (x)

)
, Zτ (x) = ∇v

(
Xτ (x)

)
G

(
Xτ (x)

)
.(7.15)

Comparing the forward equation with the state equation [see (7.8)] and choosing
x = x0, we conclude that X̃(x0) = Xu. Applying the Itô formula to e−λτ Ỹτ (x0),
rewriting and restoring the original noise W , we get

Ỹ0(x0) +
∫ T

0
e−λσ Z̃σ (x0) dWσ

= −
∫ T

0
e−λσ

[
ψ

(
Xu

σ , Z̃σ (x0)
) + Z̃σ (x0)R(Xu

σ )uσ

]
dσ(7.16)

+ e−λT YT (x0).

Using the definition of ψ , the identification (7.15) and taking expectation with
respect to P (7.16) yields

e−λT
E

(
Y (T , x0)

) − v(x0) = −E

∫ T

0
ψ0

(
Xu

σ ,∇v(Xu
σ )G(Xu

σ )R(Xu
σ )

)
dσ

+ E

∫ T

t0

∇v(Xu
σ )G(Xu

σ )R(Xu
σ )uσ dσ.

By Proposition 5.1, Y (x0) is in L
p
P (
;Cβ(R)) and so Ẽ(|YT (x0)|p) ≤

C exp(−pβT ) and, proceeding as in the proof of Lemma 7.2, we get

E
(|YT (x0)|) ≤ Ce(KRLU(2p−2)−1−β)T .

Thus adding and subtracting E
∫ +∞

0 e−λσ g(Xu
σ ,uσ ) dσ , which is finite by

Lemma 7.2, and letting T → ∞, we conclude

J (x0, u) = v(x0)

+ E

∫ ∞
0

e−λσ
[−ψ0

(
Xu

σ ,∇v(Xu
σ )G(Xu

σ )R(Xu
σ )

)
(7.17)

+ ∇xv(Xu
σ )G(Xu

σ )R(Xu
σ )uσ + g(Xu

σ ,uσ )
]
dσ.

The above equality is known as the fundamental relation and immediately implies
that v(x0) ≤ J (x0, u) and that the equality holds if and only if (7.12) holds.

Finally the existence of a weak solution to (7.13) is again a consequence of the
Girsanov theorem. Namely, let X ∈ H

q
η(q) be the mild solution of

dXτ = AXτ dτ + F(Xτ ) dτ + G(Xτ ) dWτ,

X0 = x0
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and let P̂ be the probability on 
 under which

Ŵt := −
∫ t

0
R(Xσ )	0

(
Xσ ,∇v(Xu

σ )G(Xσ )R(Xσ )
)
dσ + Wt

is a Wiener process. Then X is the mild solution of (7.13) relative to the
probability P̂ and the Wiener process Ŵ . �

REMARK 7.4. If, in addition to points 1–4 of Hypothesis 7.1, we also assume
that g is bounded and Lipschitz in x uniformly in u ∈ U, then it is easily verified
that ψ(·,0) is bounded and ψ satisfies Hypothesis 3.10 with m = 0. Thus by
Remark 5.3, the results of Theorem 7.3 can be improved in the following way.

Instead of Hypothesis 7.1 point 5, it is enough to take q > p > 2 and
β < η(q) ∧ 0. Moreover, instead of (7.11), it is enough to assume

λ > −β +
(

K2
RL2

U

2
∨ KRLU

2(p − 1)

)
.

EXAMPLE 7.4.1 (The controlled heat equation). Finally we briefly show that
our results can be applied to perform the synthesis of optimal controls for infinite
horizon costs when the state equation is a general semilinear heat equation with
multiplicative noise. Namely, we consider, for t ≥ 0, ξ ∈ [0,1],

∂

∂t
Xu(t, ξ) = ∂2

∂ξ2 Xu(t, ξ) + b
(
ξ,Xu(t, ξ)

) + σ
(
ξ,Xu(t, ξ)

)
r(ξ)u(t, ξ)

+ σ
(
ξ,Xu(t, ξ)

) ∂

∂t
W(t, ξ),

(7.18)
Xu(t,0) = Xu(t,1) = 0,

Xu(0, ξ) = x0(ξ),

where W is space–time white noise on R+ × [0,1]. Moreover, we introduce the
cost functional

J (x0, u) = E

∫ ∞
0

∫ 1

0
e−λt [�(

ξ,Xu(t, ξ)
) + u2(t, ξ)

]
dξ dt(7.19)

that we minimize over all adapted controls u such that |u(t, ξ)| ≤ δ for a given
constant δ > 0 and almost all t > 0, ξ ∈ [0,1].

To fit the assumptions of our abstract results, we will suppose that the
functions b, σ , r and � are all measurable and real-valued, and moreover:

1. Function b is defined on [0,1] × R and

|b(t, ξ, η1) − b(t, ξ, η2)| ≤ Lb|η2 − η1|,
∫ 1

0
b2(ξ,0) dξ < +∞,

for a suitable constant Lb, almost all ξ ∈ [0,1] and all η1, η2 ∈ R. Moreover,
for a.a. ξ ∈ [0,1], b(ξ, ·) ∈ C1(R).
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2. Function σ is defined on [0,1] × R and there exist constants Lσ and Kσ

such that

|σ(ξ, η)| ≤ Kσ , |σ(ξ, η1) − σ(ξ, η2)| ≤ Lσ |η2 − η1|
for a.a. ξ ∈ [0,1], and for all η, η1, η2 ∈ R. Finally, σ(ξ, ·) ∈ C1(R) for a.a.
ξ ∈ [0,1].

3. Mapping r : [0,1] → R is bounded.
4. Function � is defined on [0,1] × R and, for a.a. ξ ∈ [0,1], the map �(ξ, ·) is

in C1(R,R). Moreover,∣∣∣∣ ∂

∂η
�(ξ, η)

∣∣∣∣ ≤ c1(ξ) + L�|η|, |�(ξ,0)| ≤ c0(ξ)

with
∫ 1

0 |c1(ξ)|2 dξ < +∞,
∫ 1

0 |c0(ξ)|dξ < +∞ and L� ∈ R.

Finally we assume that x0 ∈ L2([0,1]).
To rewrite the above problem in the abstract way stated the beginning of

Section 7, we set H = � = U = L2([0,1]) and U = {u ∈ U : |u(ξ)| ≤ δ

for almost all ξ ∈ [0,1]}. By {Wt : t ≥ 0} we denote a cylindrical Wiener process
in L2([0,1]). Moreover, we define the operator A with domain

D(A) = H 2([0,1]) ∩ H 1
0 ([0,1]), (Ay)(ξ) = ∂2

∂ξ2 y(ξ) ∀y ∈ D(A),

where H 2([0,1]) and H 1
0 ([0,1]) are the usual Sobolev spaces, and we set

F(x)(ξ) = b
(
ξ, x(ξ)

)
,

(
G(x)z

)
(ξ) = σ

(
ξ, x(ξ)

)
z(ξ),(

R(x)u
)
(ξ) = r(ξ)u(ξ),

g(x,u) = |u|2U + g1(x) =
∫ 1

0

[
u2(ξ) + �

(
ξ, x(ξ)

)]
dξ

for all x, z, u ∈ L2([0,1]) and a.a. ξ ∈ [0,1].
Under the previous assumptions we know (see [8], Section 11.2.1) that A, F

and G verify Hypothesis 4.1. Moreover, noticing that

∇g1(x)h =
∫ 1

0

∂

∂η
�
(
ξ, x(ξ)

)
h(ξ) dξ

and recalling the results in Example 7.1.1, it can be easily verified that points 1–4
in Hypothesis 7.1 are satisfied with LU = δ, KR = |r|L∞([0,1]), LR = 0, mg = 2,
mψ = 1,

Kg = (
δ2 + |c0|L1([0,1]) + 1

2 |c1|L2([0,1])
) ∨ (1

2 + L�

)
,

L0
x = |c1|L2([0,1]) ∨ L�,

Lx = L0
x(1 ∨ KR) = (|c1|L2([0,1]) ∨ L�

)(
1 ∨ |r|L∞([0,1])

)
,

Lz = δ|r|L∞([0,1]).
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