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ABSOLUTE CONTINUITY OF HEAT KERNEL MEASURE WITH
PINNED WIENER MEASURE ON LOOP GROUPS

By Bruce K. Driver1 and Vikram K. Srimurthy2

University of California, San Diego and First Union Bank, Boston

Let t > 0� K be a connected compact Lie group equipped with an
AdK – invariant inner product on the Lie Algebra of K. Associated to
this data are two measures µ0

t and ν0t on � �K� – the space of continuous
loops based at e ∈ K
 The measure µ0

t is pinned Wiener measure with
“variance t” while the measure ν0t is a “heat kernel measure” on � �K�

The measure µ0

t is constructed using aK – valued Brownian motion while
the measure ν0t is constructed using a � �K� – valued Brownian motion.
In this paper we show that ν0t is absolutely continuous with respect to µ0

t

and the Radon-Nikodym derivative dν0t /dµ
0
t is bounded.

1. Introduction Let K be a connected compact Lie group, � ≡ TeK be
the Lie algebra of K, and �·� ·� = �·� ·�� be an AdK-invariant inner product on
�. To simplify notation later we will assume that K is a matrix group. (Since
K is compact, this is no restriction; see, e.g., Theorem 4.1 on page 136 in [8].)

Example 1.1. As an example, let K = SO�3� be the group of 3 × 3 real
orthogonal matrices with determinant 1
 The Lie algebra of K is � = so�3��
the set of 3×3 real skew symmetric matrices, and the inner product �A�B�� 
=
−tr�AB� is an example of an AdK-invariant inner product on �


Elements A ∈ � will be identified with the unique left invariant vector field
on K agreeing with A at the identity in K� that is, if f ∈ C∞�K� then

Af�x� = d

dt
0f�xetA�


The path and loop groups on K are defined by

W �K� ≡ �σ ∈ C ��0�1� →K� σ �0� = e�(1.1)

and

� �K� ≡ �σ ∈W �K� σ �1� = e�(1.2)

respectively.

Notation 1.2. The constant path at e will be denote by e, that is, e�s� = e
for s ∈ �0�1�
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Pinned Wiener measure (µ0
t � on such a “loop group” (see [21], [24],[4], [17]

and Definition 2.11 below) is the law of a K-valued Brownian motion starting
at e ∈ K and conditioned to end at e ∈ K
 Heat kernel measure �ν0t � on
� �K� (see [18], [14] and Carson [9, 10] and Definition 2.14 below) is the end
point distribution of a “� �K�-valued Brownian motion.” The main theorem
(Theorem 2.16) in this paper asserts that ν0t is absolutely continuous with
respect to µ0

t and the Radon-Nikodym derivative dν0t /dµ
0
t is bounded. The

proof of this theorem heavily relies on a theorem of Airault and Malliavin
(Theorem 2.18 below) which shows that µ0

t solves a heat equation with a
potential. A new proof of Theorem 2.18 will be given in Section 6.

One of our motivations for investigating Theorem 2.16 is L. Gross’ logarith-
mic Sobolev inequality on �� �K�� µ0

t �
 To state the inequality, let

�gradf�2 = ∑
h∈S0

�∂hf�2 �

where S0 is an orthonormal basis forH0 (H0 is the �-valued Cameron -Martin
space in Definitions 3.1) and ∂h is a left invariant vector field on � �K� defined
in Definition 3.4. Also let us introduce the following notation. If µ is a measure
on some measurable space � and f 
 �→ � is a measurable function, let

µ�f� =
∫
�
fdµ
(1.3)

L. Gross proves in [20] that there is a constant C <∞ such that

∫
� �K�

f2 log
f2

µ0
t �f2�dµ

0
t ≤ C

∫
� �K�

{
�gradf�2 +Vf2

}
dµ0

t(1.4)

where V is essentially the same potential that appears in the Airault-
Malliavin Theorem 2.18 below. It is still an open question as to whether the
potential term Vf2 in equation (1.4) is necessary or not.

On the other hand, it was shown in Driver and Lohrenz [18] that if µ0
t is

replaced by ν0t � the potential term V is not needed, that is, there is a constant
C <∞ such that

∫
� �K�

f2 log
f2

ν0t �f2�dν
0
t ≤ C

∫
� �K�

�gradf�2 dν0t 
(1.5)

Now Theorem 2.16 below shows that Zt 
= dν0t /dµ
0
t is bounded. If one could

show that Z−1
t were also bounded, then the Holley-Stroock lemma (see [22]

and Remark 1.20 in [11]) along with equation (1.5) would imply that equation
(1.4) holds without the Vf2 term. It certainly seems too much to expect that
Zt is bounded from below in general. (It is not even known if Zt > 0� µ0

t -a.s.,
when K is non-abelian.) So the authors do not expect this line of reasoning to
work without modification. Nevertheless, better knowledge of the density Zt

may be useful in determining if potential is needed in equaiton (1.4).
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1.1. Conjecture on equivalence. Let us end this introduction with the fol-
lowing conjecture.

Conjecture. If K is simply connected [so that � �K� has only one con-
nected component] then Zt > 0� µ0

t -a.s. That is to say µ0
t is absolutely contin-

uous relative to ν0t 
 If K is not simply connected, then we expect that µ0
t is

absolutely continuous relative to a sum of left translates of ν0t by finite energy
loops from each homotopy class.

The explicit calculations in Section 7 shows that the conjecture is true for
K = �d and K = S1� see Lemma 7.1 and Proposition 7.5. Moreover, the
results in Srimurthy [31] also support the conjecture. Let �α be the σ-algebra
consisting of the measurable sets in W�K� depending only on the portion of
the paths inW�K� over the interval �0� α�� see Definition 2.5 below. Srimurthy
proves that µ0

t and ν0t are equivalent on �α for any α < 1
 Of course these
σ-algebras are not able to detect the homotopy classes in � �K� and it is
certainly not true that µ0

t is absolutely continuous with respect to ν0t if K is
not simply connected. This is because pinned Wiener measure µ0

t charges all
of the homotopy classes of K while the heat kernel measure ν0t only charges
the trivial homotopy class.

Note added in proof: This conjecture is now known to be true; see Aida and
Driver [1]. The proof is a combination of the results of this paper, Gross’ ergod-
icity result in [21] and Malliavin’s [23] quasi-invariance theorem for pinned
Wiener measure on loop groups. However, the results in [1] still do not give
any lower bound estimates for Zt.

2. Notation and statements of results.

2.1. Brownian sheets.

Definition 2.1 (�-valued Brownian sheet). Let �β�t� s��0≤s≤1�0≤t<∞ be a �-
valued Brownian sheet and �χ�t� s��0≤s≤1�0≤t<∞ be a �-valued Brownian bridge
sheet defined on some probability space ���� �P� 
 To be more precise, let s ∧
σ ≡ min�s� σ�� G0 �s� σ� = s ∧ σ − σs� βA�t� s� = �A�β�t� s�� and χA�t� s� =
�A�χ�t� s��
 Then we are assuming the β and χ are centered Gaussian random
fields with covariance functions

Ɛ�βA�t� s�βB�τ� σ�� = �A�B��t ∧ τ��s ∧ σ�(2.1)

for all s� σ� t� τ ∈ �0�∞� and A�B ∈ � and

Ɛ�χA�t� s�χB�τ� σ�� = �A�B��t ∧ τ�G0 �s� σ�(2.2)

for all s� σ ∈ �0�1�� t� τ ∈ �0�∞� and A�B ∈ �
 �Here and in the sequel we will
use Ɛ to denote the expectation relative to the measure P
�

It is well known that β�t� s� and χ�t� s� may be chosen to have continuous
sample paths; see, for example, the discussion after the proof of Corollary 1.3
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in [33]. This fact may also be proved by abstract Wiener space considerations;
see Remark 3.3 in [15]. So in the sequel we will assume that �t� s� → β�t� s�
and �t� s� → χ�t� s� are continuous processes.

Definition 2.2. A �-valued process �Bs� is said to be a Brownian motion
with variance t if 1√

t
Bs is a standard �-valued Brownian motion. Alternatively,

B may be described using Lévy’s characterization (see, e.g., Theorem 39 on
page 80 in [27]) of Brownian motion, by requiring �Bs� to be a mean zero
martingale with quadratic co-variations given by dBC

s dB
D
s = t�C�D�ds for

all C�D ∈ �


Remark 2.3. Notice that for fixed s� t → β�t� s� and t → χ�t� s� are
�-valued Brownian motions with variance s and G0�s� s� respectively. This
follows by the independent increments of these processes in the t variable,
Lemma A.1 in the Appendix, and Definition 2.2. Similarly for fixed t� s →
β�s� t� is a �-valued Brownian motion with variance t
 The process s→ χ�t� s�
is a Brownian Bridge for 0 ≤ s ≤ 1 with quadratic co-variation given by
χA�t� ds�χB�t� ds� = t�A�B�ds� see Remark 2.12 below.

Definition 2.4 (Cylinder functions). For 0 ≤ s ≤ 1� let πs 
W�K� →K be
the projection map πs�σ� = σ�s�
 More generally if

� = �0 = s0 < s1 < s2 < · · · < sn < 1�(2.3)

is a partition of �0�1�� let sn+1 = 1 by convention and let π� 
W�K� →Kn be
given by

π��σ� = �σ�s1�� σ�s2�� 
 
 
 � σ�sn��
(2.4)

A cylinder function f on W�K� or � �K� is a function of the form f = F ◦ π�

for some partition � and some measurable function F 
Kn → �
 The function
f is said to be bounded (smooth) provided that F is bounded (smooth).

Definition 2.5. For s ∈ �0�1�� let �s denote the σ-algebra on W�K� gen-
erated by the smooth cylinder functions of the form f = F ◦ π� where � runs
through partitions as in equation (2.3) with sn ≤ s
 We will write � for �1.

The σ-algebra, � � is the same as the Borel σ-algebra on W�K�� where
W�K� is equipped with topology of uniform convergence relative to a metric
on K derived from a Riemannian metric on TK


Remark 2.6. For notational simplicity when working on � �K�� we have
defined π� as in equation (2.4) rather than by π��σ� = �σ�s1�� σ�s2�� 
 
 
 �
σ�sn�� σ�sn+1�� which would be more natural on W�K�
 This results in a
slightly smaller class of cylinder functions, but this is of no significance for
our purposes.

The next result is well known, but we include it for the reader’s convenience.
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Lemma 2.7. Suppose that Q is a finite measure on �W�K��� � and 1 ≤
p <∞
 Then the smooth cylinder functions are dense in Lp�W�K��� �Q�


Proof. Let � denote the smooth cylinder functions and � denote those
functions in the Lp�W�K��� �Q�-closure of � which are also bounded. Then
� is a vector space containing the constant functions and which clearly
satisfies the property; if �fn�∞n=1 is a sequence of functions in � such that
0 ≤ f1 ≤ f2 ≤ f3 ≤ · · · � and f 
= limn→∞ fn is bounded, then f ∈ � 
 Since �
is closed under multiplication, we may apply the monotone class theorem (see
Theorem 8 on page 7 in [27]) to conclude � contains all bounded � = σ�� �-
measurable functions. Since (by the dominated convergence theorem) � is
dense in Lp�W�K��� �Q�� we are done. ✷

2.2. K-valued Brownian motion and Wiener measures.

Definition 2.8 [Wiener measure on W�K�]. Fix t > 0� let �gs�s∈�0�1� de-
note the solution to the stochastic differential equation

dgs = gsβ�t� δs� with g0 = e ∈K�(2.5)

where β�t� δs� denotes the Stratonovich differential of the Brownian motion
s→ β�t� s�
 The Wiener measure with variance t on � is µt 
= Law�g·�


Let �0 ⊂ � be an orthonormal basis for � and /K be the second order elliptic
operator,

/K = ∑
A∈�0

A2
(2.6)

Since K is compact and hence uni-modular, /K is the Laplace Beltrami op-
erator for the left invariant Riemannian metric on K determined by �·� ·� on
� = TeK� see, for example, Remark 2.2 in [16]. Using Itô’s lemma, one easily
shows that �gs�s∈�0�1� is a diffusion process on K with generator 1

2t/K
 Such
a K-valued process will be called a Brownian motion on K with variance t


Definition 2.9 (Heat Kernel on K). Let pKt denote the smooth function
of K such that Law�g1� = pKt �x�dx� where dx denotes normalized Haar
measure on K


The function pKt is the convolution kernel for the heat operator et/K/2
 In
particular, �t� x� → pKt �x� is a smooth positive function such that for any
f ∈ C�K�� the function u defined by

u �t� x� ≡
∫
K
f �y�pKt

(
x−1y

)
dy for �t� x� ∈ �0�∞�×K

satisfies the heat equation

∂tu = 1
2/Ku with limt→0 u�t� x� = f�x�

where ∂t = ∂/∂t
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Remark 2.10. It is well known that pKt �x� = pKt
(
x−1) for all x ∈K� see,

for example, Item 2 of Proposition 3.1 in [16]. It also well known that pKt is a
class function, that is,

pKt �xy� = pKt �yx� for all x�y ∈K
(2.7)

This is a consequence of the fact that /K is a bi-invariant differential opera-
tor because of the AdK-invariance of �·� ·�
 Thus for all bounded measurable
functions f on K�∫

K
f�y�pKt

(
x−1y

)
dy =

∫
K
f�xy�pKt �y�dy

= (
et/K/2f ◦Lx

) �e�
= (

et/K/2f
) �x� = (

et/K/2f ◦Rx

) �e�
=
∫
K
f�yx�pKt �y�dy =

∫
K
f�y�pKt

(
yx−1)dy�

where Lx and Rx denote left and right multiplication by x ∈ K respectively.
The last displayed equation implies equation (2.7).

By the Markov property of g· and the previous comments, if f is a bounded
cylinder function of the form f = F ◦ π� where � is as in equation (2.3), then

µt�f� ≡
∫
Kn
F �x1� 
 
 
 � xn�

n∏
i=1

pKt/is
(
x−1
i−1xi

)
dx1dx2 · · ·dxn�(2.8)

where x0 
= e and /is = si − si−1


Definition 2.11 (Doob’s construction of pinned Wiener measure). Pinned
Wiener measure, µ0

t � on W �K� with variance t, is the unique measure on
� such that if f is a bounded �α measurable function for some α ∈ �0�1��
then

µ0
t �f� ≡

1

pKt �e�
µt

(
fpKt�1−α��πα�

)



In particular if f is a bounded cylinder function f of the form f �σ� = F ◦ π�

where � is as in equation (2.3), then

µ0
t �f� ≡

∫
Kn
F�x�ρ��t� x�dx�(2.9)

where x = �x1� 
 
 
 � xn� � dx = dx1dx2 · · ·dxn is normalized Haar measure on
Kn and

ρ��t� x� 
= 1

pKt �e�
n+1∏
i=1

pKt�si−si−1�
(
x−1
i−1xi

)
(2.10)

where by convention x0 = xn+1 = e
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The existence of the probability measure µ0
t and the fact that µ0

t �� �K�� = 1
is well known. A proof may be found, for example, in Theorem 2.3 in [12]. To
apply this theorem, the reader should take the covariant derivative ∇ appear-
ing in Theorem 2.3 in [12] to be the unique one for which left invariant vector
fields on K are covariantly constant.

Remark 2.12. In Remark 2.3 it was asserted that the process s→ χ�t� s�
is a Brownian bridge with quadratic co-variation given by χA�t� ds�χC�t� ds� =
t�A�C�ds� that is to say Law�χ�t� ·�� is pinned Wiener measure on � ��� with
variance t
 To check this let pt�x� = �2πt�−dim /2� exp�−x2� /2t� be the Eu-
clidean heat kernel on �
 Then for a cylinder function f on � ��� based on a
partition � = �0 = s0 < s1 < s2 < 
 
 
 < sn < 1�� we must show that

Ɛf�χ�t� ·�� = Ɛ

[
f�B�pt�1−α��Bα�

pt�0�
]
�(2.11)

where Bs = β�t� s�—a �-valued Brownian motion with variance t.

Proof. To prove equation (2.11), let Zs = pt�0�−1pt�1−s��β�t� s�� for 0 ≤
s < 1� then by Itô’s lemma and the fact that

∂

∂s
pt�1−s��x� = −1

2
t/�pt�1−s��x� and ∇ logpt�1−s��x� = − 1

t�1− s�x

we have

dZs = −Zs

1
t�1− s��Bs�dBs� with Z0 = 1


By Girsanov’s theorem (see, e.g., Theorem 20 on page 109 in [27])

Ms 
= Bs −
∫ s
0

1
Zr

dZrdBr = Bs +
∫ s
0

1
�1− r�Brdr(2.12)

is a martingale on �0� α� relative to the measure ZαP
 Since M has the same
quadratic variation as β�t� ·�� by Lévy’s criteria,M is a �-valued Brownian mo-
tion with variance t under the measure ZαP
 Interpreting (2.12) as stochastic
differential equation for B�

dB = dM− 1
�1− s�Bsds with B0 = 0�

we find by variation of parameters that

Bs =
∫ s
0
exp

{
−
∫ s
r

1
�1− σ�dσ

}
dMr =

∫ s
0

1− s

1− r
dMr


This shows that, under ZαP� �Bs�0≤s≤α is still a Gaussian process. Moreover,
for 0 ≤ σ ≤ s ≤ α�

Ɛ�BC
s B

D
r Zα� = Ɛ

[(∫ s
0

1− s

1− r
dMC

r

)(∫ σ
0

1− σ

1− r
dMD

r

)
Zα

]
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= t�1− s��1− σ��C�D�
∫ σ
0

1
�1− r�2dr

= t�1− s��1− σ�
(
1− 1

1− σ

)
�C�D�

= tσ�1− s� = tG0�σ� s��C�D�
which is the same covariance function as χ�t� ·�
 Therefore �Bs�0≤s≤α under
the measure ZαP has the same law as �χ�t� s��0≤s≤α under the measure P

This is the assertion in equation (2.11). ✷

2.3. Heat kernel measure on W�K� and � �K�
 In this section we are go-
ing to define heat kernel measures onW�K� and � �K� by formally replacing
K from the previous section byW�K� and� �K� respectively. Following Malli-
avin [24], we have the following theorem.

Theorem 2.13 [Brownian motion on W�K� and L�K�]. There are jointly
continuous solutions 7�t� s� and 70�t� s� to the stochastic differential equations:

7�δt� s� = 7�t� s�β�δt� s� with 7�0� s� = e ∀s ∈ �0�∞�(2.13)

and

70�δt� s� = 70�t� s�χ�δt� s� with 7�0� s� = e ∀s ∈ �0�1�
(2.14)

As before β�δt� s� denotes the Stratonovich differentials of the processes t →
β�t� s� and similarly for 7�δt� s�� 70�δt� s�� and χ�δt� s�.

Proof. Such results may be found in Baxendale, [5], Malliavin [24], or
in Theorem 3.8 in Driver [14]. The last two references cover the � �K� case,
however the proof of theW�K� case is the same, just replace G0�s� σ� by s∧σ
throughout. ✷

Definition 2.14 [Heat Kernel Measures on W�K� and L�K�]. The mea-
sures νt = Law�7�t� ·� and ν0t = Law�70�t� ·�� are called heat kernel mea-
sures on W�K� and � �K� respectively. So νt and ν0t are determined by

νt�f� = Ɛf�7�t� ·�� and ν0t �f� = Ɛf�70�t� ·��(2.15)

for all bounded � -measurable f
 Notice that ν0t �� �K�� = 1 because 70�t�0� =
70�t�1� = e� P-almost surely.

Corollary 3.10 below justifies calling νt and ν
0
t heat kernel measures.

2.4. Statement of results. The following theorem is Lemma 1 in Airault
and Malliavin [2].

Theorem 2.15. Let t > 0� then νt = µt on W�K�� that is, heat kernel
measure at time t and Wiener measure with variance t are the same on W�K�
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This theorem is also proved in Lemma 3.3 of Srimurthy [31]. Since this
theorem is crucial to the rest of the paper, we will give a proof in Section 4
below. The following theorem is the main result of the paper.

Theorem 2.16. Let t > 0� then ν0t � µ0
t � that is, heat kernel measure at

time t is absolutely continuous relative to pinned Wiener measure with variance
t
 Moreover, the Radon-Nikodym derivative, dν0t /dµ

0
t � satisfies the bound

dν0t

dµ0
t

≤ eCt

where

Ct ≡ log
[
�2πt� 1

2 dim �pKt �e�
]

(2.16)

�Standard heat kernel asymptotics shows that limt→0Ct = 0� see Lemma 6
1
below.�

The proof of this theorem (given in Section 6) will be a combination of the
maximum principle along with a theorem of Airault and Malliavin [3]. In
order to state the Airault-Malliavin theorem, let us recall that the coordinate
process πs 
 � �K� → K (see Definition 2.4) is a semi-martingale relative to
pinned Wiener measure, µ0

t ; see, for example, Bismut [7] or Theorem 2.3 in
[13]. Hence we may define the �-valued semi-martingale�bs�0≤s≤1 by

bs 
=
∫ s
0
π−1
r δπr
(2.17)

Remarks 2.17. (i) Technically speaking, the stochastic integral in equation
(2.17) depends on the measure µ0

t and in particular on t > 0
 So a more
appropriate notation would be to display this t dependence and write bts for
the µ0

t -a.e. defined stochastic integral
∫ s
0 π

−1
r δπr
 Since we will only need the

process bs for one fixed value of t� we will stick with the notation in equation
(2.17).

(ii) Gross shows (see Lemma 4.8 and Remark 4.9 in [20]) that
b1 ∈ Lp�� �K�� µ0

t � and that bs → b1 in Lp�� �K�� µ0
t � as s → 1 for all

1 ≤ p <∞


Theorem 2.18 (Airault and Malliavin). Let Vt 
 � �K� → � be the “poten-
tial,”

Vt =
1
2t2

∣∣b1∣∣2� − ct(2.18)

where b1 is defined in equation �2
17� and

ct ≡
dCt

dt
= dim �

2t
+ ∂t logp

K
t �e� 
(2.19)
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Then for any smooth cylindrical function f 
 � �K� → � �see Definition 2
4�
∂tµ

0
t �f� = µ0

t

[( 1
2/� �K� +Vt

)
f
]
�(2.20)

where /� �K� is the generator of the process 70�t� ·�� see Definition 3
6 and Propo-
sition 3
9 below.

We will give a simplified (in our view) proof of this theorem in Section 5.
The proof relies on Theorem 2.15 and integration by parts on �W�K�� µt�


3. Generators of �(t, .) and �0(t, .) Much of the material in this section
may be found in [18] and [14]. Nevertheless, in order to introduce the notation
and for the readers convenience we will summarize some of the results in these
papers.

3.1. Cameron-Martin spaces.

Definition 3.1. Given a continuous function h 
 �0�1� → �, define

�h�h�H =


∫ 1

0

∣∣h′ �s�∣∣2 ds� if h is absolutely continuous,

∞� otherwise.

The Cameron-Martin space of � is

H ≡ �h ∈ C��0�1� → ���  h �0� = 0 and �h�h� <∞�
which we equip with the inner product

�h�k� =
∫ 1

0
�h′ �s� � k′�s��ds


The pinned Cameron-Martin space is

H0 ≡ �h ∈H ��� h �1� = 0�
which is a closed subspace of H
 [The Hilbert spaces H and H0 are to be
thought of as the “Lie algebras” to the groups W �K� and � �K�.]

Notation 3.2. Let S ⊂ H and S0 ⊂ H0 be orthonormal bases for H and
H0 respectively.

Lemma 3.3. Let �0 ⊂ � be an orthonormal basis for �� G�s� t� = s ∧ t and
G0�s� t� ≡ s ∧ t− st for all s� t ∈ �0�1�
 Then∑

h∈S
h�s� ⊗ h�t� = G�s� t� ∑

A∈�0
A⊗A ∈ �⊗ ��(3.1)

∑
h∈S0

h�s� ⊗ h�t� = G0�s� t�
∑
A∈�0

A⊗A ∈ �⊗ �
(3.2)
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Proof. Let A�B ∈ �. Since G�t� ·�B and G�s� ·�A are in H�

�G�t� ·�B�G�s� ·�A� = ∑
h∈S

�G�t� ·�B�h��h�G�s� ·�A�(3.3)

where the sum is absolutely convergent. By the fundamental theorem of cal-
culus, G satisfies the reproducing property,

∫ 1

0
∂sG�t� s�h′�s�ds = h�t� for all h ∈H


Combined this equation with equation (3.3) shows that

G�s� t��B�A� = ∑
h∈S

�B�h�t���h�s��A�

which implies equation (3.1) since A and B are arbitrary. Equation (3.2) is
proved similarly; see Lemma 3.8 in [18] for more details. ✷

3.2. Derivatives and Laplacians on � �K� and W�K�.

Definition 3.4 (Left invariant derivatives). Given h ∈ H (or H0� and f 

W�K� → � (or f 
 � �K� → �� a smooth cylinder function, define

�∂hf� �σ� 
=
d

dt
0f�σeth� for all σ ∈W�K� (σ ∈ � �K��

where σeth ∈ W�K� (σeth ∈ � �K�� is defined by
(
σeth

) �s� 
= σ�s�eth�s� for
s ∈ �0�1�


Remark 3.5. Suppose that f = F ◦ π� where � = �0 = s0 < s1 < s2 <
· · · < sn < 1� is a partition of �0�1� and F 
Kn → � is a smooth function. For
A ∈ � and i ∈ �1�2� 
 
 
 � n�� let

A�i�F�x1� x2� 
 
 
 � xn� =
d

dt
0F�x1� x2� 
 
 
 � xi−1� xietA� xi+1� 
 
 
 � xn��

so that A�i� is the action of A on the ith variable of F
 Then for h ∈ H (or
h ∈H0��

∂hf =
n∑
i=1

(
h�si��i�F

)
◦ π�
(3.4)

In particular ∂hf is still a smooth cylinder function. Therefore the operator
∂2hf is well defined and is given by

∂2hf =
n∑

i�j=1

(
h�sj��j�h�si��i�F

)
◦ π�
(3.5)
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Definition 3.6. Again suppose that f = F◦π� is a smooth cylinder func-
tion as in Definition 2.4. Define the Laplacians on W �K� and � �K�) by

/W�K�f ≡ ∑
h∈S

∂2hf

and

/� �K�f ≡ ∑
h∈S0

∂2hf

respectively.

Remark 3.7. Combining equations (3.1), (3.2) and (3.5) we find

/W�K�f = ∑
h∈S

n∑
i�j=1

(
h�sj��j�h�si��i�F

)
◦ π�

= ∑
A∈�0

n∑
i�j=1

G�si� sj�
(
A�j�A�i�F

)
◦ π�

(3.6)

and

/� �K�f = ∑
h∈S0

n∑
i�j=1

(
h�sj��j�h�si��i�F

)
◦ π�

= ∑
A∈�0

n∑
i�j=1

G0�si� sj�
(
A�j�A�i�F

)
◦ π�


(3.7)

Notation 3.8. Given � = �0 = s0 < s1 < s2 < 
 
 
 < sn < 1�� a partition of
�0�1� and F ∈ C∞�Kn�� let

L�F = ∑
A∈�0

n∑
i�j=1

G�si� sj�A�j�A�i�F(3.8)

and

L0
�F = ∑

A∈�0

n∑
i�j=1

G0�si� sj�A�j�A�i�F
(3.9)

With this notation we may write equations (3.6) and (3.7) as

/W�K��F ◦ π�� = �L�F� ◦ π� and /� �K��F ◦ π�� =
(
L0

�F
) ◦ π�
(3.10)

3.3. Heat equations.

Proposition 3.9. The processes 7�t� ·� and 70�t� ·� are diffusion processes
with /W�K� and /� �K� as generators. More precisely, if f = F◦π� is a cylinder
function as above, then

M
f
t = f�7�t� ·�� − f�e� − 1

2

∫ t
0

(
/W�K�f

) �7�τ� ·��dτ(3.11)
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and

N
f
t = f�70�t� ·�� − f�e� − 1

2

∫ t
0

(
/� �K�f

) �70�τ� ·��dτ(3.12)

are martingales.

Proof. We will only prove equation (3.11) since the proof of equation
(3.12) is completely analogous. Let 7��t� 
= π��7�t� ·�� ∈ Kn and B��t� =
�β�t� s1�� 
 
 
 � β�t� sn�� � then f�7�t� ·�� = F�7��t�� and by Itô’s lemma we have
that

df�7�t� ·�� = dF�7��t��

=
n∑
i=1

∑
A∈�0

A�i�F�7��t��βA�δt� si�

=
n∑
i=1

∑
A∈�0

A�i�F�7��t��βA�dt� si�

+ 1
2

n∑
i�j=1

∑
A�B∈�0

B�j�A�i�F�7��t��βA�dt� si�βB�dt� sj�

=
n∑
i=1

∑
A∈�0

A�i�F�7��t��βA�dt� si�

+ 1
2

∑n
i�j=1

∑
A∈�0 G�si� sj�A�j�A�i�F�7��t��dt

=
n∑
i=1

∑
A∈�0

A�i�F�7��t��βA�dt� si� + 1
2

(
/W�K�f

) �7�t� ·��dt

This shows that Mf

t is the martingale

M
f
t =

n∑
i=1

∑
A∈�0

∫ t
0
A�i�F�7��τ��βA�dτ� si�
 ✷

Corollary 3.10. The measures νt and ν0t satisfy the heat equations on
W�K� and � �K� in the following weak sense. If f 
 W�K� → � is a smooth
cylinder function then

∂tνt�f� = 1
2νt�/W�K�f�(3.13)

and

∂tν
0
t �f� = 1

2ν
0
t �/� �K�f�
(3.14)
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Proof. Taking expectations of equation (3.11) shows that

0 = ƐM
f
t = Ɛf�7�t� ·�� − f�e� − 1

2

∫ t
0
Ɛ
(
/W�K�f

) �7�τ� ·��dτ
= νt�f� − f�e� − 1

2

∫ t
0
ντ
(
/W�K�f

)
dτ


Differentiating this equation in t proves equation (3.13). Equation (3.14) is
proved analogously. ✷

Corollary 3.11 (Heat solution). Suppose that u 
 � �K� → � is a smooth
cylinder function and let

H�t� σ� =
∫
� �K�

u�σγ−1�dν0t �γ��(3.15)

then

∂tH�t� σ� = 1
2/� �K�H�t� σ� and lim

t→0
H�t� σ� = u�σ�(3.16)

Proof. For σ ∈ � �K�� let uσ 
 � �K� → � be the cylinder function defined
by uσ�γ� = u�σγ−1�
 Notice that for h ∈H�

�∂huσ� �γ� =
d

dε
0uσ�γeεh� =

d

dε
0u

(
σe−εhγ−1

)
= −∂h�σ → uσ�γ��

and therefore (
/� �K�uσ

) �γ� = /� �K��σ → uσ�γ��

Thus by Corollary 3.10,

∂tH�t� σ� = 1
2

∫
� �K�

(
/� �K�uσ

) �γ�dν0t �γ�
= 1

2

∫
� �K�

/� �K��σ → uσ�γ��dν0t �γ�

= 1
2/� �K�

(
σ →

∫
� �K�

uσ�γ�dν0t �γ�
)

= 1
2/� �K�H�t� σ�


Working with the explicitly representation of u as a cylinder function and
using equation (3.10), it is easy to justify the interchange of /� �K� with the
integral in the third equality. This proves the first assertion in equation (3.16).
The second follows from the dominated convergence theorem and the identity,

H�t� σ� = Ɛ
[
u�σ70�t� ·�−1�] �

where 70�t� s� is the process defined in equation (2.14) of Theorem 2.13. ✷
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4. The path group case. In the next subsection we will give a proof of
Theorem 2.15. However, before doing this let us record the following trivial
Corollary of Theorem 2.15 and Corollary 3.10 above. This corollary will be key
to our proof of the Airault Malliavin theorem in Section 5.

Corollary 4.1. The Wiener measure µt with variance t satisfies (weakly)
the heat equation on W�K�� that is, if f 
 W�K� → � is a smooth cylinder
function then

∂tµt�f� = 1
2µt�/W�K�f�
(4.1)

4.1. Proof of Theorem 2
15
 As mentioned in Section 2, the reader may
find this theorem in Lemma 1 of Airault and Malliavin [2] or Lemma 3.3 of
Srimurthy [31]. It would also be possible to give a proof using two parameter
stochastic calculus as developed in Norris [26]. Rather than introduce this
machinery, we will give a more pedestrian but perhaps less illuminating proof.
Our proof is similar to that in [31].

Let 7 denote the process defined in Theorem 2.13 and � = �0 = s0 < s1 <
s2 < 
 
 
 < sn < 1� be a partition of �0�1�
 Let

Ui�t� 
= 7�t� si�7�t� si−1�−1(4.2)

and

Bi�t� 
=
∫ t
0
Ad7�τ�si−1� �β�δτ� si� − β�δτ� si−1��(4.3)

for i = 1�2� 
 
 
 � n
 By equation (2.13) and Itô’s lemma,

δt7�t� s�−1 = −β�δt� s�7�t� s�−1

and therefore

δUi�t� = 7�t� si� �β�δt� si� − β�δt� si−1��7�t� si−1�−1

= Ui�t�Ad7�t�si−1� �β�δt� si� − β�δt� si−1��(4.4)

= Ui�t�δBi�t�

Because t→ β�t� si−1� and t→ β�t� si�−β�t� si−1� are independent Brownian
motions on ��

Ad7�t�si−1� �β�δt� si� − β�δt� si−1��

= Ad7�t�si−1� �β�dt� si� − β�dt� si−1��

+ 1
2Ad7�t�si−1��β�dt� si−1�� �β�dt� si� − β�dt� si−1����

= Ad7�t�si−1� �β�dt� si� − β�dt� si−1�� 
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Therefore the Stratonovich differentials in equation (4.3) may be replaced by
Itô differentials to learn that Bi�t� is the martingale

Bi�t� 
=
∫ t
0
Ad7�τ�si−1� �β�dτ� si� − β�dτ� si−1�� 


Claim. The processes B1�B2� 
 
 
 Bn are independent �-valued Brownian
motions with variances /is 
= si − si−1 for i = 1�2� 
 
 
 � n


To prove this claim, let C�D ∈ �� and let BC
i �t� = �Bi�t��C�� BD

j �t� =
�Bj�t��D� and /iβ�t� 
= β�t� si� − β�t� si−1�
 Then because �·� ·� is AdK-
invariant,

dBC
i �t� =

〈
Ad7�t�si−1�d/iβ�t��C

〉 = 〈
d/iβ�t��Ad−1

7�t�si−1�C
〉



Thus the differential of the quadratic co-variation of BC
i and BD

j is given by

dBC
i �t�dBD

j �t�

=
〈
d/iβ�t��Ad−1

7�t�si−1�C
〉〈
d/jβ�t��Ad−1

7�t�sj−1�D
〉

= ∑
A∈�0

〈
A�Ad−1

7�t�si−1�C
〉〈
A�Ad−1

7�t�sj−1�D
〉
d/iβ

A�t�d/jβA�t�

= δij
∑
A∈�0

〈
A�Ad−1

7�t�si−1�C
〉〈
A�Ad−1

7�t�si−1�D
〉
/isdt

= δij

〈
Ad−1

7�t�si−1�C�Ad
−1
7�t�si−1�D

〉
/isdt

= δij�C�D�/isdt�

(4.5)

wherein the third equality we have used: i) /iβA�·� = βA�·� si� − βA�·� si−1�
and /jβA�·� = βA�·� sj�−βA�·� sj−1� are independent if i  = j and /iβA�·� is a �-
valued Brownian motion with variance /is
 In the last equality we again have
used the AdK-invariance of �·� ·�
 Equation (4.5) along with Lévy’s criteria
proves the claim.

Since the Ui’s in equation (4.2) satisfy equation (4.5), the claim implies
that U1�t��U2�t�� 
 
 
 �Un�t� are independentK-valued Brownian motion with
variance /1s� /2s� 
 
 
 � /ns respectively. Suppose that f = F ◦ π� is a bounded
cylinder function on W�K�
 Define F̃ 
Kn → � so that

F�x1� x2� x3� 
 
 
 � xn� = F̃�x1� x2x−1
1 � x3x

−1
2 
 
 
 � xnx

−1
n−1�

for all xi ∈K
 Then
f�7�t� ·�� = F̃�U1�t��U2�t�� 
 
 
 �Un�t��

and therefore

νt�f� = Ɛf�7�t� ·�� = ƐF̃�U1�t��U2�t�� 
 
 
 �Un�t��

=
∫
Kn
F̃�x1� 
 
 
 � xn�

n∏
i=n

pKt/is�xi�dxi

(4.6)
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Let x0 
= e
 Using the invariance of Haar measure, make the translations

x2 → x2x
−1
1 then

x3 → x3x
−1
2 then






xn → xnx
−1
n−1

in the last integral of equation (4.6) to find

νt�f� =
∫
Kn
F̃�x1� x2x−1

1 · · ·xnx−1
n−1�

n∏
i=n

pK/ist�xix−1
i−1�dxi

=
∫
Kn
F�x1� x2� x3� 
 
 
 � xn�

n∏
i=n

pK/ist�xix−1
i−1�dxi(4.7)

=
∫
Kn
F�x1� x2� x3� 
 
 
 � xn�

n∏
i=n

pK/ist�x−1
i−1xi�dxi

wherein the last equality we have use the fact that pKt �·� is a class function;
see Remark 2.10.

Comparing equation (4.8) with equation (2.8), shows that νt�f� = µt�f�
for all bounded cylinder functions f on W�K� which implies that νt = µt by
Lemma 2.7.

5. Proof of the Airault-Malliavin Theorem 2.18. This section is de-
voted to the proof of Theorem 2.18. We will need some, mostly well known,
preliminary results regarding integration by parts on �W�K�� µt�
 These re-
sults will be gathered in the next subsection.

5.1. Integration by parts and strong differentiability. The key result here
for the remainder of the paper is Corollary 5.6. The reader may skip this
subsection if she/he is willing to accept Corollary 5.6 below.

Definition 5.1. Let L∞−�W�K�� µt� = ∩1≤p<∞Lp�W�K�� µt� and h ∈ H

A function f ∈ L∞−�W�K�� µt� is said to be strongly h differentiable provided
there is a function g ∈ L∞−�W�K�� µt� such that

g = Lp�µt�– lim
ε→0

f�σeεh� − f�σ�
ε

for all 1 ≤ p <∞
 We will denote the function g, if it exists, by ∂hf


Cylinder functions are strongly h-differentiable for all h ∈ H and ∂hf is
given by equation (3.4). Another example is given in Lemma 5.5 below.
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Definition 5.2. An element k ∈ W�K� is a finite energy path if k is
absolutely continuous and∫ 1

0

∣∣k−1�s�k′�s�∣∣2
�
ds <∞


Letting k ∈W�K� be a finite energy path and bs being as in equation (2.17),
then for µt-a.e. σ ∈W�K��

bs�σk� =
∫ s
0
�σ�r�k�r��−1 δ �σk� �r�

=
∫ s
0
k−1�r�σ−1�r��δσ�r�k�r� + σ�r�k′�r�dr�(5.1)

=
∫ s
0
Adk−1�r�dbr�σ� +

∫ s
0
k−1�r�k′�r�dr


Since Adk−1�r� is orthogonal on �� Lévy’s characterization of Brownian motion
shows that Bs 
=

∫ s
0 Adk−1�r�dbr on �W�K�� µt� is still a Brownian motion with

variance t
 This observation and the Cameron-Martin theorem is essentially
the proof of the following quasi invariance theorem of Albeverio and Hoegh-
Krohn; see [4], [29] and [28].

Theorem 5.3 (Albeverio and Hoegh-Krohn). Let k be a finite-energy path
on K and f 
W �K� → � be a bounded measurable function. Then∫

W�K�
f�σ�dµt�σ� =

∫
W�K�

f�σk�Jk�σ�dµt�σ��(5.2)

where

Jk 
= exp
(
−1
t

∫ 1

0
�k′�s�k−1�s�� dbs� −

1
2t2

∫ 1

0

∣∣k′�s�k−1�s�∣∣2 ds) 
(5.3)

Proof of Theorem 5.3. Let h�s� 
= ∫ s
0 k

−1�r�k′�r�dr� Bs 
=
∫ s
0Adk−1�r�dbr�

and f̃ be a measurable function on C��0�1� → �� such that f̃�b·�σ�� = f�σ� for
µt-a.e. σ
 Using the AdK-invariance of the inner product �·� ·� on �� we have∫ 1

0

∣∣k′�r�k−1�r�∣∣2 dr =
∫ 1

0

∣∣k−1�r�k′�r�∣∣2 dr
and ∫ 1

0
�k′�r�k−1�r�� dbr� =

∫ 1

0
�k′�r�k−1�r��Adk�r�dBr�

=
∫ 1

0
�Adk−1�r�k

′�r�k−1�r�� dBr�

=
∫ 1

0
�k−1�r�k′�r�� dBr�
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Combining these equations show that Jk may be written as

Jk 
= exp
(
−1
t

∫ 1

0
�h′� dBr� −

1
2t2

∫ 1

0

∣∣h′�r�∣∣2 dr) 
(5.4)

By equation (5.2),∫
W�K�

f�σk�Jk�σ�dµt�σ� =
∫
W�K�

f̃�b·�σk��Jk�σ�dµt�σ�

=
∫
W�K�

f̃�B·�σ� + h�Jk�σ�dµt�σ�(5.5)

=
∫
W�K�

f̃�B·�σ��dµt�σ�

wherein the last equality we have used the Cameron-Martin (or Girsanov’s)
theorem. Since B and b have the same laws, being �-valued Brownian motions
with variance t�∫

W�K�
f̃�B·�σ��dµt�σ� =

∫
W�K�

f̃�b·�σ��dµt�σ� =
∫
W�K�

f�σ�dµt�σ�
(5.6)

Combining equation (5.4), (5.5) and (5.6) proves the theorem. ✷

Corollary 5.4. Let h ∈ H ��� and suppose that f and g are strongly h-
differentiable, then

µt�g∂hf� = µt��−∂hg + jhg�f�(5.7)

where

jh 
= 1
t

∫ 1

0
�h′ �s� � dbs� 
(5.8)

This corollary has been proved in the more general context of Wiener mea-
sure on a Riemannian manifold in Driver [12].

Proof of Corollary 5.4. Let k = eεh and replace f by fg in equation
(5.2) of Theorem 5.3 to find

µt�fg� =
∫
W�K�

f�σeεh�g�σeεh�Jeεh�σ�dµt�σ�


Differentiate this equation in ε implies

0 = µt

(
∂hf · g + f∂hg + fg

d

dε

∣∣∣∣
0
Jeεh

)

which proves the corollary provided that

d

dε

∣∣∣∣
0
Jeεh = −jh in Lp�µt� for all p ∈ �1�∞�


We will not carry out the convergence details here which are fairly routine. The
interested reader may refer to Gross [21] or Section 9 in [12]. However, let us
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check “algebraically” that the formula in equation (5.8) is correct. Computing
d
dε
0Jeεh gives

d

dε

∣∣∣∣
0
Jeεh =

d

dε

∣∣∣∣
0
exp

(
−1
t

∫ 1

0

〈(
d

dr
eεh�r�

)
e−εh�r�� dbr

〉

− 1
2t2

∫ 1

0

∣∣∣∣
(
d

dr
eεh�r�

)
eεh�r�

∣∣∣∣
2

dr

)

= −1
t

d

dε

∣∣∣∣
0

[∫ 1

0

〈(
d

dr
eεh�r�

)
e−εh�r�� dbr

〉

− 1
2t2

∫ 1

0

∣∣∣∣
(
d

dr
eεh�r�

)
eεh�r�

∣∣∣∣
2

dr

]

= −1
t

∫ 1

0
�h′�r�� dbr�

because

d

dε

∣∣∣∣
0

(
d

dr
eεh�r�

)
e−εh�r� = h′�r�

and

d

dε

∣∣∣∣
0

∣∣∣∣
(
d

dr
eεh�r�

)
eεh�r�

∣∣∣∣
2

=2
〈(

d

dr
eεh�r�

)
eεh�r�

∣∣∣∣
ε=0

�
d

dε

∣∣∣∣
0

(
d

dr
eεh�r�

)
eεh�r�

〉

=2
〈
0�

d

dε

∣∣∣∣
0

(
d

dr
eεh�r�

)
eεh�r�

〉
= 0
 ✷

Lemma 5.5. For each h ∈ H� the function jh is strongly h differentiable
and

∂hjh = 1
t

∫ 1

0

〈
adh�r�h

′�r�� dbr�σ�
〉+ 1

t

∫ 1

0
h′�r�2dr
(5.9)

Proof. According to equation (5.2),

jh�σeεh� =
1
t

∫ 1

0

〈
h′�r��Ade−εh�r�dbr�σ� + e−εh�r�

d

dr
eεh�r� dr

〉

= 1
t

∫ 1

0
�Adeεh�r�h′�r�� dbr�σ�� +

1
t

∫ 1

0

〈
h′�r�� e−εh�r� d

dr
eεh�r� dr

〉



Therefore, again ignoring convergence questions,

∂hjh�σ� =
d

dε

∣∣∣∣
0
jh�σeεh� =

1
t

∫ 1

0

〈
adh�r�h

′�r�� dbr�σ�
〉+ 1

t

∫ 1

0
h′�r�2dr


Here the convergence questions are even easier since we only have jointly
Gaussian random variables to contend with and L2-convergence of Gaussian
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random variables implies Lp convergence for p < ∞
 The reader may find
more details in Section 4 of Gross [20]. ✷

The following Corollary is a key ingredient in our proof of the Airault-
Malliavin Theorem 2.18.

Corollary 5.6. Let f be a smooth cylinder function �see Definition 2
4�
and h ∈H ��� such that the Lie bracket �h �s� � h′ �s�� = 0 for a
e
 s
 Then

µt�∂2hf� = µt

([
j2h −

1
t

∫ 1

0
h′�r�2dr

]
f

)
�

where jh� is as in equation �5
8�


Proof. Two applications of Corollary 5.4 give

µt�∂2hf� = µt�jh∂hf� = µt�
(−∂hjh + j2h

)
f�

which combined with equation (5.9) of Lemma 5.5 proves the corollary. ✷

5.2. Proof of Theorem 2
18
 Let f = F◦π� be a cylinder function on � �K�
(see Definition 2.4) and let α ∈ �sn�1�
 (We will eventually let α → 1
� Recall
the definition of pinned Wiener measure µ0

t (see Definition 2.11) says that
µ0
t �f� = µt�fηt� where ηt 
= pKt�1−α��πα�/pKt �e�
 Therefore, by Corollary 4.1,

∂tµ
0
t �f� = ∂tµt �fηt�

= µt �f∂tηt� + 1
2µt

(
/W�K� �fηt�

)
(5.10)

= Iα +Jα


Now

Iα = µt�f∂tηt�

= 1

2pKt �e�
�1− α�µt

(
f/Kp

K
t�1−α��πα�

)
− ∂t lnp

K
t �e�µ0

t �f�

(5.11)

By equation (2.8),

µt�f/KpKt�1−α��πα�� =
∫
K
G�α� x�/KpKt�1−α��x�dx

=
∫
K
/KG�α� x�pKt�1−α��x�dx

where

G�α� x� 
=
∫
Kn
F �x1� 
 
 
 � xn�pKt�α−sn��x−1

n x�
n∏
i=1

pKt/is
(
x−1
i−1xi

)
dxi


From this expression we see that /KG�α� x� remains bounded as α → 1� so
that letting α→ 1 in equation (5.11) gives

lim
α→1

Iα = −µ0
t �f∂t logpKt �e��
(5.12)
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We proceed to work on the second term, Jα� in equation (5.10). Let �α be
the partition of �0�1��

�α = {
0 = s0 < s1 < s2 < · · · < sn < α < 1

}
�

and set sn+1 = α
 Define Gα
0�s� t� = �s ∧ t− α−1st� so that

G�s� t� = s ∧ t = Gα
0�s� t� + α−1st


Let η̃t�x1� x2� 
 
 
 � xn+1� = pKt�1−α��xn+1�/pKt �e� and by abuse of notation use
F again to denote the function �x1� x2� 
 
 
 � xn+1� ∈Kn+1 → F�x1� x2� 
 
 
 � xn�

Then by equations (3.10) and (3.8) applied to the partition �α,

/W�K��fηt� = L�α
�Fη̃t� ◦ π�α

=
n+1∑
i�j=1

∑
A∈�0

Gα
0

(
si� sj

)
A�i�A�j��Fη̃t� ◦ π�α

+
n+1∑
i�j=1

∑
A∈�0

α−1sisjA
�i�A�j��Fη̃t� ◦ π�α

= Sα +Tα


(5.13)

Now for A ∈ �� let

hαA�s� 
= α−1/2�s ∧ α�A

Then, by equation (3.5),

Tα = ∑
A∈�0

∂2hαA
�fηt�
(5.14)

For the Sα term in equation (5.13), notice that by construction Gα
0�s� t� = 0 if

s or t is in �0� α�
 Therefore Gα
0

(
si� sj

) = 0 if i or j = n+ 1 (i.e., si or sj is α�
so that

Sα =
n∑

i�j=1

∑
A∈�0

Gα
0

(
si� sj

)
A�i�A�j��Fη̃t� ◦ π�α

= η̃t ◦ π�α
·

n∑
i�j=1

∑
A∈�0

Gα
0

(
si� sj

) �A�i�A�j�F� ◦ π�


(5.15)

Taking the µt expectation of equation (5.13) and making use of equation (5.14)
and (5.15) shows that Jα from equation (5.11) satisfies

Jα = 1
2µ

0
t

(
n∑

i�j=1

∑
A∈�0

Gα
0

(
si� sj

) �A�i�A�j�F� ◦ π�

)

+ 1
2µt

(∑
A∈�0

∂2hαA
�fηt�

)

= J�1�
α +J�2�

α 
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Since Gα
0 → G0 as α→ 1�

lim
α→1

J�1�
α = 1

2µ
0
t

(
n∑

i�j=1

∑
A∈�0

G0
(
si� sj

) �A�i�A�j�F� ◦ π�

)

= 1
2µ

0
t

(
n+1∑
i�j=1

∑
A∈�0

G0
(
si� sj

) �A�i�A�j�F� ◦ π�

)
(5.16)

= 1
2µ

0
t

(
/� �K�f

)
�

where we have used equation (3.10) for the last equality.
By Corollary 5.6,

2J�2�
α = ∑

A∈�0
µt

([
j2hαA

− 1
t

∫ 1

0

∣∣∣∣ ddrhαA�r�
∣∣∣∣
2

dr

]
fηt

)

= ∑
A∈�0

µ0
t

([
j2hαA

− 1
t

∫ 1

0

∣∣∣∣ ddrhαA�r�
∣∣∣∣
2

dr

]
f

)
�

where [by equation (5.8)]

jhαA = 1√
αt

∫ α
0
�A�dbs� =

1√
αt

∫ α
0
�A�dbs� =

1√
αt

�A�bα�


Using these facts and

∫ 1

0

∣∣∣∣ ddrhαA�r�
∣∣∣∣
2

dr = 1
α

∫ α
0
A2dr = A2�

we see that

J�2�
α = 1

2
µ0
t

(
1
αt2

∣∣bα∣∣2 − 1
t
dim �

)

and hence by Remark 2.17,

lim
α→1

J�2�
α = 1

2
µ0
t

(
1
t2

∣∣b1∣∣2 − 1
t
dim �

)

(5.17)

Assembling equations (5.17) and (5.17) shows that

lim
α→1

Jα = 1
2
µ0
t

(
/� �K�f+

[
1
t2
b12 −

1
t
dim �

]
f

)

(5.18)

Combining equations (5.10), (5.12) and (5.18) proves the theorem. ✷

Corollary 5.7. Suppose that u 
 � �K� → � is a smooth cylinder function
and let

G�t� σ� =
∫
� �K�

u�σγ−1�dµ0
t �γ��(5.19)
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then

∂tG�t� σ� = 1
2/� �K�G�t� σ� +

∫
� �K�

Vt�γ�u�σγ−1�dµ0
t �γ�
(5.20)

Proof. As in the proof of Corollary 3.11, let uσ 
 � �K� → � be the cylin-
der function defined by uσ�γ� = u�σγ−1�
 By the Airault Malliavin Theorem
2.18,

∂tG�t� σ� =
∫
� �K�

[ 1
2

(
/� �K�uσ

) �γ� +Vt�γ�uσ�γ�
]
dµ0

t �γ�


Using the same method of proof used for Corollary 3.11, we see that this
equation is the same as equation (5.20). ✷

6. Absolute continuity of heat kernel with respect to pinned Wiener
measure. In this section we will prove the main Theorem 2.16. We will first
need a couple of preliminary results.

Lemma 6.1 (Asymptotic properties of heat Kernels on K). The heat kernel,
pKt � on K has the following properties

1. limt→0�2πt�

1
2 dim �pKt �e� = 1


2. For every T <∞� there is a constant MT <∞ such that

pKt �x� ≤MTt
−dim �/2 exp

(
− 1
4t
d2�e� x�

)
for all x ∈K and 0 < t ≤ T

where d�x�y� is the distance associated to the bi-invariant Riemannian
metric on K which agrees with �·� ·�� at e ∈K


Proof. These are standard properties of heat kernels. For item 1, see The-
orem 2.30 of [6]. See also [25]. For the second item see, for example, Theorem
IX.1.2 in [32]. To apply this theorem, use the fact that K is compact so the
modular function is constant. It is also necessary to note that the time param-
eter in [32] is twice our time parameter t
 ✷

Lemma 6.2 (µ0
t → δe as t→ 0). Let f 
 � �K� → � be a continuous cylin-

der function, then

lim
t→0+

µ0
t �f� = f�e��(6.1)

where e denotes the identity loop in � �K�� see Notation 1
2


Proof. This result can be proved in a number of ways. For example one
could use the Kolmogorov’s continuity criteria to show that µ0

t concentrates
near the identity loop as t → 0
 See the argument in the proof of Item 1 of
Theorem 2.3 in [13]. Rather than carry this out in full detail, we will only
prove what we need.
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Let � be a partition of �0�1� as in equation (2.3), f = F ◦ π� and ρ� 

�0�∞� × Kn → �0�∞� be as in equation (2.10). By Lemma 6.1, there is a
constant M<∞ such that

ρ��t� x� ≤Mt
1
2 dim �

n+1∏
i=1

�t/is�−dim �/2 exp
(
− 1
4t/is

d2�e� x−1
i−1xi�

)
for all t∈ �0�1��

where x = �x1� 
 
 
 � xn�� /is = si − si−1� and x0 = xn+1 = e ∈ K
 By the
left invariance of the Riemannian metric on K� d�x�y� = d�e� x−1y�� so the
previous inequality may be written as

ρ��t� x� ≤M�t
− n

2 dim � exp

(
− 1
4t

n+1∑
i=1

d2�xi−1� xi�
/is

)
(6.2)

where M� 
= M
∏n+1
i=1 �/is�−dim �/2
 Now let δ > 0 be given, and suppose that

d�e� xi� ≥ δ for some i ∈ �1�2� 
 
 
 � n�� then by the triangle inequality and the
Cauchy-Schwarz inequality,

δ2 ≤ d2�e� xi� ≤
(

i∑
j=1

d�xj−1� xj�
)2

≤
(
n+1∑
i=1

d�xj−1� xj�√
/js

√
/js

)2

≤
n+1∑
i=1

/is ·
n+1∑
i=1

d2�xi−1� xi�
/is

=
n+1∑
i=1

d2�xi−1� xi�
/is

Combining this estimate with equation (6.2) implies

ρ��t� x� ≤M�t
− n

2 dim � exp
(
− 1
4t

|x|2
)

(6.3)

where

|x| 
= max�d�e� xi� 
 i = 1�2� 
 
 
 � d�

Therefore ρ��t� ·� satisfies:

1. ρ��t� x� > 0

2.
∫
Kn ρ��t� x�dx = 1 where dx is Haar measure on Kn


3. For any δ > 0� ρ��t� x� → 0 uniformly in x ∈Kn with x ≥ δ


It is now routine to show, using these three properties, that

lim
t→0

∫
Kn
F�x�ρ��t� x�dx = F�e� e� 
 
 
 � e�

which is equivalent to equation (6.1). ✷
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6.1. Proof of Theorem 2
16
 Let u be a smooth non-negative cylinder func-
tion on � �K� and let Ct be as in equation (2.16). Notice that d

dt
Ct = ct (ct is

defined in equation (2.19) of the Airault-Malliavin Theorem 2.18) and because
of Lemma 6.1, limt→0Ct = 0
 Define

H�t� σ� =
∫
� �K�

u�σγ−1�dν0t �γ�

and

F �t� σ� = eCt

∫
� �K�

u
(
σγ−1)dµ0

t �γ� �

then by Corollary 3.11

∂tH�t� σ� = 1
2
/� �K�H�t� σ� and lim

t→0
H�t� σ� = u�σ�(6.4)

and by Corollary 5.7

∂tF�t� σ� = 1
2
/� �K�F�t� σ� + eCt

∫
� �K�

�Vt�γ� + ct�u�σγ−1�dµ0
t �γ�

= 1
2
/� �K�F�t� σ� + eCt

∫
� �K�

1
2t2

∣∣b1�γ�∣∣2� u�σγ−1�dµ0
t �γ�

≥ 1
2
/� �K�F�t� σ�


Combining this with Lemma 6.2, shows that

∂tF�t� σ� ≥ 1
2/� �K�F�t� σ� and lim

t→0
F�t� σ� = u�σ�
(6.5)

The idea now is to use equations (6.4), (6.5) and the maximum principle to
conclude that

F�t� σ� ≥H�t� σ� for all 0 ≤ t <∞ and σ ∈ � �K�
(6.6)

We will postpone the full justification of equation (6.6) to Lemma 6.3 below.
Writing out equation (6.6) when σ is the constant loop e, shows that∫

� �K�
u�γ−1�dν0t �γ� ≤ eCt

∫
� �K�

u
(
γ−1)dµ0

t �γ�

for all non-negative smooth cylinder functions u
 Replacing u by the cylinder
function ũ�γ� = u�γ−1� then implies that∫

� �K�
u�γ�dν0t �γ� ≤ eCt

∫
� �K�

u �γ�dµ0
t �γ�(6.7)

for all non-negative smooth cylinder functions u

Since, by Lemma 2.7, bounded smooth cylinder functions are dense in

L2�� �K��� � µ0
t + ν0t ��
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by passing to the limit, we may conclude that equation (6.7) is valid for all
bounded non-negative � -measurable functions u
 By taking u to be character-
istic functions and using the Radon-Nikodym theorem, equation (6.7) implies
that ν0t is absolutely continuous relative to µ0

t 
 Letting Zt 
= dν0t /dµ
0
t we may

conclude from equation (6.7) that∫
� �K�

u ·
(
Zt − eCt

)
dµ0

t ≤ 0

for all bounded measurable functions u and hence that Zt − eCt ≤ 0


Lemma 6.3. Keeping the same notation as above, equation �6
6� is valid.

Proof. In order to justify the use of the maximum principle to prove equa-
tion (6.6), write u = U ◦ π�� where � is a partition as in equation (2.3) and
U 
Kn → �0�∞� is a smooth function. Then

H�t� σ� =
∫
� �K�

u�σγ−1�dν0t �γ� =
∫
� �K�

U�π��σ�π��γ�−1�dν0t �γ�
=H��t� π��σ���

(6.8)

where for x ∈Kn�

H��t� x� =
∫
� �K�

U�xπ��γ�−1�dν0t �γ�

=
∫
Kn
U�xy−1�p�

t �y�dy�
(6.9)

and p�
t �y�dy = Law�π��7�t� ·��
 By the proof of Proposition 3.9, π��7�t� ·�

is a diffusion on Kn with elliptic generator L0
� defined in equation (3.9).

Thus p�
t �y� is the smooth heat kernel for the operator etL

0
�/2
 This shows that

H��t� x� is smooth on �0�∞�×Kn
 Using this information, equation (6.4) may
be recast as the finite dimensional statement

∂tH��t� x� = 1
2L

0
�H��t� x� and lim

t→0
H��t� x� = U�x�
(6.10)

Similarly,

F �t� σ� = eCt

∫
� �K�

u
(
σγ−1)dµ0

t �γ� = eCt

∫
� �K�

U�π��σ�π��γ�−1�dµ0
t �γ�

= F��t� π��σ���
where for x ∈Kn�

F��t� x� = eCt

∫
� �K�

U�xπ��γ�−1�dµ0
t �γ�

= eCt

∫
Kn
U�xy−1�ρ��t� y�dy

where ρ� 
 �0�∞� ×Kn → �0�∞� is the smooth function defined in equation
(2.10) of Definition 2.11. This shows that F��t� x� is smooth on �0�∞� ×Kn
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Using this information, equation (6.4) may be recast as the finite dimensional
statement

∂tF��t� x� ≥ 1
2L

0
�F��t� x� and lim

t→0
F��t� x� = U�x�
(6.11)

Now there is no problem in applying the maximum principle on Kn, using
Eqs. (6.10) and (6.11), to conclude that

F��t� x� ≥H��t� x� for all 0 ≤ t <∞ and x ∈Kn


This completes the proof since this last assertion is equivalent (6.6). ✷

7. The K = ��d and S1 cases. In this section, we will work out the explicit
relationship between µ0

t and ν
0
t in the case thatK is the abelian Lie group �d

or S1


7.1. The K = �d case. Let K be the Lie group �d with group operation
being addition. The Lie algebra of �d is � = �d with the trivial lie bracket,
�a� b� = 0 for all a� b ∈ �d
 Although �d is not compact and is not being repre-
sented as a matrix group, the theory above easily extends to this case. There
is one notational point to take care of now. Namely, the matrix expression of
the form g−1δg must now be interpreted as Lg−1∗δg = δg
 We will assume
that �a� b� = a · b is the usual dot product, although any inner product would
work.

Lemma 7.1. On the loop space of �d� � ��d�� the heat kernel measures ν0t
and the pinned Wiener measures, µ0

t � are the same.

Proof. The process 70�t� s� in Theorem 2.13 and the process g in equation
(2.5) of Definition 2.8 are explicitly given by 70�t� s� = χ�t� s� and gs = β�t� s�
respectively. Since gs = β�t� s� is a standard Brownian motion with variance
t� the pinned Wiener measure µ0

t = Law�g·g1 = 0� is the law of an �d-valued
Brownian bridge with variance t
 But s → χ�t� s� is a Brownian bridge with
variance t (see Remark 2.12), so that µ0

t = Law�χ�t� ·�� = Law�70�t� ·�� = ν0t 


7.2. The K = S1 case. Let K = S1 = �z ∈ 	 
 |z| = 1�
 The Lie algebra of
K is � = i� with the trivial Lie bracket. We will identify with � = i� with ��
putting in the i explicitly when needed. Let �a� b� = ab for a� b ∈ � ∼=i� =�


Remark 7.2. Let pt�x� = p�
t �x� = �2πt�−1/2 exp (− 1

2tx
2
)
be the heat ker-

nel on �� and qt�z� = 1
2πp

S1

t �z� denote the heat kernel on S1 relative to the
un-normalized Haar measure “dθ�” that is, for f 
 S1 → ��∫

S1
fdθ 
=

∫ 2π

0
f�eiθ�dθ


The well know relationship between qt and pt is

qt�eiθ� =
∞∑

n=−∞
pt�θ− 2πn� for θ ∈ �
(7.1)
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To check equation (7.1), suppose that f0 
 S1 → � is a continuous function.
Then

f�t� z� =
∫ 2π

0
f0�ze−iα�qt�eiα�dα

solves the heat equation on S1 which is equivalent to saying that F�t� θ� 
=
f�t� eiθ� solves the heat equation on �
 Since F is a bounded solution to the
heat equation it is given by∫ 2π

0
f0�ze−iα�qt�eiα�dα = F�t� θ� =

∫ ∞

−∞
F�0� θ− α�pt�α�dα

=
∫ ∞

−∞
f0�ze−iα�pt�α�dα

=
∞∑

n=−∞

∫ 2π

0
f0�ze−i�α−2πn��pt�α− 2πn�dα

=
∞∑

n=−∞

∫ 2π

0
f0�ze−iα�pt�α− 2πn�dα

where z = eiθ
 This equation, holding for all continuous f0 
 S1 → �� proves
equation (7.1).

Definition 7.3. For n ∈ 
� let hn�s� 
= 2πns�

zn�s� = ei2πns = eihn�s�

and let νnt be the left translation of ν0t by zn� that is, νnt is the probability
measure on � �S1� such that∫

� �S1�
f�σ�dνnt �σ� =

∫
� �S1�

f�znσ�dν0t �σ�


Also let �n�S1� denote those σ ∈ � �S1� which are homotopic to zn


Remark 7.4. The loops �zn�∞n=−∞ are representatives from each of the ho-
motopy classes of� �S1�� that is,� �S1� is the disjoint union of

{
�n�S1�}∞

n=−∞ 


By the construction of ν0t in Theorem 2.13, the measure ν0t is concentrated on
�0�S1� and therefore νnt is concentrated on �n�S1�� that is, νnt ��m�S1�� = δmn.

Proposition 7.5. The relationship between pinned Wiener measure µ0
t and

heat kernel measure ν0t on � �S1� is

µ0
t =

1
qt�1�

∞∑
n=−∞

pt�2πn�νnt 


In particular

µ0
t �0�S1� =

1
qt�1�

pt�0�ν0t =
( ∞∑
n=−∞

exp
{
− 1
2t

�2πn�2
})−1

ν0t 
(7.2)
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Proof. To simplify notation, let Bs = β�t� s�
 Using Itô’s formula, one
easily shows that the process 70�t� s� in Theorem 2.13 and the process g in
equation (2.5) of Definition 2.8 are given by 70�t� s� = eiχ�t�s� and gs = eiβ�t�s� =
eiBs respectively. Suppose that f 
 � �S1� → � is a cylinder function as in
Definition 2.4. then for α ∈ �sn�1��

µ0
t �f� = Ɛ

[
f�g�qt�1−α��gα�

qt�1�
]

= Ɛ

[
f�eiB· �qt�1−α��e

iBα�
qt�1�

]

= 1
qt�1�

Ɛ

[
f�eiB· �

∞∑
n=−∞

pt�1−α��Bα − 2πn�
]

= 1
qt�1�

∞∑
n=−∞

Ɛ
[
f�eiB· �pt�1−α��Bα − 2πn�] 


(7.3)

Let hn�s� 
= 2πns�hαn�s� = 2πn �s ∧ α� � and F�B� = f�eiB· �, so that F is a
bounded cylinder function W���
 By the Cameron–Martin theorem (making
the translation B· → B· + hαn��

Ɛ�F�B�pt�1−α��Bα − 2πn��

= Ɛ

[
F�B+ hαn�pt�1−α��Bα − 2πn�1− α��

· exp
(
−1
t

∫ α
0
2πndBs −

1
2t

∫ α
0
�2πn�2ds

)]

= Ɛ

[
F�B+ hn�pt�1−α��Bα − 2πn�1− α��

· exp
(
−2πn

t
Bα −

1
2t
α�2πn�2

)]



(7.4)

By direct computation,

pt�1−α��x− y�1− α�� = pt�1−α��x� · exp
(
1
t
xy− 1

2t
�1− α�y2

)
and thus taking x = Bα and y = 2πn�

pt�1−α��Bα − 2πn�1− α�� · exp
(
−2πn

t
Bα −

1
2t
α�2πn�2

)

= pt�1−α��Bα� · exp
(
− 1
2t

�2πn�2
)



(7.5)

Combining equations (7.4) and (7.5) shows that

Ɛ�F�B�pt�1−α��Bα − 2πn��

= �2πt�−1/2 exp
(
− 1
2t

�2πn�2
)
Ɛ

[
F�B+ hn�

pt�1−α��Bα�
pt�0�

]

= pt�2πn�Ɛ �F�χ�t� ·� + hn��
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wherein the second equality we have used equation (2.11) of Remark 2.12.
Using this equation, with F�B� = f�eiB�� in equation (7.3) gives

µ0
t �f�=

1
qt�1�

∞∑
n=−∞

pt�2πn�Ɛ
[
f�ei�χ�t�·�+hn��

]

= 1
qt�1�

∞∑
n=−∞

pt�2πn�Ɛ
[
f�zneiχ�t�·��

]

= 1
qt�1�

∞∑
n=−∞

pt�2πn�νnt �f�
 ✷

APPENDIX: QUADRATIC VARIATIONS

Lemma A.1. As above, for A ∈ � let βA�t� s� = �β�t� s��A�� and χA�t� s� =
�χ�t� s��A��. Let A�B ∈ � and s� σ ∈ �0�1�� then

βA�dt� s�βB�dt� σ� = �A�B��G �s� σ�dt�
χA�dt� s�χB�dt� σ� = �A�B��G0 �s� σ�dt

and for t� τ ∈ �0�∞��
βA�t� ds�βB�τ� ds� = �A�B��G�t� τ�ds


Proof. Let ��t� be an abstract filtration (satisfying the “usual hypoth-
esis”) and suppose that Mt and Nt are two continuous ��t� adapted pro-
cesses such that �Mt −Ms�Nt −Ns� is independent of �s for all t > s and
ƐMt = ƐNt = 0 for all t ≥ 0
 Then clearlyM andN are ��t�-martingales. We
now also assert that

MtNt − Ɛ �MtNt� is a martingale(A.1)

Assuming equation (A.1) for the moment, we may conclude the differential
MdtNdt of the quadratic co-variation of M and N is given by

MdtNdt = dtƐ�MtNt�
(A.2)

The lemma then follows from repeated application of equation (A.2). For ex-
ample, taking Mt = βA�t� s� and Nt = βB�t� σ�� we learn that

βA�dt� s�βB�dt� σ� = dtƐ
[
βA�t� s�βB�t� σ�

]
= �A�B��G �s� σ�dt


To prove equation (A.1), let t > s� /M = Mt −Ms� /N = Nt −Ns and
Ɛs = Ɛ�·�s�
 Then using the martingale properties of M and N and the inde-
pendent increment assumption we find

Ɛs �MtNt −MsNs� = Ɛs ��Ms + /M��Ns + /N� −MsNs� = Ɛs �/M/N�
= Ɛ��Mt −Ms� �Nt −Ns�� = Ɛ��Mt −Ms� �Nt +Ns��
= Ɛ�MtNt� − Ɛ�MsNs�
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Rearranging the terms of the result of this computation shows that

Ɛs �MtNt − Ɛ�MtNt�� =MsNs − Ɛ�MsNs�

as desired. ✷
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de probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180 265–439. Springer,
Berlin.

Department of Mathematics, 0112
University of California, San Diego
La Jolla, Calfironia 92093–0112

99 Brookline Street
Apt. 3
Cambridge, Massachusetts 02139


