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STRONG SOLUTIONS TO THE STOCHASTIC
QUANTIZATION EQUATIONS

BY GIUSEPPE DA PRATO AND ARNAUD DEBUSSCHE

Scuola Normale Superiore di Pisa and Ecole Normale Supérieure de Cachan

We prove the existence and uniqueness of a strong solution of the
stochastic quantization equation in dimension 2 for almost all initial data with
respect to the invariant measure. The method is based on a fixed point result
in suitable Besov spaces.

1. Introduction. In this article, we consider stochastic quantization equations
in space dimension 2 with periodic boundary conditions. These are reaction–
diffusion equations driven by a space–time white noise. It is well known that the
solution is not expected to be a smooth process and the nonlinear term is modified
thanks to a renormalization.

More precisely, let G = [0,2π ]2 and H = L2(G). We are concerned with the
equation set

dX = (
AX+ :p(X):) dt + dW(t),

X(0) = x,
(1.1)

where A :D(A) ⊂ H → H is the linear operator

Ax = �x − x, D(A) = H 2
# (G)

and H 2
# (G) is the subspace of H 2(G) of all functions which are periodic together

with their first derivatives. Moreover, p(ξ) = ∑n
h=0 akξ

k is a polynomial of odd
degree n ≥ 3, with an < 0, and :p(x) : means the renormalization of p(x) whose
definition we shall recall in Section 2. Finally W is a cylindrical Wiener process
defined in a probability space (�,F ,P) and taking values on L2(G).

Formally, (1.1) is a gradient system with an invariant Gibbs measure ν defined
as

ν(dx) = ce(:q(x):,1)µ(dx),(1.2)

where q is a primitive of p, c is a normalization constant and µ is the Gaussian
invariant measure of the free field. The measure ν is well defined by the important
Nelson estimate; see [15], Chapter V2.

In [14], Chapter V, this problem was set to find a dynamic that has invariant
measure ν. This problem was considered by several authors, beginning with
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Jona Lasinio and Mitter [11] who used a Girsanov transform; see also [3, 10].
Using the Dirichlet form approach, this problem was studied by Albeverio and

Röckner [1] and by Liskevich and Röckner [12], who studied strong uniqueness for
a class of infinite dimensional Dirichlet operators; see also [8] for similar results.

Finally, the problem was considered by Mikulevicius and Rozovskii [13] in their
general theory of martingale solutions for stochastic partial differential equations
(PDEs).

In all these articles (with the exception of [1] and [13]) a modified equation was
considered of the kind

dX = (
(−A)1−εX + (−A)−ε :p(X):) dt + (−A)−ε/2 dW(t),

X(0) = x,
(1.3)

where ε is a positive number subject to different restrictions. Notice that the
invariant measure that corresponds to (1.3) is still ν. This modification allows
smoothing of the nonlinear term and, in some cases, using the Girsanov transform.

In [13] the problem (1.1) also was considered in its original form, showing
that it has a stationary weak solution thanks to a compactness method. Note also
that in this latter paper, it was shown that if ε = 0, then the law of the stationary
solution is singular with respect to the law of the linear stationary solution ([13],
Theorem 4.1). Therefore, it seems hopeless to use the Girsanov transform in this
case.

Up to now, no article has considered the existence of pathwise solutions except
for special nonlinearities of the type :f (x) :, where f is the Fourier transform of
a complex measure with compact support (e.g., f (x) = cosx; see [2]). (The case
ε = 0 also can be considered here.)

In [13] only solutions in law are constructed. In the present article we construct
a strong (in the probability sense) solution for the original problem (1.1) for
µ-almost every initial data x. We do not consider the modified equation (1.3)
although our results easily extend to this case. Since many qualitative properties
can be derived more easily from strong solutions than from weak solutions, we
think that our result can be used to further study (1.1).

Let us explain our method, which is similar to what we used in [6] for the two-
dimensional Navier–Stokes equations. One of the main difficulties when dealing
with renormalized products is that they do not depend continuously on their
arguments, so that it is not straightforward to use a fixed point argument or even to
get strong uniqueness. The trick here is to split the unknown into two parts: we set
X = Y + z, where z(t) is the stochastic convolution

z(t) =
∫ t

−∞
e(t−s)A dW(s).
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It is classical knowledge that z is a stationary solution to the linear version of (1.1).
Then the observation is that Y is much smoother than X and that we can write

:Xk :=
k∑

l=0

Cl
kY

l :zk−l :(1.4)

so that problem (1.1) becomes

dY

dt
= AY +

n∑
k=0

ak

k∑
l=0

Cl
kY

l :zk−l :,

Y (0) = x − z(0).

(1.5)

Since the law of z(t) is equal to µ for any t ∈ R, we can define :zn : in the classical
way through the formula

E[g(:zn :)] =
∫
H

g(:xn :)µ(dx),

where g is any Borel bounded real function. The main advantage of consider-
ing (1.5) is that now the nonlinear term is a continuous function with respect to
the unknown. However, the price to pay is to work with Besov spaces which are
well suited to define the product with the distribution :zn :. We will show that Y is
sufficiently smooth so that the products in (1.4) are well defined. Then we can
solve (4.2) by a fixed point on a suitable Besov space.

2. Notations and preliminaries. We denote by {ek}k∈Z2 the complete ortho-
normal system in H = L2(G), G = [0,2π ]2, defined as

ek(ξ) = 1

2π
ei〈k,ξ 〉, k ∈ Z

2.

If x ∈ H , we define (xk)k∈Z2 by

x = ∑
k∈Z2

xkek.

For any N ∈ N and x ∈ H , we set

xN = PNx = ∑
|k|≤N

〈x, ek〉ek.

Then we set H := C
Z2

and denote by µ the product measure on H ,

µ = �
k∈Z2

N
(
0, (1 + |k|2)−1) := N (0,C),

where N (0, (1 + |k|2)−1) is the Gaussian measure on C with mean 0 and variance
(1 + |k|2)−1.



STOCHASTIC QUANTIZATION EQUATIONS 1903

We identify H with �2(Z2) through the isomorphism

x ∈ H 	→ {xk}k∈Z2 ∈ �2(Z2).

Finally, we recall the definition of white noise. We denote by H0 the linear space
spanned by {ek}k∈Z2 and, for any z ∈ H0, we set

Wz(x) = 〈x,C−1/2z〉, x ∈ H .

Then Wz ∈ L2(H,µ) and we have∫
H

Wz(x)Wz′(x)µ(dx) = 〈z, z′〉, z, z′ ∈ H0.(2.1)

Therefore, the mapping

H0 → L2(H,µ), z 	→ Wz,

is an isomorphism and, consequently, it can be extended to all H. Thus Wf is a
well-defined element of L2(H,µ) for any f ∈ H.

Moreover, Hn, n = 0,1, . . . , are the Hermite polynomials defined by the
formula F(t, λ) = e−t2/2+tλ = ∑∞

n=0(t
n/

√
n! )Hn(λ), t ≥ 0, λ ∈ R. Well-known

results are ∫
H

eWz(x)µ(dx) = e|z|2/2, z ∈ H0(2.2)

and ∫
H

Hn(Wf (z))Hm(Wg(z))µ(dz) = δn,m[〈f,g〉]n,(2.3)

where f,g ∈ H, with |f | = |g| = 1, and n,m ∈ N∪{0}. Then Hn(Wf ),Hm(Wg) ∈
L2(H,µ).

Let us introduce the renormalized power. We have for any N ∈ N,

xN(ξ) = ρNWηN(ξ)(x) for xµ a.e. in H,

where

ρN = 1

2π

[ ∑
|k|≤N

1

1 + |k|2
]1/2

and

ηN(ξ) = 1

ρN

∑
|k|≤N

ek(ξ)√
1 + |k|2

ek.

Now, for any n ∈ N, we set

:xn
N : (ξ) = √

n!ρn
NHn

(
WηN(ξ)(x)

)
for xµ a.e. in H ;
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the sequence x 	→:xn
N : is Cauchy in L2(H,µ;Hs(G)) for any s < 0 (see [15],

Chapter V1) and we have denoted by Hs(G) the classical Sobolev spaces. Thus it
has a limit denoted by :xn :. Finally, we set :p(X):= ∑n

k=0 ak :Xk :.
We are going to solve (1.1) in the Besov spaces Bs

p,r(G). Let us recall their
definition.

For any q ∈ N, we define δq = P2q − P2q−1, so that

δqu = ∑
2q−1<|k|≤2q

ukek.

For σ ∈ R, p ≥ 1 and r ≥ 1, we define

Bσ
p,r(G) =

{
u :

∑
q∈N

2rqσ |δqu|rLp(G) < +∞
}
,

which is a Banach space with the norm

|u|Bσ
p,r (G) =

( ∑
q∈N

2rqσ |δqu|rLp(G)

)1/r

.

The following result is crucial in our argument and is the main motivation for
working in Besov spaces; see [4, 5].

PROPOSITION 2.1. Let p, r ≥ 1, α + β > 0, α < 2/p and β < 2/p. Then if
u ∈ Bα

p,r (G) and v ∈ B
β
p,r(G), we have uv ∈ B

γ
p,r (G), where γ = α + β − 2

p
and

|uv|Bγ
p,r (G) ≤ c|u|Bα

p,r (G)|v|
B

β
p,r (G)

.(2.4)

3. Some technical lemmas. We recall the following result for the reader’s
convenience.

LEMMA 3.1. For all ξ, η ∈ R and n ∈ N, we have

√
n!Hn(ξ + η) =

n∑
k=0

Ck
n

√
k!Hk(ξ)ηn−k,(3.1)

where

Ck
n = n!

k!(n − k)! .

PROOF. Recalling the definition of the Hermite polynomials, we have

e−t2/2+t (ξ+η) =
∞∑

n=0

tn√
n!Hn(ξ + η)
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and

e−t2/2+tξ etη =
∞∑

n=0

tn√
n!Hn(ξ)

∞∑
n=0

tnηn

n!

=
∞∑

n=0

(
n∑

k=0

1√
k!(n − k)!Hk(ξ)ηn−h

)
tn.

Now, identifying coefficients we get

1√
n!Hn(ξ + η) =

n∑
k=0

1√
k!(n − k)!Hk(ξ)ηn−k, n ∈ N,

and the conclusion follows. �

LEMMA 3.2. Let k, r,p ≥ 1, σ < 0. Then for n ∈ N the mapping

z 	→:zn :
belongs to Lk(H,µ,Bσ

p,r(G)). Moreover, when N → ∞, :zn
N : converges to :zn :

in Lk(H,µ,Bσ
p,r(G)).

PROOF. Let q ∈ N. Then∫
H

|δq :zn
N :|pLp(G)µ(dz)

=
∫
H

∫
G

∣∣∣∣∣
∑

2q−1<|h|≤2q

(:zn
N :, eh)eh(ξ)

∣∣∣∣∣
p

dξ µ(dz)

=
∫
G

[∫
H

∣∣∣∣∣
∑

2q−1<|h|≤2q

(:zn
N :, eh)eh(ξ)

∣∣∣∣∣
p

µ(dz)

]
dξ

≤ (p − 1)pn/2
∫
G

[∫
H

∣∣∣∣∣
∑

2q−1<|h|≤2q

(:zn
N :, eh)eh(ξ)

∣∣∣∣∣
2

µ(dz)

]p/2

dξ

since ∑
2q−1<|h|≤2q

(:zn
N :, eh)eh ∈ L2

n(H,µ),

where L2
n(H,µ) is the Wiener chaos of order n, by the Nelson ultracontractivity

estimate; see [15].
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However,

∫
H

∣∣∣∣∣
∑

2q−1<|h|≤2q

(:zn
N :, eh)eh(ξ)

∣∣∣∣∣
2

µ(dz)

=
∫
H

∫
G×G

∑
2q−1<|h1|,|h2|≤2q

:zn
N(ξ1): :zn

N(ξ2): eh1(ξ1)

× eh1(ξ)eh2(ξ2)eh2(ξ) dξ1 dξ2 µ(dz).

We have ∫
H

:zn
N : (ξ1) :zn

N(ξ2): µ(dz)

= n!(ηN(ξ1), ηN(ξ2)
)n

= n!
( ∑

|h|<N

1

1 + |h|2 eh(ξ1)eh(ξ2)

)n

since

:zn
N : (ξi) = √

n!ρn
NHn

(
WηN(ξi)(z)

)
, i = 1,2,

where

ηN(ξi) = ρ−1
N

∑
|h|<N

1

1 + |h|2 eh(ξi)eh.

We deduce that

∫
H

∣∣∣∣∣
∑

2q−1<|h|≤2q

(:zn
N :, eh)eh(ξ)

∣∣∣∣∣
2

µ(dz)

= ∑
2q−1<|h1|,|h2|≤2q

n!
∫
G×G

( ∑
|h|<N

1

1 + |h|2 eh(ξ1)eh(ξ2)

)n

× eh1(ξ1)eh2(ξ2)eh1(ξ)eh2(ξ)dξ1 dξ2

= ∑
2q−1<|h|≤2q

n!αn
h(N),

(3.2)

where αn
h(N) are defined by

γ n
N(ξ) =

( ∑
|h|≤N

1

1 + |h|2 eh(ξ)

)n

= ∑
h∈Z2

αn
h(N)eh(ξ).
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We have in fact∫
G×G

∑
h∈Z2

αn
h(N)eh(ξ1)eh(ξ2)eh1(ξ1)eh2(ξ2) dξ1 dξ2

= ∑
h∈Z2

αn
h(N)δh+h1=0δh+h2=0

and (3.2) follows.
Therefore, we have∫

H
|δq :zn

N :|pLp(G)µ(dz)

≤ (p − 1)np/2(n!)p/2|G|
( ∑

2q−1<|h|≤2q

αn
h(N)

)p/2

≤ c(p,n)|G|
( ∑

2q−1<|h|≤2q

(αn
h(N))2

)p/4

2pq/2.

(3.3)

We claim that∫
H

|δq :zn
N :|pLp(G)µ(dz) ≤ c(p,n, s)2−qs ∀ s < 0.(3.4)

Fix s̃ < 0. Then we have∑
2q−1<|h|≤2q

(αn
h(N))2 ≤ 2−2(q−1)(1+s̃)

∑
h∈Z2

|h|2(1+s̃)(αn
h(N))2

≤ 2−2(q−1)(1+s̃)|γ n
N |2

H 1+s̃ (G)
.

Consequently, ( ∑
2q−1<|h|≤2q

(αn
h(N))2

)p/4

2p(q−1)/2

≤ 2−p(q−1)(1+s̃)/2+p(q−1)/2|γ n
N |p/2

H 1+s̃ (G)

= 2−p(q−1)s̃/2|γ n
N |p/2

H 1+s̃ (G)
.

On the other hand, we have

|γ n
N |H 1+s̃ (G) ≤ c(n, s̃)|γN |n

Hβn (G)
≤ c(n, s̃)

since

βn = 1 + s̃

2n−1
< 1,
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as proved by recurrence. Therefore, setting s̃ = 2s/p yields (3.4).
Let now k ≥ 1, r ≥ 1, p ≥ 1 and σ < 0. Then, using the Jensen and Hölder

inequalities, we find∫
H

|:zn
N :|kBσ

p,r
µ(dz)

=
∫
H

( ∑
q∈N

2qrσ |δq :zn
N :|rLp(G)

)k/r

µ(dz)

≤
(∫

H

( ∑
q∈N

2qrσ |δq :zn
N :|rLp(G)

)k

µ(dz)

)1/r

≤
(∫

H

( ∑
q∈N

2qrkσ/(2(k−1))

)k−1 ∑
q∈N

2qrkσ/2|δq :zn
N :|rkLp(G)µ(dz)

)1/r

≤ c(r, k, σ, s, n)

(∫
H

∑
q∈N

2qrkσ/2|δq :zn
N :|rkLp(G)µ(dz)

)1/r

.

We can assume that rk ≥ p (otherwise we will choose the larger one). Then we
have, taking into account (3.4),∫

H
|:zn

N :|kBσ
p,r (G)µ(dz)

≤ c(p, r, k, σ )

[∫
H

∑
q∈N

2qrkσ/2|δq :zn
N :|rkLp(G)µ(dz)

]1/r

≤ c(p, r, k, σ )

[ ∑
q∈N

2qrkσ/22−qs

]1/r

for any s < 0. Therefore, choosing s = rkσ/4, we find∫
H

|:zn
N :|kBσ

p,r (G)µ(dz) ≤ c(p, r, k, σ ).

It is now easy to conclude the proof. �

LEMMA 3.3. Let g ∈ Bα
p,r(G) and h ∈ Bs

p,r(G). Assume that s < 0, α = 2
p

+
2s, −s < 2

p(2n+1)
, p ≥ 1 and r ≥ 1. Then for l = 0, . . . , n − 1, glh ∈ B(2l+1)s

p,r (G)

and a constant c(s,α,n,p, r) exists such that

|glh|
B

(2l+1)s
p,r (G)

≤ c(s,α,n,p, r)|g|lBα
p,r(G)|h|Bs

p,r (G).

Moreover,

(PNg)lPNh → glh in B(2l+1)s
p,r (G).
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PROOF. The result is clear for l = 0 and follows from Proposition 2.1 for
l = 1. We prove the general case by recurrence. Assume that the result is true
for some l ≥ 1. Then applying Proposition 2.1 with u = g and v = glh gives the
results for l + 1. �

As already mentioned, we can define the probability measure on H ,

ν(dx) = ce−U(x)µ(dx)

with

U(x) = −(:q(x):,1
)
,

where q is a primitive of p and c is a normalization constant. Furthermore,

e−U ∈ Lk(H;µ) ∀ k ≥ 1.(3.5)

COROLLARY 3.4. Let x be a random variable with law ν and let z be
a random variable with law µ. Assume in addition that y := x − z ∈
La(�,Bα

p,r(G)) with

a ≥ n, α = 2

p
+ 2s, − 2

p(2n + 1)
< s < 0, r ≥ 1, p ≥ 1.

Then

:p(x):=
n∑

k=0

ak

k∑
l=0

Cl
ky

l :zk−l :,

P-almost surely.

PROOF. By Lemma 3.2 it follows that

:zl
N :→:zl : in Lk(�;Bs

p,r) ∀ s < 0, p ≥ 1, r ≥ 1, k ≥ 1, l ∈ N.

In a similar way, using the identity

E
(|:p(xN):|kBs

p,r (G)

) =
∫
H

|:p(xN):|kBs
p,r (G)e

−U(x)µ(dx) ≤ C,

by (3.5) and the Hölder inequality, we get

:p(xN):→:p(x): in Lk(�,Bs
p,r (G)

) ∀ s < 0, p ≥ 1, r ≥ 1, k ≥ 1.

By Lemma 3.3, we have for all k ≥ 1, l = 1, . . . , n − 1,

yl
N :zk

N :→ yl :zk : in La/(l+1)
(
�,B(2l+1)s

p,r (G)
)

and so in La/n
(
�,B(2n+1)s

p,r (G)
)
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and

yn
N → yn in La/n(

�,B(2n+1)s
p,r (G)

)
.

Now, by Lemma 3.1 we have

:p(xN): =
n∑

k=0

ak :xk
N :=

n∑
k=0

ak :(yN + zN)k :

=
n∑

k=0

ak

√
k!ρk

nHk

(
WηN(ξ)(yN) + WηN(ξ)(zN)

)

=
n∑

k=0

ak

k∑
l=0

Cl
ky

l
N :zl−k

N :

and we obtain the result by letting N → ∞. �

COROLLARY 3.5. Let y ∈ Lp(0, T ;Bα
p,r(G)) and h ∈ Lp(0, T ;Bs

p,r(G)),

with α = 2/p + 2s, p ≥ n, −2/(p(2n + 1)) < s < 0 and r ≥ 1. Then for all
l = 1, . . . , n − 1, we have hyl ∈ Lp/(l+1)(0, T ;Bs(2l+1)

p,r (G)) and

|hyl|
Lp/(l+1)(0,T ;Bs(2l+1)

p,r (G))
≤ c(p,α,n, r, s)|h|Lp(0,T ;Bs

p,r (G))|y|lLp(0,T ;Bα
p,r (G)).

The proof is a straightforward consequence of Lemma 3.3.

LEMMA 3.6. Let f ∈ Lp/n(0, T ;B(2n−1)s
p,r (G)) and p ≥ n, s < 0, α =

2/p + 2s such that

(n − 1)s + 1 − n

p
> 0.

Then ∫ t

0
e(t−τ)Af (τ ) dτ ∈ C

([0, T ];Bs
p,r (G)

) ∩ Lp
(
0, T ;Bα

p,r(G)
)

and ∣∣∣∣
∫ t

0
e(t−τ)Af (τ ) dτ

∣∣∣∣
C([0,T ];Bs

p,r (G))∩Lp(0,T ;Bα
p,r (G))

≤ c(p,n, s,α)T ε|f |
Lp/n(0,T ;B(2n−1)s

p,r (G))
,

where ε = 1 + (n − 1)s − n
p
.

PROOF. Since

|etAx|Bs
p,r (G) ≤ ct(n−1)s |x|

B(2n−1)s
p,r (G)

, x ∈ B(2n−1)s
p,r (G),
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we have∣∣∣∣
∫ t

0
e(t−τ)Af (τ ) dτ

∣∣∣∣
Bs

p,r (G)

≤ c

∫ t

0
(t − τ )(n−1)s|f (τ )|

B(2n−1)s
p,r (G)

dτ.

Now, by the Hölder inequality it follows that∣∣∣∣
∫ t

0
e(t−τ)Af (τ ) dτ

∣∣∣∣
C([0,T ];Bs

p,r (G))

≤ c

(∫ T

0
τ γ s(n−1) dτ

)1/γ

|f |
Lp/n(0,T ;B(2n−1)s

p,r (G))

= cT (n−1)s+1/γ |f |
Lp/n(0,T ;B(2n−1)s

p,r (G))

= cT ε|f |
Lp/n(0,T ;B(2n−1)s

p,r (G))
,

where 1
γ

+ n
p

= 1.

In a similar way we find∣∣∣∣
∫ t

0
e(t−τ)Af (τ ) dτ

∣∣∣∣
Bα

p,r (G)

≤ c

∫ t

0
(t − τ )((2n−1)s−α)/2|f (τ )|

B
(2n−1)s
p,r (G)

dτ,

and by the Hausdorff–Young inequality (|f ∗ g|Lr ≤ |f |Lp |g|Lq if 1
p

+ 1
q

= 1
r
+ 1,

p, q, r ∈ [1,+∞]), it follows that∣∣∣∣
∫ t

0
e(t−τ)Af (τ ) dτ

∣∣∣∣
Lp(0,T ;Bα

p,r (G))

≤ c

(∫ T

0
τ γ̃ [((2n−3)s)/2−1/p] dτ

)1/γ̃

|f |
Lp/n(0,T ;B(2n−1)s

p,r (G))

≤ cT ((2n−3)s)/2−1/p+1/γ̃ |f |
Lp/n(0,T ;B(2n−1)s

p,r (G))

= cT ((2n−3)s)/2−n/p+1|f |
Lp/n(0,T ;B(2n−1)s

p,r (G))
,

where 1
γ̃

+ n
p

= 1 + 1
p
. �

4. Construction of the solution and main result. We want to solve the
problem

dX = (
AX+ :p(X):) dt + dW(t),

X(0) = x.
(4.1)

In view of Corollary 3.4, we know that if X is a stationary solution of (4.1) with
invariant law ν and if Y = X − z, where

z(t) =
∫ t

−∞
e(t−s)A dW(s)
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is sufficiently regular, then (4.1) is equivalent to

dY

dt
= AY +

n∑
k=0

ak

k∑
l=0

Cl
kY

l :zk−l :,

Y (0) = x − z(0).

(4.2)

This argument, as well as Corollary 3.4, remains valuable under the weaker
assumption that νt = L(X(t)) is absolutely continuous with respect to µ and
has a density in Lp(H,µ) with p > 1. (Note that, as is the case for stationary
solutions, it is expected that if X is a solution to (4.1), the law of the process X is
singular with respect to the law of a linear solution [13]. However, as is the case
for stationary solutions, this does not contradict the possibility that for each t , the
law of the random variable X(t) is absolutely continuous with respect to µ.) This
motivates the following definition.

DEFINITION 4.1. X is a solution of (4.1) if and only if X = Y + z and Y is a
mild solution of (4.2).

We now state the main result of this article.

THEOREM 4.2. Let α = 2
p

+ 2s, p > n, r ≥ 1 and

0 > s > max
{
− 2

p(2n + 1)
,− 1

n − 1

(
1 − n

p

)}
.

Then for all ν-almost every x there exists for any T ≥ 0 a unique solution of (4.1)
such that

Y ∈ C
([0, T ],Bs

p,r (G)
) ∩ Lp

(
0, T ,Bα

p,r (G)
)
.

REMARK 4.3. It is not difficult to see that if we take a random initial data
with law ν then Theorem 4.2 provides a solution Y such that Y + z is a stationary
solution of (4.1).

Before proving the theorem, we state and prove a local existence result.

PROPOSITION 4.4. Let α = 2
p

+ 2s, p > n, r ≥ 1 and

0 > s > max
{
− 2

p(2n + 1)
,− 1

n − 1

(
1 − n

p

)}
.

Then for all x ∈ Bs
p,r (G) and a.e. ω ∈ �, there exists T ∗(x,ω) and a unique

solution of (4.1) such that

Y ∈ C
([0, T ∗(x,ω)],Bs

p,r(G)
) ∩ Lp(

0, T ∗(x,ω),Bα
p,r(G)

)
.
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PROOF. We solve the integral equation

Y (t) = etA
(
x − Z(0)

) +
∫ t

0
e(t−τ)A

n∑
k=0

ak

k∑
l=0

Cl
kY

l(τ ) :zk−l(τ ): dτ(4.3)

using a fixed point argument in the space

ET = C
([0, T ],Bs

p,r (G)
) ∩ Lp(

0, T ,Bα
p,r(G)

)
.

Clearly

:zk−l : ∈ Lp
(
0, T ,Bs

p,r (G)
)

a.s. for 1 ≤ p < ∞.

We have, in fact, by Lemma 3.2 and stationarity of z,

E

(∫ T

0
|:zk−l (τ ):|pBs

p,r (G) dτ

)
= T

∫
H

|:xk−l :|pBs
p,r (G)µ(dx).

Moreover, by Corollary 3.5 and Lemma 3.6, if Y ∈ ET , we have

∫ t

0
e(t−τ)A

n∑
k=0

ak

k∑
l=0

Cl
kY

l(τ ) :zk−l(τ ): dτ ∈ ET

and ∣∣∣∣∣
∫ t

0
e(t−τ)A

n∑
k=0

ak

k∑
l=0

Cl
kY

l(τ ) :zk−l(τ ): dτ

∣∣∣∣∣
ET

≤ cT ε
n∑

k=0

|ak|
(

k−1∑
l=0

|Y l :zk−l :|
Lp/(l+1)(0,T ,B(2l+1)s

p,r )

+ |Y k|
Lp/k(0,T ,B(2k−1)s

p,r )

)

≤ cT ε
n∑

k=0

|ak|
(

k−1∑
l=0

|Y |lLp(0,T ,Bα
p,r )

|:zk−l :|Lp(0,T ,Bs
p,r )

+ |Y |k−1
Lp(0,T ,Bα

p,r )
|Y |Lp(0,T ,Bs

p,r )

)

≤ c(s,p, r, T ,n, a0, . . . , an,ω)T ε
(|Y |nET

+ 1
)
.

Moreover, ∣∣etA
(
x − z(0)

)∣∣
ET

≤ c|x − z(0)|Bs
p,r

.

Consequently, we can find an invariant ball in ET for the fixed point iteration
for T ≤ T ∗(x, z(0), z) = T ∗(x,ω). The same argument shows that the iteration
mapping is a strict contraction in ET . �
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As far as global existence is concerned, it remains to find an a priori estimate
in Bs

p,r(G). The following computations can be justified by using a Galerkin
approximation which has an invariant measure close to ν (such as in [13]). Let
X(t, x) be the solution of (4.1). We have

X(t, x) = etAx +
∫ t

0
e(t−τ)A :p(X(τ, x)): dτ + z(t) − etAz(0)

and so

|X(t, x)|Bs
p,r (G) ≤ c|x|Bs

p,r (G) + c

∫ t

0
|:p(X(τ, x)):|Bs

p,r (G) dτ

+ |z(t)|Bs
p,r (G) + |z(0)|Bs

p,r (G).

Consequently,

sup
t∈[0,T ]

|X(t, x)|Bs
p,r (G)

≤ c|x|Bs
p,r (G) + c

∫ T

0
|:p(X(τ, x)):|Bs

p,r (G) dτ + 2 sup
t∈[0,T ]

|z(t)|Bs
p,r

.

Now it follows that

E

(
sup

t∈[0,T ]
|X(t, x)|Bs

p,r (G)

)

≤ c|x|Bs
p,r (G) + c

∫ T

0
E|:p(X(τ, x)):|Bs

p,r (G) dτ

+ 2E

(
sup

t∈[0,T ]
|z(t)|Bs

p,r (G)

)

and, consequently,∫
H

E

(
sup

t∈[0,T ]
|X(t, x)|Bs

p,r (G)

)
ν(dx)

≤ c

∫
H

|x|Bs
p,r (G)ν(dx) + c

∫ T

0

∫
H

E|:p(X(τ, x)):|Bs
p,r (G)ν(dx) dτ

+ 2E

(
sup

t∈[0,T ]
|z(t)|Bs

p,r (G)

)
.

Since ν(dx) = e−U(x)µ(dx) and∫
H

|x|kBs
p,r (G)µ(dx) < +∞ ∀ k ∈ N,

we have ∫
H

|x|Bs
p,r (G)ν(dx) < +∞.
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Since ν is invariant, we have∫ T

0

∫
H

E|:p(X(τ, x)):|Bs
p,r (G)ν(dx) dτ

= T

∫
H

|:p(x):|Bs
p,r (G)e

−U(x)µ(dx)

≤ T |e−U |L2(H ,µ)

[∫
H

|:p(x):|2Bs
p,r (G)µ(dx)

]1/2

< +∞
by Lemma 3.2.

Finally, it is not difficult to see, using the factorization method (see [9],
Section 5.3), that

E

(
sup

t∈[0,T ]
|z(t)|Bs

p,r (G)

)
< +∞.

In conclusion,

E

(
sup

t∈[0,T ]
|X(t, x)|Bs

p,r (G)

)
< +∞

for ν-almost all x and then the global existence for ν-almost all x follows. This
ends the proof of Theorem 4.2. �
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