Open Access
October 2001 Branching Exit Markov Systems and Superprocesses
E.B. Dynkin
Ann. Probab. 29(4): 1833-1858 (October 2001). DOI: 10.1214/aop/1015345774


Superprocesses (under the name continuous state branchingprocesses) appeared, first, in a pioneering work of S.Watanabe [J. Math. Kyoto Univ. 8 (1968)141 –167 ]. Deep results on paths of the super-Brownian motion were obtained by Dawson, Perkins, Le Gall and others.

In earlier papers, a superprocess was interpreted as a Markov process $X_t$ in the space of measures. This is not sufficient for a probabilistic approach to boundary value problems. A reacher model based on the concept of exit measures was introduced by E.B.Dynkin [Probab. Theory Related Fields 89 (1991) 89 –115 ]. A model of a superprocess as a system of exit measures from time-space open sets was systematically developed in 1993 [E.B. Dynkin, Ann.Probab. 21 (1993)1185 –1262 ]. In particular, branchingand Markov properties of such a system were established and used to investigate partial differential equations. In the present paper, we show that the entire theory of superprocesses can be deduced from these properties.


Download Citation

E.B. Dynkin. "Branching Exit Markov Systems and Superprocesses." Ann. Probab. 29 (4) 1833 - 1858, October 2001.


Published: October 2001
First available in Project Euclid: 5 March 2002

zbMATH: 1014.60079
MathSciNet: MR1880244
Digital Object Identifier: 10.1214/aop/1015345774

Primary: 60J60 , 60J80

Keywords: Branching particle systems , branching property , exit measures , Markov property , Superprocesses , transition operators

Rights: Copyright © 2001 Institute of Mathematical Statistics

Vol.29 • No. 4 • October 2001
Back to Top