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ENTROPIC REPULSION AND THE MAXIMUM OF
THE TWO-DIMENSIONAL HARMONIC CRYSTAL

By Erwin Bolthausen,1 Jean-Dominique Deuschel2

and Giambattista Giacomin1�3

Universität Zürich, TU Berlin and Università di Milano

We consider the lattice version of the free field in two dimensions
(also called harmonic crystal). The main aim of the paper is to discuss
quantitatively the entropic repulsion of the random surface in the presence
of a hard wall. The basic ingredient of the proof is the analysis of the
maximum of the field which requires a multiscale analysis reducing the
problem essentially to a problem on a field with a tree structure.

1. Introduction. Let VN
def= �1� � � � �N�2, and ∂VN be the inner bound-

ary, that is, the points in VN which have a nearest neighbor outside. We also

set int �VN� def= VN\∂VN. Let �N = �φx�x∈VN be the two-dimensional free
field with zero boundary conditions: �N is a family of centered Gaussian ran-
dom variables with covariances given by the discrete Green’s function of the
(discrete) Laplacian on int �VN�, that is,

GN�x�y� = Ɛx

( τδVN∑
i=0

1ηi=y

)
� x� y ∈ int �VN��

Here �ηi�i≥0 is a standard symmetric nearest neighbor random walk on the
two-dimensional lattice �2, starting in x under the law �x, and τ∂VN is the
first entrance time in ∂VN�φx = 0 for x ∈ ∂VN�. We will always write � and
Ɛ for the law of this symmetric random walk, and PN and EN for the law of
�N, sometimes dropping the index N ·PN is the finite volume Gibbs measure
[14] on �VN with (formal) Hamiltonian

1
16

∑
x�y
 �x−y�=1

�φx −φy�2�

We will always assume that N is odd so that there is a point xN or xVN in
the center of the square VN. For y ∈ �2, we set

σ2�N�y� = var�φy��
σ2�N�y� = 0 if y /∈ int �VN�
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and

σ2�N� = var�φxN��
It is well known that the diagonal terms of GN�x� x� are logarithmically

divergent if x is not too close to the boundary. If δ ∈ 
0�1/2�, let

Vδ
N

def= {
x ∈ VN
 dist�x�VC

N� ≥ δN
}
�

Lemma 1. Let g = 2
π
, then

(a) sup
y
σ2�N�y� ≤ g logN+ c�

(b) For any δ ∈ �0�1/2�,
sup
x∈VδN

�σ2�N�y� − g logN� ≤ c�δ��

Here and later on we use c� c1, etc. as generic positive constants, not neces-
sarily the same in different contexts. If depending on further parameters like
δ�η, we denote them by c�δ�� c�δ�η�.

Proof of Lemma 1. Let d�x�N� = min�dist�x�y� 
 y ∈ ∂VN� and at the
same time D�x�N� = max�dist�x�y�
 y ∈ ∂VN� and denote by �GN�x� x� the
Green function of the discrete Laplacian on the ball BN�x� centered at x of
radius N. Then

�Gd�x�N��x� x� ≤ GN�x� x� ≤ �GD�x�N��x� x��
Now the result follows from Theorem 1.6.6 of [15], since

�GN�x� x� =
2
π

logN+c+O�N−1�� ✷

Our first result states that the maximum of the free field behaves trivially
in the sense that in first approximation it is of the same order as if the random
variables were independent:

Theorem 2.

(a) lim
N→∞

PN

(
sup
x∈VN

φx ≥ 2
√
g logN

)
= 0�

(b) For any η > 0 and any δ ∈ 
0�1/2�, there exists c = c�δ�η� > 0 such that

PN

(
sup
x∈VδN

φx ≤ �2√g − η� logN
)
≤ exp

[− c�logN�2]�
if N is large enough �N ≥N0�δ�η��.
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Proof of (a). This is a trivial consequence of Lemma 1:

PN

(
sup
x
φx ≥ 2

√
g logN

)
≤N2 sup

x∈VN
PN�φx ≥ 2

√
g logN�

≤N2

√
supx GN�x� x�√
2π2

√
g logN

exp
[
− �2√g logN�2

2 supx GN�x� x�
]
= o�1�� ✷

The proof of (b) is much more involved and will be given in the next section.
It might be somewhat surprising that the above trivial estimate in part (a)
of Theorem 2 is sharp in first order. This means that the maximum of the
highly correlated free field is essentially the same as if the variables were
independent. We will discuss this aspect and the relation with a hierarchical
model at the end of this section.

Theorem 2 is the basis for proving our results on entropic repulsion. If D is

a subset ofVN then we define the event �+
D

def= �φx ≥ 0� x ∈ D�. We would like
to have information aboutPN��+

D�. The most natural choice would beD = VN.
In that case, it was proved in [10] that PN��+

VN
� is of order exp
−cN�. The

rapid decay of this probability, however, is a pure boundary effect: the zero
boundary condition essentially decouples the field near the boundary, so that
the behavior, say of the first layer insideVN, behaves roughly as if the random
variables were independent, and therefore, the probability that this layer VN

is positive everywhere is already of order exp
−cN�. This boundary effect hides
the interplay between long-range correlations and local fluctuations which is
the main topic of this paper. To see this effect, one has to consider sets D
which are a bit away from the boundary. In three and higher dimensions
one can first consider the thermodynamic limit P∞ = limN→∞ PN and then
discuss P∞��+

VN
�. This was the topic treated in [5]. In two dimensions, P∞

of course does not exist, but we can investigate PN��+
D� for nice subsets D

instead.
To formulate the problem, letV = 
0�1�2 andD ⊂ V be an open subset with

smooth boundary which has positive (Euclidean) distance to the complement
of V. We then put DN =ND ∩ �2.

Theorem 3.

lim
N→∞

1
�logN�2 logPN��+

DN
� = −4g capV�D��

where capV�D� is the relative capacity of D with respect to V,

capV�D� def= inf
{ 1

2�∇f�2
2
 f ∈H1

o�V�� f ≥ 1 on D
}
�

Here, H1
o�V� is the Sobolev space of (weakly) differentiable function f with

square integrable gradient and f�∂V = 0.

The proof of Theorem 3 will be given in Section 3. The result should be
compared with the results in [5] and [10] for dimensions d ≥ 3 wherePN��+

DN
�
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decays exponentially in Nd−2 logN,

lim
N→∞

1
Nd−2 logN

logPN��+
DN
� = −4G capV�D��

where G = limN→∞ σ2�N�. See [4] for related large deviation principles
in d ≥ 3.

What lies behind the above result is the following effect. The “easiest” way
in which the field can achieve its goal of being positive onDN is to have a shift
of the whole field “on small macroscopic averages” on this set DN to a level
which leaves enough room for local spikes which still are present. In order
to understand the picture, one has to look at the field on different scales. On
the one hand, one has the macroscopic scale where one regards the field on
subset of VN with length scales of order N (but possibly small). On the other
hand, one has to look at microscopic scales, that is, the ones of order 1 and
on mesoscopic scales with length scales of order Nα� 0 < α < 1. The delicate
point of the two-dimensional case is coming from the fact that the spikes
are living on mesoscopic scales, and actually a precise analysis requires the
multiscale considerations which do the job for proving Theorem 2 (reflected
by a tree approximation). It is evident from this theorem that on length scales
of order Nα one observes spikes of height 2α

√
g logN. If α is close to 1 then

this is essentially 2
√
g logN. Therefore, it is plausible that the field on small

macroscopic scales has to be shifted to this level in order to have enough room
for the “large mesoscopic” spikes. The form of the tail probabilities as described
in Theorem 2 is actually absolutely instrumental for this simple picture. In
three and higher dimensions, the situation in this respect is more delicate as
there emerges a nontrivial competition between the macroscopic shift and the
tail behavior for the local spikes (see [5, 10]). However, in other respects, the
two-dimensional case is much more delicate, mainly because the analysis of
the spikes requires a multiscale decomposition, whereas in three and higher
dimensions, the spikes can be understood on a purely microscopical level.

Given these observations, it is plausible that PN��+
DN
� is in first order

just the probability that the field is shifted on (small) macroscopic scales to
2
√
g logN. This probability is then not difficult to analyze, and leads to the

statement of Theorem 3.
It should be plausible that these considerations also lead to some description

of the conditioned field, that is, PN�·��+
DN
�. We can prove the following result.

Theorem 4. For any ε > 0,

lim
N→∞

sup
x∈DN

PN
(�φx − 2

√
g logN� ≥ ε logN��+

DN

) = 0�

To understand Theorem 2 better, we consider the standard “hierarchical
approximation” of the free field: here VN is replaced by a binary tree Tn of
depth n: the elements α of Tn are sequences α = α1α2 · · ·αn where αi ∈ �0�1�.
Of course, Tn has 2n elements. In order to make comparisons with the free
field one should therefore think as n being such that #Tn = #VN; that is,
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n = 
2 logN/ log 2�. We consider the following family of normally distributed
random variables,

Xα = ξ1
α1
+ ξ2

α1α2
+ · · · + ξnα1···αn�

where the ξkα1···αk� k ≤ n� α1 · · ·αk ∈�0�1�k are standard independent Gaussian
random variables with variance 1. (In order to have a better match with the
free field, one should take var�ξ� = �g log 2�/2, but this is, of course, of no
importance). Clearly, the Xα then have variance n and

E�XαXβ� = n− dH�α�β��
where dH�α�β� = n − max�k ≤ n
 α1 · · ·αk = β1 · · ·βk� is the hierarchical
distance (or “ultrametric” in more fashionable expression). In many respects,
this hierarchical field resembles the two-dimensional free field: if we match
the number of points in VN and Tn, that is, setting n = 
2 logN/ log 2�, then
for x ∈ VN (not too close to the boundary), the decay of GN�x�y� = EN�φxφy�
as a function of the Euclidean distance is roughly g

(
n log 2

2 − log �x − y�) (see
Theorem 1.6.6 of [15]). Therefore, essentially, our hierarchical field is obtained
by replacing the Euclidean distance by the hierarchical one (and a trivial
scaling).

The behavior of the maximum of the above hierarchical field is known
up to great precision, including corrections of smaller order (see Remark 5
below). The leading order of the maximum is again the same as for completely
independent random variables: it is in fact not difficult to see that

lim
n→∞

maxα∈Tn Xα

n
=
√

2 log 2(1)

in probability. This is well known and there are a number of different proofs
(the earliest one seems to be the one by Biggins [3]).

Perhaps the easiest way to understand (1) (but perhaps not to prove it) is
to replace the binary tree of depth n by one with a fixed (large) number K of
branching levels. So we consider variables

X�K�
α

def= ξ1
α1
+ ξ2

α1α2
+ · · · + ξKα1···αK�(2)

where αi ∈ �1� � � � �2n/K�, and the ξiα1···αi are normally distributed with expec-
tation 0 and variance n/K. Then, as n→∞ (K fixed), we have

1
n

max
α1

ξ1
α1
→

√
2 log 2
K

in probability, and for any α1 · · ·αi,
1
n

max
αi+1

ξi+1
α1···αi+1

→
√

2 log 2
K

�

From this, one gets

lim
n→∞

1
n

max
α
X�K�
α ≥

√
2 log 2
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for any fixed K. The upper bound follows directly from Slepian’s lemma (also
for the binary tree case). This of course does not prove (1) in the binary tree
case, but as K is arbitrary, it makes it plausible. We will base our proof of
Theorem 2 on a refinement and extension of the above “finite K” argument.

There is no point in discussing the binary tree case separately, as most of
the facts are well known. However, we would like to make some (sidetracking)
remarks.

Remark 5. Much more than just (1) and even the statements of Theorem 2
is known to be true in the binary tree case: for n and u large enough, one has

P

(
max
α∈Tn

Xα ≥
√

2 log 2n− 3

2
√

2 log 2
log n+ u

)
≤ exp
−cu��(3)

P

(
max
α∈Tn

Xα ≤
√

2 log 2n− 3

2
√

2 log 2
log n− u

)
≤ exp
−cu2��(4)

There exists no published proof of the 3
2
√

2 log 2
log n correction which is dif-

ferent from the correction in the case of independent variables (where it is
1

2
√

2 log 2
log n�. The result is, however, close to a result of Bramson [7] on

branching Brownian motions, and can be proved by an adaptation of his
approach.

Remark 6. Sidetracking still a bit further, let us observe that the binary
tree case is the border line case where the above triviality of the maximum (in
leading order) is correct, that is, where the maximum of the field of random
variables is in first order at the same level as if they were independent. To
give this a precise meaning, consider again the above binary tree, but where
the variances of the variables ξkα1···αk� k ≤ n, may vary with k, but still remain
independent. For instance, consider a continuous function f
 
0�1� → �0�∞�,
satisfying

∫
f�x�dx = 1, and set var�ξkα1···αk� = f�k/n�. Then the variances of

the variables Xα is still n (approximately). One may ask under which condi-
tions on f (1) remains true. One can prove that this is the case if and only
if f is nondecreasing. The binary tree case discussed before is the case with
f ≡ 1. For a discussion of various aspects of this and related models, see [9].

Remark 7. This remark should be skipped by readers not familiar with
spin glass jargon. Our proof of Theorem 2 proceeds by introducing a tree
structure with the help of a suitable conditioning procedure. Although the
free field is not “ultrametric,” we show that it is ultrametrically well approxi-
mated in the sense that the “nonultrametric” part is negligible, at least for the
leading order approximation of the maximum (including the correct constant).
The procedure probably does not shed much light on the much more delicate
claims concerning ultrametrical approximations in spin glass theory but it
might give some insights into the problem of how such ultrametric structures
can appear in the N → ∞ limit, at least in a very special case. It should
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be remarked that the problem here is trivial from the spin glass point of
view, since there is no nontrivial “replica symmetry breaking” and the field
is asymptotically equivalent to the random energy model. Whether or not the
more refined properties predicted by spin glass theory (like the distribution
on the notorious “pure states”) have (provable) interpretations for this lattice
free field is an interesting question which we cannot answer.

2. Proof of Theorem 2(b). We start the section by fixing some nota-
tions and providing some elementary properties of the free field. Generalizing
slightly the situation introduced before, we define for any finite subset B of �2

the free field �B = �φx�x∈intB as the centered Gaussian field with covariances
covB�φx�φy� = Ɛx

(∑τ∂B
j=0 1ηj=y

)
, where ∂B again is the inner boundary of B.

We may extend the field to all of �2 by 0. We will write PB for the correspond-
ing measure on ��2

.
For any subset C of �2 we denote by �C the σ-field generated by φx� x ∈ C.

We write var�C�·� and cov�C
�·� ·� for the conditional variances and covariances.

Remark that for x�y ∈ B� cov�BC
�φx�φy� is nonrandom and just covB�φx�φy�.

If x ∈ B ⊂ C, we have by a standard decomposition

varC�φx� = varC�EC�φx��∂B�� +EC�var�∂B�φx��
= varC�EC�φx��∂B�� + varB�φx��

(5)

If x ∈ intB, let α∂B�x�y� be the first exit distribution

α∂B�x�y� def= �x�ητ∂B = y��
If x ∈ B ⊂ C, then

EC�φx��∂B� =
∑
y∈∂B

α∂B�x�y�φy�

In case B ⊂ VN is an n × n-box (n odd, this we always assume in all such
situations) and x = xB the midpoint of this box, then we write

φB
def= EN�φxB ��∂B� =

∑
y∈∂B

α∂B�xB�y�φy�(6)

Specializing (5) to a n× n square B ⊂ VN, and x = xB, we get

σ2�N�xB� = varN�φB� + σ2�n��(7)

If B is in the center of VN, that is, when xB = xVN then we get

varN�φB� = σ2�N� − σ2�n��(8)

Through this paper we will need intermediate scales Nα� α ∈ �0�1�, and
subboxes of our main box VN of that side length. We then patch Vδ

N,
δ ≡ �1/2� − δ̄ ∈ 
0�1/2� chosen once for all in this proof, with these smaller
boxes having overlapping boundaries. In order to avoid endless repetitions
of trivial adjustments and corrections, we always assume that Nα is an odd
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integer (so that boxes of side length Nα have a midpoint on the lattice) and
thatNα−1 divides 2δ̄N−1, which we assume to be integer too. For i = �i1� i2�,
1 ≤ i1� i2 ≤ 2δ̄N−1

Nα−1 we consider subboxes,

Bαi = 
�i1 − 1��Nα − 1� + 1� i1�Nα − 1� + 1�
× 
�i2 − 1��Nα − 1� + 1� i2�Nα − 1� + 1��

Remark that each of these boxes contains N2α points. Boundaries of neigh-
boring boxes do intersect, and

⋃
i

∂Bαi = ,αN def=
{
k�Nα − 1� + 1
 0 ≤ k ≤ 2δ̄N− 1

Nα − 1

}2

�

We call the boxes Bαi just α-boxes. The notion depends on N, but we suppress
this in the notation. We denote by -α the set of α-boxes in Vδ

N, and by �α the
σ-field generated by φx� x ∈ ,αN.

We will also have to consider different “mesoscopic” scales, say Nαi ,
1 > α1 > · · · > 0. We will then always assume that the above assumptions are
in force on all scales and that Nαi+1 − 1 divides Nαi − 1.

In all proofs, inequalities involving N are required to hold only for large
enough N, where the notion of “large enough” may depend on all the para-
meters involved.

Before giving the technical details, we outline the strategy of the proof:
we consider mesoscopic scales with parameters 1 > α1 > · · · > αK > 0.
We then want to show that the field reaches 2

√
gαi logN “on scale” Nαi .

To give this a precise meaning, we consider the variables φB� B ∈ -αi . We
would like to argue as follows: given that maxB∈-ai φB ∼ 2

√
gαi logN, we

take the αi-box, say B̂, where this maximum is achieved and then investigate
the maximum of the variables φC − φB̂�C any αi+1-box inside B̂. We then
would like to show that conditionally on �αi , this maximum is approximately
2
√
g�αi − αi+1� logN.
This is exactly the kind of procedure which worked for the K-level tree

(2). In our case, there is, however, the problem that the variables φC −φB̂�C
being αi+1-boxes inside B̂, are not independent, conditionally on �αi . In order
to overcome this difficulty, we need not one B̂ where φB̂ reaches 2

√
gαi logN�

but many which reach a level close to that. These “many” then allow getting
rid of the problem of this lack of independence inside B̂, essentially because
what is happening inside different B̂’s is independent, conditionally on �αi .

We will need a basis for these considerations, telling that, on the first scale
Nα1� there are sufficiently many boxes where φB is positive. This is the content
of the next lemma. Recall that we are working on Vδ

N, for a chosen δ.

Lemma 8. Given α ∈ �1/2�1�� there exist κ�α�� a�δ� α� > 0 such that

P�#�B ∈ -α
 φB ≥ 0� ≤Nκ� ≤ exp
−a�logN�2��
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Proof. We choose α′ = �1+ α�/2 and consider

0
def=
{
B ∈ -α′ 
 φB ≥ −�1− α

′�√g logN
2

}
�

and A the event

A
def= {�0� ≥N1−α′}�

Then

P�AC� ≤ P
(
AC�max

B∈-α′
φB ≤ �logN�2

)
+P

(
max
B∈-α′

φB > �logN�2
)
�

By (6) and by applying Lemma 1 we obtain that

P
(

max
B∈-α′

φB > �logN�2
)
≤ P

(
max
x∈VN

φx > �logN�2
)
≤ exp
−c�logN�3��(9)

On AC ∩ �maxB∈-α′ φB ≤ �logN�2� we have (assume δ > 0)

�-α′ �−1 ∑
B∈-α′

φB ≤ −�1− α
′�√g logN

2

+
(

2δ̄N− 1
Nα′ − 1

)−2(
�logN�2 + 1− α′

2
√
g logN

)
N1−α′

≤ −�1− α
′�√g logN

3
�

(10)

From Lemma 13 (with F ≡ 1�δ�1−δ�2�, we get that there exists c = c�δ� α� such
that

P

(
AC ∩

{
max
B∈-α′

φB ≤ �logN�2
})

≤ exp
−c�logN�2��

and together with (9) this yields

P
(
AC) ≤ exp
−c�logN�2��(11)

If δ = 0 just restrict the sum in (10) to α′-boxes in a set Vδ′
N, with δ′ > 0

sufficiently small and repeat the very same argument: note that c�δ� α� can
be chosen bounded away from zero and infinity for δ in a neighborhood of zero.

For any α′-box, we consider the α-box whose center coincides with that of
the α′-box. We denote by -α′� α the set of these special α-boxes. For the proof
of the lemma, we concentrate on them:

P�#�B ∈ -α
 φB ≥ 0� ≤Nκ�
≤ P�#�B ∈ -α′� α
 φB ≥ 0� ≤Nκ�
≤ E
P�#�B ∈ -α′� α
 φB ≥ 0� ≤Nκ��α′ ��A� +P

(
AC)�

We choose now κ < 1 − α′. On A, there are at least N1−α′α′-boxes B′ which
satisfy φB′ ≥ −�1−α′�

2
√
g logN. Evidently, we have φB′ = E�φB��α′ �, when B is

the α-box which has the same center as B′. Conditionally on �α′ , the variables
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�φB−φB′ �B′∈-α′ are i.i.d. centered Gaussian random variables with conditional
variance varB′ �φB� which according to (8) and Lemma 1 satisfies

varB′ �φB� = g�α′ − α� logN+O�1��
Using this, we have on A,

P�#�B ∈ -α′� α
 φB ≥ 0� ≤Nκ��α′ �

≤ P
(
N1−α′∑
i=1

�

[
ξi ≥

1− α′
2

√
g logN

]
≤Nκ

)
�

(12)

ξi are i.i.d. centered Gaussian variables with variance varB′ �φB�, and �
A�
denotes the indicator function of an event A. We have

P

(
ξi ≥

1− α′
2

√
g logN

)
≥N−�1−α′�/3�

Therefore, after centering the indicator functions and choosing κ = 1−α′
2 , we get

P

(N1−α′∑
i=1

�

[
ξi ≥

1− α′
2

√
g logN

]
≤Nκ

)
≤ P

(∣∣∣∣N1−α′∑
i=1

�θi −Eθi�
∣∣∣∣ ≥ N2�1−α′�/3

2

)
�

where θi = �
ξi ≥ 1−α′
2
√
g logN�. Applying standard estimates for binomial

distributions (e.g., Lemma 11), we get that the right-hand side of this is
less than or equal to exp
−cN�1−α′�/3�, which is much better than required.
Together with (11), this proves the lemma. ✷

Proof of Theorem 2(b). We fix 1/2 < α < 1 and take κ = κ�α�,
a = a�δ� α� according to Lemma 8. We choose K ∈ � and set αi = K−i+1

K
α,

1 ≤ i ≤ K. We now define collections of subsets of the set of αi-boxes which

we denote by 4αi , defined recursively. 4α1

def= -α1
. Assume 4αi has been chosen

�1 ≤ i ≤K− 1�. For any B ∈ 4αi , we draw a square of side length �Nαi − 1�/2
which has the same center as B. The collection of αi+1-boxes inside the square
is denoted by 4B�αi+1

. We then set

4αi+1

def= ⋃
B∈4αi

4B�αi+1
�

We define a sequence of events C1� � � � � CK� Ck ∈ �αk� 1 ≤ k ≤ K in the
following way:

C1
def= �#�B ∈ 4α1


 φB ≥ 0� ≥Nκ��
To define Ck� k ≥ 2 we consider sequences B�k� = �B1� � � � �Bk� of boxes
satisfying B1 ⊃ B2 ⊃ · · · ⊃ Bk, and Bi ∈ 4αi . Then

Ck
def=
{
#
{
B�k�
 φBi ≥ �i− 1�α

(
2
√
g

K
− 1
K2

)
logN� 1 ≤ i ≤ k

}
≥Nκ

}
�
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From Lemma 8 we know that

P�C1� ≥ 1− exp
−a�δ� α��logN�2�(13)

[with κ = κ�α��. We define �̃k = σ�φx
 x ∈ ∪B∈-αk ∂B�. Remark that by our

construction, �̃1 ⊂ �̃2 ⊂ · · · ⊂ �̃K.
On Ck we have at least Nκ sequences B�k� = �B1� � � � �Bk�� Bi ∈ 4αi , which

are nested, and satisfy φB1
≥ 0� φBi ≥ �i − 1�α( 2

√
g

K
− 1

K2

)
� 2 ≤ i ≤ k. We

denote these sequences by

B
�k�
j = �Bj1� � � � �Bjk�� 1 ≤ j ≤Nκ�

(We select Nκ if there are more.) We use the splitting

P
(
CC
k+1

) ≤ E(P(CC
k+1��̃k

)�Ck)+P(CC
k

)
�(14)

We have

Ck∩CC
k+1 ⊂ Ck∩

{Nκ∑
j=1

∑
B∈4Bjk�αk+1

�

[
φB−φBjk≥α

(
2
√
g

K
− 1
K2

)
logN

]
≤Nκ

}

⊂ Ck∩
{Nκ∑
j=1

1∣∣4Bjk�αk+1

∣∣ ∑
B∈4Bjk�αk+1

�

[
φB−φBjk≥α

(
2
√
g

K
− 1
K2

)
logN

]

≤ 4Nκ

�N2α/K−1�
}

We write

ζj
def= 1∣∣4Bjk� αk+1

∣∣ ∑
B∈4Bjk�αk+1

�

[
φB −φBjk ≥ α

(
2
√
g

K
− 1
K2

)
logN

]

Remark that conditionally on �̃k, the ζj are i.i.d. Then

E�ζj��̃k� ≥ inf
B∈4Bjk�αk+1

P

(
φB −φBjk ≥ α

(
2
√
g

K
− 1
K2

)
logN

∣∣�̃k)�
The conditional variance of φB −φBjk for B ∈ 4Bjk� αk+1

is

var�̃k�φB −φBjk� = varBjk�φB�
= g�αk − αk+1� logN+O�1�(15)

= gα

K
logN+O�1��

Indeed, applying (5) with B and C def= Bjk,we have

varBjk�φxB� = σ2�Nαk − 1� + varBjk�φB��
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and applying Lemma 1, this implies (15). Therefore if we choose K > 1/2
√
g,

E
(
ζj��̃k

) ≥N− 2α
K + α√

gK2 �

In this case we have

Ck ∩CC
k+1 ⊂ Ck ∩

{ Nκ∑
j=1

(
ζj −E

(
ζj��̃k

)) ≤ 4Nκ

N2α/K
−NκN

− 2α
K + α√

gK2

}

⊂ Ck ∩
{∣∣∣∣ Nκ∑

j=1

(
ζj −E

(
ζj��̃k

))∣∣∣∣ ≥ 1
2
NκN

− 2α
K + α√

gK2

}

Applying Lemma 11 we therefore get on Ck,

P
(
CC
k+1��̃k

) ≤ 2 exp
[
− cNκ− 4α

K + 2α√
gK2
]
�(16)

Let now η > 0 be given, as in the statement of Theorem 3. Then we can
choose α < 1 such that 2

√
g − η < 2

√
gα. To this α we choose κ�α� according

to Lemma 8, and then we choose K large enough such that κ�α� − 2α/K > 0,
�K − 1�α�2√g/K − 1/K2� > 2

√
g − η and K > 1/2

√
g (which we imposed

before) are satisfied. Then

PN

(
sup
x
φx ≤ �2√g − η� logN

)
≤ PN

(
CC
K

)
≤ e−a�δ�α��logN�2 + 2K exp

[− cNκ−2α/K]
≤ exp

[− c�δ�η��logN�2]�
as required. ✷

3. Proof of Theorem 3.

Proof of the lower bound. We have

capV�D� = inf
{ 1

2�∇f�2
 f ∈ C1
0�V�� f ≥ 1 on D

}
�

where C1
0�V� is the set of once (continuously) differentiable functions, van-

ishing at the boundary. Let f ∈ C1
0�V� be such that f ≥ 1 on D and f ≥ 0.

Let us denote by PaN the Gaussian measure with covariance GN and mean
EaN
φx� = �a logN�f�x/N� where a > 2

√
g. Let HN�PaN�PN� denote the

relative entropy of PaN with respect to PN. By Lemma 2.4 of [1] we see that

lim
N→∞

1
�logN�2 HN�PaN�PN� =

a2

2
�∇f�2�
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On the other hand,

PaN
(��+

DN
�C) ≤ ∑

x∈DN

PaN�φx < 0� = ∑
x∈DN

PN�φx < −a logN�

≤ ∑
x∈DN

exp
[
− a

2�logN�2
2σ2�N�x�

]
≤N2 exp

[
− a2�logN�2

2g logN+ c
]
→ 0

as N→∞. Using the standard entropy inequality (cf. Lemma 5.4.21 of [13]),

− log
PN��+

DN
�

PaN��+
DN
� ≥ −HN�PaN�PN� + e−1

PaN��+
DN
� �

we see that

lim inf
N→∞

1
�logN�2 logPN��+

DN
� ≥ − inf

a>2
√
g
inf
f

a2

2
�∇f�2 = −4g capV�D��

Proof of the upper bound. The argument is roughly as follows. We con-
sider boxes B of side length Nα where α ∈ �0�1� is close to 1. Conditioned
on �α, if φB is not at least close to 2

√
g logN, the probability that the field

is staying positive inside the box is estimated by Theorem 2 (replacing the
maximum by the minimum). Even if α is very close to 1, there are of course
many such boxes, and Theorem 2 then tells us that on �+

DN
there cannot be

more than a finite number of boxes where φB is not close to 2
√
g logN except

for situations which have a negligeable probability.
To fix this procedure precisely, we choose an arbitrary β > 0. If K ∈ ��

α ∈ �1/2�1� we define the event

AK�β�α
def= �#�B ∈ -α
 B ⊂ DN� φB ≤ �2√g − β� logN� ≤K��

In this section we set δ = 0 in defining -α; that is, -α is the set of all the
α-boxes in VN. We will, however, use Theorem 2 with different values of δ.

The proof of the upper bound of Theorem 3 is split into two parts.

Lemma 9. For given β, we can choose α = α�β� ∈ �0�1� (close to 1), and
K =K�β� ∈ � such that

P
(
AC
K�β�α ∩�+

DN

) ≤ 2 exp
[− �4g capV�D� + 1��logN�2]�(17)

Lemma 10. For given β and any α ∈ �0�1�� K ∈ �� we have

lim sup
N→∞

1
�logN�2 logP�AK�β�α ∩�+

DN
� ≤ −�2√g − β�2 capV�D��

It is evident that the two lemmas together prove the upper bound in
Theorem 3.
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Proof of Lemma 9. If η > 0� ε ∈ �0�1/2� and α ∈ �0�1�, we consider the
event

F
def= ⋃

B∈-α

⋃
x∈B�ε�

{�φB −E�φx��α�� ≥ η logN
}
�

where B�ε� is the set of point in B which are in a box of side length εNα with
center xB.Then, by Lemma 12,

P�F� ≤N2 exp
[
− cη

2�logN�2
ε

]
≤ exp

[
− c′η

2�logN�2
ε

]
�(18)

We will choose ε = ε�η� such that

c′η2/ε ≥ 4g capV�D� + 1�(19)

Remark that there is no dependency of ε on α (but we, however, have the usual
convention that (18) has to hold only for large N, where this notion of course
may depend on all the parameters including α). We then have

P
(
AC
K�β�α ∩�+

D

) ≤ E(P(AC
K�β�α ∩�+

D

∣∣�α)�FC)
+ exp

[− �4g capV�D� + 1��logN�2]�
Conditionally on �α and for fixed B ∈ -α, the field �φx −E�φx��α��x∈B is just
the free field on the box B (with side length Nα�. Therefore, for N sufficiently
large, by Theorem 2,

P

(
sup
x∈B�ε�

(
φx −E

(
φx��α

)) ≤ (2√g − β) logN
∣∣�α)

≤ P
(

sup
x∈B�ε�

(
φx −E

(
φx��α

)) ≤ (2√g − β/2) log εNα
∣∣�α)

≤ exp
[− c�ε�β/2�( log εNα

)2] ≤ exp
[− c1�ε�β�( logN

)2]
�

if αo�β� ≤ α < 1� Therefore on FC ∩ �φB ≤ �2√g − β� logN� we have that

P

(
inf
x∈B

φx ≥ 0
∣∣�α) ≤ P( inf

x∈B�ε�
φx ≥ 0

∣∣�α)
≤ P

(
inf
x∈B�ε�

�φx −E�φx��α�� ≥ −�2√g − β+ η� logN
∣∣�α)

≤ exp
[− c1�ε�β��logN�2]�

if η ≤ β/2 and α ≥ αo�β/2�. Using this, we get �c2�ε�β� = c1�ε�β/2��

P
(
AC
K�β�α ∩�+

D

) ≤ (
N2−2α

K

){
exp

[− c2�ε�β��logN�2]}K
+ exp

[− (4g capV�D� + 1
)�logN�2]
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≤ exp
[�2− 2α�K logN− c2�ε�β�K�logN�2]

+ exp
[− (4g capV�D� + 1

)�logN�2]
≤ exp

[
− c2�ε�β�K

2
�logN�2

]
+ exp

[− (4g capV�D� + 1
)�logN�2]�

If we choose now K large enough such that c2�ε�β�K/2 ≥ 4g capV�D� + 1,
we get the desired inequality (17). ✷

Proof of Lemma 10. Take f ≥ 0� f ∈ C1�D�, then on AK�β�α ∩ �+
DN

we
have

1
�-α�

∑
B∈-α�B⊂DN

f�xB/N�φB

≥ �2√g − β� logN
(

1
�-α�

∑
B∈-α�B⊂DN

f�xB/N� −
K�f�∞
�-α�

)
�

Thus

P�AK�β�α∩�+
DN
� ≤ exp

[
−
(�2√g−β�logN

( 1
�-α�

∑
Bf�xB/N�−cN−2�1−α�))2

2 varN
( 1
�-α�

∑
Bf�xB/N�φB

) ]
�

In view of Lemma 13, we see that

lim sup
N→∞

1
�logN�2 logP

(
AK�β�α ∩�+

DN

) ≤ −�2√g − β�2
( ∫
D f�x�dx

)2
2σ2

V�f1D�
and we get the result with the alternative definition of the capacity

capV�D� = sup
{( ∫

D f�x�dx
)2

2σ2
V�f1D�


 f ∈ C1�D�
}
�

compare Lemma 2.2 [4]. ✷

4. Proof of Theorem 4.

Proof of the upper bound. We are using the notations of our Theorem 3.
The upper bound is quite simple: choose a = 2

√
g+ε/2 and definePaN as above.

Then, using the Fortuin–Kasteleyn–Ginibre (FKG) inequality, we have

EN
[
φx��+

DN

] ≤ EaN[φx��+
DN

] ≤ EaN
�φx��
PaN

(
�+
DN

) ≤ a logN+ σ�N�x�
PaN

(
�+
DN

) �

Since limN→∞ PaN��+
DN
� = 1 and σ�N�x� ≤ c√logN, we see that

lim sup
N→∞

EN
[
φx��+

DN

]
logN

≤ 2
√
g + ε/2�
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Next, using the Brascamp–Lieb inequality (see [8]) for the conditioned mea-
sure P+

N = PN�·��+
DN
� (see the introduction of [11]), we have, for large N,

P+
N

(
φx ≥ �2√g + ε� logN

) ≤ P+
N

(
φx −E+

N
φx� ≥
ε

3
logN

)
≤ exp

(
− �ε2/9��logN�2

2σ2�N�x�
)
≤ exp

(− cε2 logN
)
�

and this concludes the proof of the upper bound. ✷

Proof of the lower bound. The lower bound is more delicate. For δ > 0,
let Dδ

N = �x ∈ DN
 dist �x�DC
N� ≥ δN�. Since the boundary of D is smooth,

in view of the argument in the proof of Lemma 3.3 in [11], it is sufficient to
show that for any a < 2

√
g and δ ∈ �0�1�,

lim
N→∞

sup
x∈Dδ

N

P+
N�φx < a logN� = 0�

For x ∈ Dδ
N set D̃N�x� ρ� = �y ∈ DN
 �y−x� ≤ ρN�. Then, for each y ∈ �2 with

�y� ≤ δ
4N, we have by FKG,

PVN
(
φx ≤ a logN

∣∣�+
DN

) = PVN+y(φx+y ≤ a logN
∣∣�+

DN+y
)

≤ P̃N
(
φx+y ≤ a logN

∣∣�+
D̃N�x�3δ/4�

)
≤ P̃N

(
φx+y ≤ a logN

∣∣�+
D̃N�x� δ/2�

)
= P̃+

N

(
φx+y ≤ a logN

)
�

where we write P̃N=P�·�φy=0� y /∈ D̃N�x�3δ/4�� and P̃+
N= P̃N

( · ��+
D̃N�x�δ/2�

)
.

Let α ∈ �0�1� to be chosen later. We may assume that x = xB for some box
B ∈ -α (otherwise just move the grid!). Let 0 = {

xB′ 
 �xB − xB′ � ≤ δ
4N

}
, and

set ε = 2
√
g−a
2 , using the above

PN
(
φx ≤ a logN��+

DN

) ≤ Ẽ+
N

[
1
�0�

∑
xB′ ∈0

1φxB′<a logN

]

≤ Ẽ+
N

[
1
�0�

∑
xB′ ∈0

1φB′<�2
√
g−ε� logN

]

+ Ẽ+
N

[
1
�0�

∑
xB′ ∈0

1�φxB′ −φB′ �>ε logN

]
�
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Next, defineA′
K�ε� α in terms of D̃N�x� δ/2� as in Lemma 9, then we can choose

α�ε� and K�ε�, such that

Ẽ+
N

[
1
�0�

∑
B′⊂0

1φB′<�2
√
g−ε� logN

]
≤ K

�0� +
P̃N

((
A′
K�ε� α

)C ∩�+
D̃N�x� δ/2�

)
P̃N

(
�+
D̃N�x� δ/2�

)
≤ exp�−c logN��

where in the last inequality we have used the lower bound in Theorem 6.
For the second term, note that �φB′ − φxB′ � xB′ ∈ 0� are independent under

P̃N�·��α� with

P̃N
(�φB′ −φxB′ � > ε logN��α

) ≤ 2 exp
[
− ε2�logN�2

2σ2�Nα�xB′ �
]

≤ 2 exp
(− c1ε2 logN

)
�

Set

CN�ε� α =
(

#
{
B′ ∈ 0
 �φxB′ −φB′ � > ε logN

} ≥ �0�
logN

)
�

then, again using Lemma 11, we see that

P̃N
(
CN�ε� α��α

) ≤ exp
[
− c1

�0�
�logN�2

]
≤ exp

(− c′1N�1−α�)�
However, this together with the lower bound in Theorem 3 implies

Ẽ+
N

[
1
�0�

∑
B′∈0

1�φxB′ −φB′ �>ε logN

]
≤ 1

logN
+ P̃N

(
CN�ε� α

)
P̃N

(
�+
D”
N

) ≤ c2
logN

�

and concludes the proof. ✷

5. Technical lemmas.

Lemma 11. LetZ1� � � � �Zn be i.i.d. real valued random variables satisfying
EZi = 0� σ2 = EZ2

i �
∥∥Zi∥∥∞ ≤ 1. Then for any t > 0�

P

(∣∣∣∣ n∑
i=1

Zi

∣∣∣∣ ≥ t) ≤ 2 exp
[
− t2

2nσ2 + 2t/3

]
�

This is a standard large deviation estimate, see, for example, [2].

Lemma 12. Let 0 < n < N� and B be a n × n-square of side length n with
xB = xN. If x ∈ B satisfies �x− xB� ≤ εn� where ε ≤ 1

2 � then

varN�E
(
φx��∂B

)−φB) ≤ cε�
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Proof.

varN
(
E
[
φx�∂B

]−φB) = varN
(
E
[
φx −φxB �∂B

])
= varN�φx −φxB� − varB�φx −φxB�
= GN�x� x� +GN�xB� xB� − 2GN�x� xB�
−GB�x� x� −GB�xB� xB� + 2GB�x� xB�

= Ɛx

[ τ∂VN∑
i=τ∂B

(
1x�ηi� − 1xB�ηi�

)]

+ƐxB

[ τ∂VN∑
i=τ∂B

(
1xB�ηi� − 1x�ηi�

)]
�

Note also that

varN
(
E
[
φx −φxB �∂B

]) ≤ varN+1
(
E
[
φx −φxB �∂B

])
�

so that, using the strong Markov property,

varN
(
E
[
φx�∂B

]−φB) ≤ ƐxB

[ ∞∑
i=τ∂B

(
1xB�ηi� − 1x�ηi�

)]

+Ɛx

[ ∞∑
i=τ∂B

(
1xB�ηi� − 1x�ηi�

)]

= ƐxB

[
Ɛητ∂B

[ ∞∑
i=0

(
1xB�ηi� − 1x�ηi�

)]]

+Ɛx

[
Ɛητ∂B

[ ∞∑
n=0

(
1xB�ηi� − 1x�ηi�

)]]
�

Let a�x� = ∑∞
n=0�Pn�0�0� − Pn�0� x��, where Pn�x�y� = �x�ηn = y�. Fix

y = ητ∂B ∈ ∂B, then in view of Theorem 1.6.2 in [15],

Ɛy

[ ∞∑
n=0

�1xB�ηi� − 1x�ηi��
]
= Ɛ0

[ ∞∑
n=0

�1xB−y�ηi� − 1x−y�ηi��
]

= a�x− y� − a�xB − y�

= 2
π

log��x− y�� − 2
π

log��xB − y�� +O��x− y�−2�

= 2
π

log
( �x− y�
�xB − y�

)
+O�n−2��

where log�1− ε� ≤ log
(
�x−y�
�xB−y�

)
≤ log�1+ ε�. ✷
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In what follows we will consider the class � of functions defined as follows:
F
 V→ � belongs to � if there exist two sequences of nonnegative functions,
�Fn� and �Fn�, in C0�V� such that Fn ≤ F ≤ Fn for every n and such that
limn→∞Fn�x� = limn→∞Fn�x� = F�x� for every x. We observe that if D ⊂ V
has a piecewise smooth boundary which does not intersect the boundary of V,
then F1D ∈ � for any continuous function F.

Lemma 13. For any α ∈ 
0�1� and F ∈ � we have

lim
N→∞

var
(
�-α�−1 ∑

B∈-α
F�xB/N�φB

)
= σ2

V�F�

=
∫
V

∫
V
F�x�	V�x�y�F�y�dxdy�

which is independent of α� where 	V is the Green function of the Brownian
motion, killed as it exits V. For α = 0 the above mean has to be interpreted as
the sum of the φx� x ∈ VN.

Proof. We start with the case α = 0, and show that

lim
N→∞

var
(
�VN�−1 ∑

x∈VN
F�x/N�φx

)
= σ2

V�F��(20)

But this follows from the invariance principle (cf. Lemma 2.10 of [1]) if
F ∈ C0�V�. The validity of (20) is extended to F ∈ � by observing that, if
we set Fn = Fn or Fn = Fn, then σ2

V�Fn� → σ2
V�F� and by using the positiv-

ity of the correlations of the free field.
Next, note that

var
(
�-α�−1 ∑

B∈-α
F�xB/N�φB

)
= var

(
�-α�−1 ∑

B∈-α
F�xB/N�φxB

)

− var
(
�-α�−1 ∑

B∈-α
F�xB/N�φxB ��α

)

Using the independence of the �φxB� under P�·��α�, and var�φxB ��α� ≤
g log�Nα� + c, we see that the second term is given by

var
(
�-α�−1 ∑

B∈-α
F�xB/N�φxB

∣∣�α) = �-α�−2 ∑
B∈-α

F�xB/N�2 var�φxB ��α�

≤ �-α�−1�gα logN+ c� = o�1�
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as N→∞. Thus all we need to show is

lim
N→∞

var
(
�-α�−1 ∑

B∈-α
F�xB/N�φxB

)
= lim
N→∞

�-α�−2 ∑
B�B′∈-α

F�xB/N�GN�xB� xB′ �F�xB′/N�

≡ lim
N→∞

σ2
V�N�F� = σ2

V�F��

The idea is to apply again the invariance principle: by the same argument
as before, it is sufficient to consider the case F ∈ C0�V�. Let 0 = Nα�2+
�
Nα/2�� 
Nα/2�� be the grid of mash Nα containing the set �xB
 B ∈ -α� and
introduce the rescaled embedded random walk �η̂n = ητ�n�/Nα� n ≥ 0� where
τ�0� = 0 and

τ�n� = inf�k > τ�n− 1�
 ηk ∈ 0�� n ≥ 1�

Next let P̂�y� z� = ��η̂n = z�η̂0 = y� be the corresponding transition kernels
and write Ɛ̂y for the law of �η̂� starting at η̂0 = y. For θ ∈ �d with �θ� = 1, set
for some fixed z,

Â�θ� = ∑
y∈0

��y− z� · θ�2P̂1�z� y��

We claim that Â�θ� = A�θ� = 1
2 , the variance of the simple random walk:

define

â�x� =
∞∑
n=0

(
P̂n�z� z� − P̂n�z� z+ x�

)
�

then we know that

Â�θ� = lim
�y�→∞

log �y�
πâ�y�

(cf. [16], P12.3). On the other hand, if Pn denotes the transition kernels of the
simple random walk, then

a�Nαx� =
∞∑
k=0

(
Pk�0�0� −Pk�0�Nαx�)

= Ɛ0

[ ∞∑
k=0

(
10�ηk� − 1Nαx�ηk�

)]

= Ɛz

[ ∞∑
n=0

(
1z�η̂n� − 1z+x�η̂n�

)] = â�x��
and therefore,

A�θ� = lim
�x�→∞

log �x�
πa�x� = lim

�y�→∞
log �y�
πâ�y� = Â�θ��
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Next let V̂N = �y = x
Nα � x ∈ 0∩VN�, introduce the exit time τ̂N = inf�n ≥ 0


η̂n /∈ V̂N� and the Green function

ĜN�y� z� = Ɛ̂y

[ τ̂N−1∑
n=0

1z�η̂n�
]
� z� y ∈ V̂N�

Then applying the invariance principle for the random walk �η̂�, and using
the fact that A�θ� = Â�θ�, we have

lim
N→∞

σ̂2
V�N�F� ≡ lim

N→∞
�-α�−2 ∑

y� z∈V̂N
F�y/N1−α�ĜN�y� z�F�z/N1−α�

= lim
N→∞

�-α�−2 ∑
y∈V̂N

F�y/N1−α�̂Ɛy
[ τ̂N−1∑
n=0

F�η̂n/N1−α�
]
�

= σ2
V�F��

On the other hand, setting τ̃N = inf�n ≥ 0
 τ�n� ≥ τ∂VN �, we have

σ2
V�N�F� = �-α�−2 ∑

y∈V̂N
F�y/N1−α�̂Ɛy

[ τ̃N−1∑
n=0

F�η̂n/N1−α�
]
�

Obviously τ̃N ≤ τ̂N, and we get our result as soon as we show that

lim
N→∞

[
σ̂2
N�V�F� − σ2

N�V�F�
]

= lim
N→∞

�-α�−2 ∑
y∈V̂N

F�y/N1−α�Êy
[ τ̂N−1∑
n=τ̃N

F�η̂n/N1−α�
]
= 0�

Since F is bounded with compact support, we can assume that F�x� = 1Vδ�x�,
where Vδ = 
δ�1 − δ�2. Let ε ∈ �0� δ�, and introduce the stopping time τ̂εN =
inf�n ≥ 0
 η̂n /∈ V̂ε

N�, for some ε < δ, where V̂ε
N = �y =N−αx
 x ∈ 0 ∩Vε

N�,
then

Ɛ̂y

[ τ̂N−1∑
n=τ̃N

F�η̂n/N1−α�
]
≤ Ɛ̂y

[ τ̂εN−1∑
n=τ̃N

F�η̂n/N1−α�� τ̂εN > τ̄N
]

+ Ɛ̂y

[ τ̂N−1∑
n=τ̂εN

F�η̂n/N1−α�
]
�

Thus

0 ≤ σ̂2
N�V�F� − σ2

N�V�F� ≤ σ̂2
N�V�F� − σ̂2

N�Vε�F�

+ �-α�−2 ∑
y∈V̂N

F�y/N1−α�̂Ɛy
[ τ̂εN−1∑
n=τ̃N

F�η̂n/N1−α�� τ̂εN > τ̄N
]
�
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where

lim
N→∞

[
σ̂2
N�V�F� − σ̂2

N�Vε�F�
] = σ2

V�F� − σ2
Vε�F� −→ 0 as ε→ 0�

and we get our result once we show that

lim
N→∞

�-α�−1 sup
y∈V̂δN

Ɛ̂y

[ τ̂εN−1∑
n=τ̃N

1V̂δN�η̂n�� τ̂
ε
N > τ̄N

]
= 0�

Write τεN = inf�k ≥ 0
 ηk ∈ 0\Vε
N� for the first time that the random walk

�η� gets trapped on 0 outside of Vε
N, then

Ɛ̂y

[ τ̂εN−1∑
n=τ̃N

1V̂δN�η̂n�� τ̂
ε
N > τ̃N

]
= ƐNαy

[ τεN−1∑
k=τ∂VN

1VδN∩0�ηk�� τεN > τ∂VN
]
�

Using the strong Markov property, we see that

�-α�−1ƐyNα

[ τεN−1∑
k=τ∂VN

1VδN∩0�ηk�� τεN > τ∂VN
]
≤ C�Nαy�τεN > τ∂VN��

where, in view of the invariance principle,

C = sup
N�ε

sup
z∈∂VN

�-α�−1Ɛz

[ τεN−1∑
n=0

1VδN∩0�ηn�
]
<∞�

Finally, we can use the result of Lemma 3.3 of [12], and show that for each
fixed 0 < ε < δ, the probability for the random walk �η� starting in Vδ

N to
reach the boundary ∂VN before getting trapped in 0 ∩ �VN\Vε

N� goes to 0,

lim
N→∞

sup
y∈VδN

�Nαy�τ̄N < τ̂εN� = 0�

This shows the result. ✷
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