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STABILITY OF PERPETUITIES

By Charles M. Goldie and Ross A. Maller1

University of Sussex and University of Western Australia

For a series of randomly discounted terms we give an integral criterion
to distinguish between almost-sure absolute convergence and divergence in
probability to ∞, these being the only possible forms of asymptotic behav-
ior. This solves the existence problem for a one-dimensional perpetuity that
remains from a 1979 study by Vervaat, and yields a complete characteriza-
tion of the existence of distributional fixed points of a random affine map
in dimension one.

1. Introduction. Let � be a random affine map from � to itself, given by

��t�ω� �= Q�ω� + M�ω�t� ω ∈ �� t ∈ ��

where Q and M are r.v.s (random variables) on a probability space ���� �P�.
Of course we normally omit the argument ω and write just ��t� �= Q + Mt.
A (distributional) fixed point of � is a probability law on �, of a r.v. R, say,
such that

R
L=Q + MR� R independent of �Q�M��(1.1)

where L= denotes equality of probability laws. In Section 3 of this paper we
solve the problem of finding necessary and sufficient conditions for existence
of a fixed point.
It is natural to attempt to approach a fixed point by iteration, and for that

purpose we suppose the existence on the probability space of a sequence of
random affinemaps ��n�n∈N, mutually independent and identically distributed
with �. Thus for each n, �n�t� �= Qn + Mnt for all t ∈ �, and(

Q
M

)
�

(
Q1
M1

)
�

(
Q2
M2

)
� � � �

are to be i.i.d. (independent, identically distributed) random elements of �2.
Outer iteration starts from a r.v. R0 independent of the sequence ��n� and

often taken to be a nonrandom constant r, or just 0, and forms successively
R1�R2� � � � by

Rn+1 �= �n+1�Rn� = Qn+1 + Mn+1Rn� n = 0�1�2� � � � �(1.2)
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We write Rn as Rn�R0� to bring out the dependence on R0. Then

Rn�R0� =
n∑

i=1
Qi

n∏
j=i+1

Mj + R0

n∏
j=1

Mj�

We have that �Rn�R0��n=0�1���� is a Markov sequence, and we may ask about
its recurrence, transience, etc. Our results lead to a complete characterization
of its positive recurrence.

Inner iteration, by contrast, starts from an affine map Z0�t� �= t for all t,
and forms successively the random affine maps Z1�·��Z2�·�� � � � by

Zn+1�t� �= Zn ◦ �n+1�t� = Zn�Qn+1 + Mn+1t�� n = 0�1� � � � �

We then have Zn�t� = ∑n
k=1�k−1Qk + �nt, where throughout the paper we

write

�n �=


n∏
k=1

Mk� n = 1�2� � � �,

1� n = 0�
(1.3)

Often we are interested just in

Zn �= Zn�0� =
n∑

k=1
�k−1Qk� n = 0�1� � � � �

However it is useful also to allow for a randomized initial value, as with outer
iteration discussed above, so we replace t in Zn�t� by a r.v. Z0 independent of
the sequence ��n�, and then have

Zn�Z0� =
n∑

k=1
�k−1Qk + �nZ0� n = 0�1� � � � �(1.4)

The sequence �Zn� is not Markov but we have the possibility of its converg-
ing in some weak or strong sense, the candidate limit being a r.v.,

Z∞ �=
∞∑
k=1

�k−1Qk�(1.5)

Now Z∞, if it exists, is the probabilistic formulation of the actuarial notion of
a perpetuity, which represents the present value of a permanent commitment
to make a payment at regular intervals, say annually, into the future forever.
TheQn represent annual payments, theMn cumulative discount factors. Both
are subject to random fluctuation. Our model allows the amountQn in a given
year and the discount factor Mn for that year to be dependent, but requires
independence between different years.
In our main result, Theorem 2.1, under a side condition that excludes degen-

eracies, we give a necessary and sufficient condition forZn�Z0� → Z∞ a.s. and
prove that the series for Z∞ is a.s. absolutely convergent when the condition
holds, whereas �Zn�Z0�� →P ∞ when it does not.
Our results on the r.v.s Zn�Z0� and Z∞ are in Section 2, and consequences

for fixed points and positive recurrence are in Section 3. We specialize our
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results to certain important particular cases in Section 4, and present our
proofs in Section 5.
The current state of knowledge about convergence of iterations and exis-

tence and uniqueness of fixed points is largely as left by Vervaat (1979), at
least in the one-dimensional case that we treat. On convergence, Vervaat dealt
mainly with the case when E log �M� exists. His results on fixed points are
subsumed in our Theorem 3.1.
Two important later results are in Grincevičius (1980, 1981). In the 1981

paper a proof is sketched that, under the nondegeneracy assumption P�Q +
Mc = c� < 1 for all c, either �Zn� −→P ∞ or the series (1.5) converges a.s. The
proof is both technically brilliant and not wholly clear in a number of respects.
In the course of giving an integral criterion for the a.s. absolute convergence
of the series we re-prove Grincevičius’s result.
In Grincevičius (1980) the random elements �Qn�Mn� are assumed inde-

pendent but not necessarily identically distributed, and a necessary and suf-
ficient condition is found for the law of Z∞ to have an atom. A corollary of
this result is that when the �Qn�Mn� are i.i.d., as assumed throughout the
present paper, Z∞ is in general a continuous r.v.
Both before and after the above papers, particular cases have been dis-

cussed in various parts of the literature, usually as a prior issue before a
proof of some property of fixed points or iteration schemes. The picture up to
1994 is surveyed in Embrechts and Goldie (1994). Questions about recurrence
and transience are treated in Kellerer (1992). Extensions of Vervaat’s results
to the case of ergodic ��n� sequences are discussed in Brandt (1986) and, mul-
tidimensionally, in Bougerol and Picard (1992). We mention the result in the
latter reference that existence of a fixed point [see (1.1)] implies �n −→ 0 a.s.
Stability results for random recursions that are not affine but only approxi-
mately so are treated in Letac (1986) Goldie (1991) and Glasserman and Yao
(1995). Numerous applications of random affine maps in many diverse fields
are given in the above references and in further references therein. We men-
tion here a new application in the analysis of algorithms; see Grübel and
Rösler (1996), Goldie and Grübel (1996) and Grübel (1998).
Notation to be used throughout the paper will be, in addition to the �n

defined in (1.3),

X �= − log �M�� Xn �= − log �Mn�� Y �= log �Q�� Yn �= log �Qn��
(1.6)

n = 1�2� � � � �

We allow at this stage the possibility that M = 0, corresponding to X =
+∞, with positive probability, though this case turns out to be trivial (see
Remark 2.4 below) and also the possibility thatQ = 0 with positive probability.
The Xn form the steps of the random walk �Sn�, where

Sn �=
n∑

k=1
Xk = − log ��n�� n = 0�1�2� � � � �(1.7)
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We need the following truncated mean of X:

AM�y� �= E�X+ ∧ y� =
∫ y

0
P�X > x� dx� y > 0�(1.8)

Any sum, maximum or minimum �respectively�product� over an empty range
is, by convention, 0�1�. Thus S0 is identically zero. We denote the indicator
r.v. of an event A by 1A or 1�A�. We write x+ �= x ∨ 0 and x− �= −�x ∧ 0�.
Convergence in distribution is denoted by →L.

2. Convergence and divergence. We now state our results on the
Zn�Z0� defined in (1.4). The main result is Theorem 2.1.

Theorem 2.1. Suppose P�Q = 0� < 1 and P�M = 0� = 0. The following
are equivalent:

�n

a�s�−→0 �n → ∞� and
∫
�1�∞�

(
log q

AM�log q�
)

dP��Q� ≤ q� < ∞�(2.1)

P��M� = 1� < 1 and sup
n∈N

��n−1Qn� < ∞ a.s.�(2.2)

�n−1Qn

a�s�−→0 �n → ∞��(2.3)

∞∑
n=1

��n−1Qn� < ∞ a.s.�(2.4)

∑
n≥1

P

(
min

1≤j≤n−1
��j��Qn� ≥ e−x

)
< ∞ for all x > 0�(2.5)

Each of these implies

Zn�Z0�
a�s�−→Z∞� n → ∞�(2.6)

where Z∞ is given by (1.5), and the series in (1.5) is a.s. absolutely convergent.
Conversely, assuming

P�Q + Mc = c� < 1 for all c ∈ ��(2.7)

if (2.1) does not hold [i.e., if �n does not converge to 0 a.s. as n → ∞ or if the
integral in (2.1) diverges] then �Zn�Z0�� →P ∞ as n → ∞.

Remark 2.2. Relevant properties for the function AM in (1.8) and (2.1) are
that it is nondecreasing and concave, with AM�0� = 0 and AM�∞� = EX+ ≤
∞. Also AM�y� > 0 for some (hence all) y > 0 if and only if P�X > 0� =
P��M� < 1� > 0.
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To bring out further properties of the integrand in (2.1) we write

AM�y�
y

= E

(
X+

y
∧ 1

)
=
∫ 1

0
P�X > yz�dz�

which gives that AM�y�/y is nonincreasing, with limits P�X > 0� = P��M� <
1� at 0+, and P�M = 0� at +∞. Note that if �n → 0 a.s. then clearly we must
have P��M� < 1� > 0, so the integrand in (2.1) is bounded in the neighborhood
of q = 1 when the first part of (2.1) holds. If, on the other hand, �M� ≥ 1 a.s.,
then the first part of (2.1) fails so we do not need to evaluate the integral (in
which the integrand is identically +∞). We will take AM�y�/y to have the
value P��M� < 1� at 0, and with that convention we could thus equivalently
integrate over �1�∞� rather than �1�∞� in (2.1).

Remark 2.3. Equation (2.7) is a nondegeneracy condition in the following
sense. When Q + Mc = c a.s. for some real constant c, we call the random
affine map � a tied-down line: it is constrained to pass through the point
�c� c� in �2, and only its slope is random. Observe that when Qk = c − Mkc�
(1.4) reduces to

Zn�Z0� = c + �Z0 − c��n� n = 1�2� � � � �(2.8)

So when Z0 is degenerate at c we have Zn�c� = c a.s., whereas otherwise the
asymptotic behavior of Zn�Z0� reduces to that of �n. Failure of (2.1) does not
then imply �Zn�Z0�� −→P ∞, so (2.7) is needed for the converse assertion in
Theorem 2.1.

Remark 2.4. We rule out the case when P�M = 0� > 0 in Theorem 2.1,
which is trivial in the following sense. When it occurs, the integrand in (2.1) is
bounded by 1/P�M = 0� (see Remark 2.2), so the integral is finite regardless
of Q. Also, then, N �= min�n:Mn = 0� < ∞ a.s. and �n = 0 for all n ≥ N,
hence all of (2.1)–(2.6) hold, where in (2.6), Zn�Z0� = ∑N

k=1�k−1Qk for all n ≥
N. There is in particular no content in the converse assertion of Theorem 2.1,
for (2.1) cannot fail to hold in this case.
We also rule out the case whenQ = 0 a.s. in Theorem 2.1. When this occurs,

(1.4) gives Zn�Z0� = �nZ0 a.s., and so Zn�Z0� converges a.s. if and only if �n

converges a.s., as long as Z0 is not degenerate at 0. Now �n converges a.s. if
and only if �n converges to 0 a.s., since the random walk Sn can only drift to
+∞, to −∞, or oscillate, and only the first of these corresponds to convergence
of �n [see (1.72.1)]. Thus the behavior of Zn�Z0� is well understood in this
case. The converse in Theorem 2.1, that �Zn�Z0�� −→P ∞ as n → ∞ if (2.1)
does not hold, is not true when Q = 0 a.s., but this is ruled out by (2.7) (with
c = 0) in any case.

Remark 2.5. We noted above the equivalence that, when P�M = 0� = 0,
�n → 0 a.s. if and only if Sn → ∞ a.s. For the property Sn → ∞ a.s. we quote
a necessary and sufficient condition which comes ultimately from Erickson
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(1973) and which we give in the form derived in Kesten and Maller (1996),
Lemma 1.1. In terms of

J− �=
∫
�0�∞�

(
y

AM�y�
)

�dP�X ≤ −y���(2.9)

we have the following.

Proposition 2.6. When P�M = 0� = 0, for the assertion �n → 0 a.s. that
forms the first half of (2.1), it is necessary and sufficient that

J− < E�X+� = ∞ or 0 < EX ≤ E�X� < ∞�(2.10)

We could even consider the case P�M = 0� > 0 to be covered by J− <
E�X+� = ∞, for it corresponds to X = − log �M� = +∞ with positive prob-
ability, hence E�X+� = ∞, and it makes the J− integral finite because the
integrand is bounded by 1/P�M = 0� (see Remark 2.4). In this Proposition 2.6
remains true when P�M = 0� > 0, as do the conditions (2.1)–(2.6) of
Theorem 2.1.

Remark 2.7. In answer to a question put to us by Rainer Wittmann, we
note that neither half of (2.1) is superfluous. Lemma 5.5 will show that finite-
ness of the integral is needed. On the other hand, Theorem 2.1 shows that
�n → 0 a.s. is certainly needed for the other assertions of the theorem to
hold, and �n → 0 a.s. is not implied by finiteness of the integral in (2.1), even
if Q has unbounded support, by (2.10).

Remark 2.8. Under the nondegeneracy condition (2.7), Theorem 2.1 estab-
lishes that Zn�Z0� has one of two extremely contrasted forms of asymptotic
behavior: either Zn�Z0� → Z∞ a.s., or �Zn�Z0�� →P ∞. Consequently, any
infringement of one form is enough to establish the other: for instance, if
P��Zn�Z0�� ≤ A� is bounded away from 0 for some constant A along some
infinite sequence of n, then Zn�Z0� converges a.s.
Theorem 2.1 is also remarkable in that the joint distribution of Q and M

plays no role except in the nondegeneracy condition (2.7): thus (2.1) involves
only the marginal laws of Q and M, and changing their joint law in a way
consistent with these marginals has no effect on the convergence behavior of
the Zn�Z0�.
It is even possible to weaken the independence assumed of the �Qk�Mk�.

So long as the Mk remain i.i.d. and the Qk remain identically distributed, the
Qk can have arbitrary dependence on the Mk and each other for all except
the converse assertion in Theorem 2.1. This will be clear from the proof.

Remark 2.9. Convergence of the perpetuity (1.5) is unaffected by taking
an arbitrary positive power of the Qk, and a different arbitrary positive power
of the �k−1. That is, we have the following.
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Corollary 2.10. Assume (2.1). Then with probability 1,
∑∞

k=1 ��k−1�a ×
�Qk�b < ∞ for each a > 0, b > 0.

Remark 2.11. We can replace AM�y� in (2.1) by

ÂM�y� �=
∫ y

0
P��X� > x�dx =

∫ y

0
�P�X > x� + P�X < −x��dx�

That is, we have the following.

Proposition 2.12. Suppose P�Q = 0� < 1 and P�M = 0� = 0. Then (2.1)
is equivalent to

�n

a�s�→ 0 �n → ∞� and
∫
�1�∞�

(
log q

ÂM�log q�

)
dP��Q� ≤ q� < ∞�(2.11)

Again we can replace �1�∞� by �1�∞� in the integral if desired, by taking
ÂM�y�/y to have its limiting value P��M� �= 1� at 0, which value is positive if
�n → 0 a.s.

Remark 2.13. The forward part of Theorem 2.1 extends to a multidimen-
sional setting. Consider the case where M is a d × d random matrix and Q
a random column d-vector, and �Q�M�, �Q1�M1�, �Q2�M2�� � � � are i.i.d. Set
�0 �= I, �k �= M1M2 · · ·Mk for k = 1�2� � � �, and

Zn�Z0� �=
n∑

k=1
�k−1Qk + �nZ0� n = 1�2� � � � �

where Z0 is independent of the �Qk�Mk�. On �d use the Euclidean norm � · �
and on d × d matrices the operator norm �A� �= sup�x�=1 �Ax�. Then �AB� ≤
�A��B� so, for m < n,

�Zn�Z0� − Zm�Z0�� ≤
n∑

k=m+1
��k−1Qk�

≤
n∑

k=m+1
��k−1��Qk�

≤
n∑

k=m+1

(
k−1∏
j=1

�Mj�
)

�Qk��

Apply Theorem 2.1 to the i.i.d. sequence ��Qk�� �Mk�� to get the following, in
which A�M��y� �= ∫ y

0 P�− log �M� > x�dx.

Corollary 2.14. Suppose P��Q� = 0� < 1 and P��M� = 0� = 0. If

n∏
k=1

�Mk�
a�s�−→0 �n → ∞� and

∫
�1�∞�

(
log q

A�M��log q�
)
dP��Q� ≤ q� < ∞�
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then Z∞ �= ∑∞
k=1�k−1Qk is a.s. absolutely convergent in norm, and Z�Z0� −→

Z∞ a.s. as n → ∞.

Proof of a converse looks harder. From, for instance, tightness of �Zn� we
can immediately deduce ��n−1Qn� tight. But to bring in a suitable nondegen-
eracy condition and deduce �n −→ 0 a.s. we would need detailed study of the
consequences of our conditions on the random walk ��n� on the group GL�d�,
rather than just norm calculations as above.

3. Fixedpointsandpositiverecurrence. InVervaat (1979),Lemma1.1,
it is proved that if Rn�R0� →L R then the distribution of R is a fixed point
of (1.1), and Theorem 1.5 in the same paper characterizes fixed points when
they exist. We assemble these results together with our convergence results
of the previous section into the following complete characterization.

Theorem 3.1.

(a) P�M = 0� > 0. Then there is an integer-valued r.v. N such that Zn�Z0� =
ZN for all n ≥ N, and the distribution ν of Zn is the unique fixed point of
(1.1); also Rn�R0� →L ν whatever the distribution of R0.

(b) P�M = 0� = 0 and P�Q + Mc = c� = 1 for some c ∈ �. Then

Rn�R0� = c + �R0 − c��n a�s� for all n = 0�1� � � � �

and (2.8) holds, so that Zn�Z0� reduces to Rn�Z0�.
(i) M = 1 a.s. In this case Rn�R0� = R0 a.s., so all distributions for R0

are fixed points.
(ii) M = −1 a.s. Then

Rn�R0� = c + �−1�n�R0 − c�� n = 0�1� � � � �

The fixed points consist of all distributions for R with R−c =L −�R−c�,
that is, for which R is symmetric about c, and Rn�R0� →L R if and only
if R0 =L R, in which case Rn�R0� =L R for all n.

(iii) �M� = 1 a.s. but 0 < P�M = 1� < 1. The fixed points consist of all
distributions for R with R−c =L −�R−c�, and Rn�R0� →L R whatever
the distribution of R0, the limit law being that of c + �R0 − c�U where
U = ±1 with probabilities 1

2 �
1
2 , independent of R0.

(iv) �n −→P 0. Then R = c a.s. is the only fixed point, and Rn�R0� −→P c
whatever the distribution of R0.

(v) P��M� = 1� < 1 and �n does not tend to 0 in probability. Here R = c
a.s. is the only fixed point, and Rn�R0� −→P c if and only if R0 = c a.s.

(c) P�M = 0� = 0 and P�Q + Mc = c� < 1 for all c ∈ �.

(i) (2.1) holds. Then the distribution ν of Z∞ is nondegenerate and is the
only fixed point, and Rn�R0� →L ν whatever the distribution of R0.

(ii) (2.1) fails. Then there exists no fixed point, and �Rn�R0�� −→P ∞ what
ever the distribution of R0.
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A fixed-point distribution for (1.1) is a normalized invariant measure for the
Markov sequence �Rn�R0��, so existence of the fixed-point distribution says
that this Markov sequence is “positive recurrent” by the usual definition. It
is natural then to ask about ergodicity of �Rn�R0��, and this is proved in the
positive recurrent case in Kellerer (1992), Theorem 9.3. The papers [Kellerer
(1992)] treat the special case of (1.1) and (1.2) restricted to �+, but the proof
(via mixing) of Kellerer’s Theorem 9.3 holds for the general case. We quote it
as follows.

Theorem 3.2 [Kellerer (1992)]. Assume P�M = 0� = 0, P�Q = 0� < 1 and
(2.1), and let ν denote the fixed-point law, that is, the distribution of Z∞. Let
f:� → � be such that E�f�Z∞�� < ∞ and either (a) f is bounded and ν-a.e.
continuous, or (b) f is uniformly continuous. Then, whatever the distribution
of R0,

1
n

n∑
k=1

f�Rn�R0�� → Ef�Z∞� a�s� �n → ∞��

Another way of saying this is that with probability 1 the empirical laws
n−1∑n

k=1 δRn
converge weakly to ν. The reason for the continuity requirements

on f are that without special assumptions on the law of �Q�M� it is quite
unclear in what subset of � the limit law ν “really” lives. A simple example
shows this: let M �= 1

2 a.s. and P�Q = 1� �= p, P�Q = 0� �= 1 − p, where
0 < p ≤ 1. Then the three cases p �= 1

2 � p ∈ �0� 12� ∪ � 12 �1�, p �= 1 make
ν, respectively, an absolutely continuous distribution, a continuous singular
distribution and a degenerate distribution.

4. Special cases. We first relate our main result to moment conditions on
M and Q. To have well-defined moments of − log �M� we assume throughout
this section that P�M = 0� = 0, and for a simple formulation we assume
the nondegeneracy condition (2.7) [which also rules out P�Q = 0� = 1]. Let
us agree to call the conclusions that Zn�Z0� −→ Z∞ a.s. given by (1.5), and
that (2.2)–(2.4) hold, “convergence.” As we know from Theorem 2.1, precisely
when convergence fails we have “divergence” in the sense that �Zn�Z0�� −→P

∞. Furthermore, by Theorem 3.1 there is a fixed point of (1.1), namely the
distribution of Z∞, precisely when convergence occurs.
We write log+ x �= log�x∨ 1�, log− x �= − log�x∧ 1� for x > 0. Then J− (see

Remark 2.5) can be expressed as

J− = E

(
log+ �M�

AM�log+ �M��

)
�

Corollary 4.1. Assume P�M = 0� = 0 and the nondegeneracy condition
(2.7):

(a) 0 ≤ E log �M� ≤ ∞. Convergence does not occur.
(b) −∞ < E log �M� < 0. Convergence occurs if and only if E log+ �Q� < ∞.
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(c) E log �M� = −∞. Convergence occurs if and only if the integral in (2.1) is
finite, and in particular if E log+ �Q� < ∞.

(d) E log �M� does not exist, that is, E log+ �M� = ∞ = E log− �M�.
(i) J− < ∞. Convergence occurs if and only if the integral in (2.1) is finite,

and in particular if E log+ �Q� < ∞.
(ii) J− = ∞. Convergence does not occur.

Remark 4.2. (b) is due to Grincevičius (1974), while (a) and the sufficiency
parts of (c) and (d) are due to Vervaat (1979). The rest is new. We derive
the whole result from our main Theorem 2.1 to demonstrate that the latter
includes it.
Our second special case is when M is degenerate at m �= 0. If �m� ≥ 1,

both parts of (2.1) fail, the function AM being identically zero. Otherwise,
when 0 < �m� < 1, the first part of (2.1) holds, and for the second we have
AM�y� = x ∧ y where x �= − log �m� > 0; thus finiteness of the integral is
equivalent to E log+ �Q� < ∞. We thus deduce the next result.

Corollary 4.3. Consider the partial sum Zn �= ∑n
k=1m

k−1Qk of a
random power series built from a constant m �= 0 and i.i.d.r.v.s Q�Q1�Q2� � � � �
where P�Q = 0� < 1. If

�m� < 1 and E log+ �Q� < ∞
then

∑∞
k=1 �m�k−1�Qk� < ∞ a.s., and otherwise �Zn� −→P ∞ as n → ∞. In the

former case the distribution of Z∞ �= ∑∞
k=1m

k−1Qk is the unique solution of

R
L=Q + mR� R independent of Q�(4.1)

while otherwise no solution exists.

Remark 4.4. The observation seems to be due to Zakusilo (1975) that,
either for all �m� < 1 in the case E log+ �Q� < ∞, or for no m �= 0 in the
opposite case, Z∞ �= ∑∞

k=1m
k−1Qk converges a.s. and solves (4.1).

Remark 4.5. From Corollary 4.3 we can deduce a corresponding result for
Zn �= ∑n

k=1M
k−1
0 Qk, where Q�Q1�Q2� � � � are conditionally i.i.d. given a r.v.

M0, with P�M0 = 0� = 0 and P�Q = 0�M0� < 1 a.s. In fact, the tightness of
�Zn� implies

P��M0� < 1� = 1 and E�log+ �Q�M0� < ∞ a.s.,(4.2)

and, conversely, (4.2) implies
∑∞

k=1 �M0�k−1�Qk� < ∞ a.s. We will omit the proof.
Our final special case is when Q is degenerate at some nonzero value,

which without loss of generality we take to be 1. This case is important for
the analysis of algorithms. We can satisfy the nondegeneracy condition (2.7)
simply by assuming M nondegenerate. The following is then immediate from
Theorems 2.1 and 3.1.
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Corollary 4.6. Assume M is nondegenerate. If �n �= ∏n
j=1Mj −→ 0 a.s.

as n → ∞ then the series Z∞ �= ∑∞
k=1�k is a.s. absolutely convergent. Further,

the distribution ν of Z∞ is nondegenerate and is the only solution of

R
L=1+ MR�R independent of M�(4.3)

and the sequence Rn+1�R0� �= 1+Mn+1Rn�R0� converges in distribution to ν,
whatever the distribution of R0.

Conversely, if it is not the case that �n −→ 0 a.s., then

Zn�Z0� �=
n∑

k=1
�k−1 + �nZ0

satisfies �Zn�Z0�� −→P ∞; also there is no solution to (4.3), and �Rn�R0�� −→P

∞ whatever the distribution of R0.

5. Proofs. We carry out most of the proof of Theorem 2.1 in the sequence
of Lemmas 5.1–5.8 below. Our use of the function AM that appears in our
main condition (2.1) is a consequence of an estimate due to Erickson [Erickson
(1973), Lemma 1]. Similar working in another context appears in Chow and
Zhang (1986) and in Klass and Wittmann (1993). We will need another gen-
eralization of Erickson’s result, Lemma 5.1, which is easily deduced from
Erickson’s lemma and Kesten and Maller (1996).

Lemma 5.1. Let V1�V2� � � � be i.i.d. r.v.s, not degenerate at 0, and suppose
V1 + · · · + Vn → ∞ a.s. as n → ∞. Then there is a finite positive constant c+�
depending on the distribution of V1� such that for all y ≥ 0�

y

E�V+
1 ∧ y� ≤

∞∑
n=0

P

(
max
1≤j≤n

(
V1 + · · · + Vj

) ≤ y

)
≤ c+y

E�V+
1 ∧ y� �(5.1)

where y/E�V+
1 ∧ y� is interpreted to have value 1/P�V1 > 0� < ∞ at y = 0.

Proof. When V1 ≥ 0 a.s., max1≤j≤n�V1+· · ·+Vj� = V1+· · ·+Vn, and (5.1)
follows from Erickson (1973), Lemma 1, with c+ = 2. Since for all y ≥ 0,

P�V+
1 + · · · + V+

n ≤ y� ≤ P

(
max
1≤j≤n

(
V1 + · · · + Vj

) ≤ y

)
�

the left-hand inequality in (5.1) is true as stated for generalVj. By Kesten and
Maller (1996) [see their (4.3), (4.2) and (4.5)], V1 + · · · + Vn → ∞ a.s. implies
that the right-hand inequality of (5.1) holds for all large enough y. The limit
of the nonincreasing function E�V+

1 ∧y�/y as y ↓ 0 is P�V1 > 0�, which must
be positive since V1 + · · · + Vn → ∞ a.s. So by choosing c+ larger if necessary
we can assume (5.1) holds for all y ≥ 0. ✷

Lemma 5.2. Suppose P�Q = 0� < 1 and P�M = 0� = 0. If (2.1) holds, then
for some c > 0,

�n−1Qn = o�e−cn�� n → ∞� a�s�(5.2)
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Consequently, (2.1) implies (2.4) and (2.6).

Proof. The hypotheses imply that for the r.v.s. Xj = − log �Mj� and Yj =
log �Qj�, defined in (1.6), we have

P��Xj� < ∞� = 1 = P�Y+
j < ∞�� j = 1�2� � � � �

and we can rewrite (2.1) as

�n

a�s�−→0 �n → ∞� and
∫
�0�∞�

(
y

E�X+ ∧ y�
)
dP�Y+

1 ≤ y� < ∞�(5.3)

[�n −→ 0 a.s. implies P��M� < 1� = P�X > 0� > 0, and we take y/E�X+ ∧ y�
to have value 1/P�X > 0� < ∞ at y = 0 for the integrand in (5.3).]
With Sn = ∑n

j=1Xj, we will now show that

Sn−1 − Yn − cn
a�s�−→∞(5.4)

for some c > 0,which implies (5.2). To prove (5.4), note that�n −→ 0 a.s. implies
Sn → ∞ under P�M = 0� = 0 (see Remark 2.5). Now consider some cases.

Case 1. Suppose E�X+� = ∞. Then
∑n−1

j=1 X
+
j /n −→ ∞ a.s. We can obtain

from the convergence of the integral in (5.3) that

Y+
n∑n−1

j=1 X
+
j

a�s�−→0�(5.5)

To see this, take an ε in (0,1) and write, noting the independence of Yn and
of �Xj�1≤j≤n−1,∑

n≥1
P
(
ε
(
X+

1 + · · · + X+
n−1

) ≤ Y+
n

)
=
∫
�0�∞�

∑
n≥1

P
(
X+

1 + · · · + X+
n−1 ≤ y/ε

)
dP�Y+ ≤ y�

≤
∫
�0�∞�

(
c+y/ε

E�X+ ∧ �y/ε��
)
dP�Y+ ≤ y�

≤ c+
ε

∫
�0�∞�

(
y

E�X+ ∧ y�
)
dP�Y+ ≤ y� < ∞�

We used the right-hand inequality in (5.1) in the last estimate. An application
of the Borel–Cantelli lemma now establishes (5.5). Now Sn → ∞ a.s. and
E�X+� = ∞ imply J− < ∞ [see (2.10)], and hence

∑n−1
j=1 X

−
j = o�∑n−1

j=1 X
+
j �

a.s. by Pruitt [(1981), Lemma 8.1]. This together with n = o�∑n−1
j=1 X

+
j � a.s.

and (5.5) implies

n−1∑
j=1

X+
j − n − Y+

n −
n−1∑
j=1

X−
j =

(
n−1∑
j=1

X+
j

)
�1− o�1�� a�s�−→∞�(5.6)

which implies (5.4), with c = 1.
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Case 2. Suppose E�X+� < ∞. Then E�Y+� < ∞ by (5.3). Since Sn → ∞
a.s., we must have E�X−� < ∞ and µ �= EX > 0. Now Y+

n = o�n� a.s., and
�Sn−1 − nµ/2�/n → µ/2 > 0 a.s., so

Y+
n

Sn−1 − nµ/2
a�s�−→0�(5.7)

It follows that

Sn−1 − nµ/2− Y+
n = �Sn−1 − nµ/2��1− o�1�� a�s�−→∞�

so (5.4) holds with c = µ/2.
This establishes (5.2). It follows that the series (1.5), Z∞ = ∑∞

k=1�k−1Qk,
converges absolutely a.s., which is (2.4).Z∞ is the a.s. limit of its partial sums:
Zn −→ Z∞ a.s. Using �n −→ 0 a.s., which is the first part of (2.1), we have
further that Zn�Z0� = Zn + �nZ0 −→ Z∞ a.s., which is (2.6). ✷

Lemma 5.3. Assume that P�M = 0� = 0 and suppose �n −→ 0 a.s. as n →
∞. Define an �= ∑n

j=1X
−
j /
∑n

j=1X
+
j and set M̃j �= e−X+

j and �̃n �= ∏n
j=1 M̃j.

Then ��n� = �̃
1−an
n for all n. Further, there exists a constant a < 1 such that

lim sup
n→∞

an < a < 1 a�s��(5.8)

so that as soon as an < a (and hence for all large n, a.s.),

�̃n ≤ ��n� ≤ �̃1−a
n �(5.9)

Proof. The assumption �n −→ 0 a.s. means that the random walk
Sn = − log ��n� −→ ∞ a.s., as n → ∞, which is equivalent, as noted in
Remark 2.5, to J− < E�X+� = ∞ or 0 < EX ≤ E�X� < ∞. If J− < ∞ =
E�X+� then by Pruitt (1981), Lemma 8.1, an −→ 0 a.s. as n → ∞. If on the
other hand 0 < EX ≤ E�X� < ∞ then an −→ E�X−�/E�X+� < 1 a.s. Thus in
either case there is an a < 1, which by the Hewitt–Savage law we can take to
be a constant, such that (5.8) holds.
We have

Sn =
n∑

j=1

(
X+

j − X−
j

) = �1− an�
n∑

j=1
X+

j(5.10)

and consequently,

��n� = e−Sn =
(

n∏
j=1

e−X+
j

)1−an

= �̃1−an
n �

Finally, the left-hand inequality of (5.9) holds as soon as an < 1 and the right-
hand as soon as an < a. ✷

Lemma 5.4. Assume that P�M = 0� = 0, P�0 ≤ M ≤ 1� = 1, P�0 < M <
1� > 0 and P�Q = 0� < 1 = P�Q ≥ 0�. Suppose also that lim supn∈N �n−1Qn <
∞ a.s. Then the integral in (2.1) converges.
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Proof. Define events En�u� �= ��n−1Qn ≥ u� for n = 1�2� � � � . By the
Hewitt–Savage law the lim sup in the statement of the lemma is degenerate,
so we have that for some constant u > 0,

P�En�u� i.o.� = 0�(5.11)

Now Ei�u� implies, since Q ≥ 0 a.s. and 0 ≤ M ≤ 1 a.s., that Qi

∏i−1
j=k+1 ×

Mj ≥ �i−1Qi ≥ u when i > k. Thus, for i > k.

P�Ek�u� ∩ Ei�u�� ≤ P�Ek�u��P
(
Qi

i−1∏
j=k+1

Mj ≥ u

)
= P�Ek�u��P�Ei−k�u���

This allows us to apply the generalized Borel–Cantelli lemma of Spitzer
[(1976) page 317] to deduce from (5.11) that

∑
n P�En�u�� < ∞, for the given

value of u. Since
∑

n P�En�u�� is nonincreasing in u, we can further assume
that u ≥ 1.
Since we are assuming P�0 < M < 1� > 0, we have AM�y� =∫ y

0 P �− logM > x� dx > 0 for all y > 0, and since P�0 ≤ M ≤ 1� = 1,
�n = e−Sn . We apply (5.1), noting that X = − logM ≥ 0 a.s. here, and X is
not degenerate at 0. Fix x0 > 0 and set C0 �= AM�x0� > 0. Then we calculate

∞ >
∞∑

n=1
P�En�u�� ≥

∞∑
n=1

P��n−1Qn ≥ u� Qn > uex0�

=
∫
�uex0 �∞�

∞∑
n=1

P

(
Sn−1 ≤ log

q

u

)
dP�Q ≤ q�

≥
∫
�uex0 �∞�

(
log�q/u�

AM�log�q/u��

)
dP�Q ≤ q�

≥
∫
�uex0 �∞�

(
log q

AM�log q�

)
dP�Q ≤ q� − log u

C0
�

Here we used the facts that u ≥ 1 and AM�y� is nondecreasing in y. Since
�log q�/AM�log q� is finite on �1� uex0� we see that the integral in (2.1) con-
verges in this special case. ✷

Lemma 5.5. Suppose P�Q = 0� < 1 and P�M = 0� = 0. If �n → 0 a.s.
and �Zn�Z0�� does not tend in probability to ∞, then Zn�Z0� converges in
distribution to a proper r.v. Z and the integral in (2.1) is finite.

Proof. Assume the conditions of the lemma. Then, since Zn�Z0� = Zn +
�nZ0 and �nZ0 −→ 0 a.s., we may without loss of generality assume Z0 = 0
a.s. We first show that Zn converges in distribution.
Since �Zn� does not tend to ∞ in probability, we can find a nonrandom

sequence �ns� such that, as s → ∞, ns ↑ ∞ and Zns
converges in law to a



STABILITY OF PERPETUITIES 1209

(possibly improper) d.f. (distribution function) F which has positive mass on
�−∞�∞�. That is, with F�∞� �= limx↑∞ F�x� and F�−∞� �= limx↓−∞ F�x�,
we have F�∞� − F�−∞� > 0.
Now Zns+1 = Zns

+ Qns+1�ns
, and the term Qns+1�ns

, tends to 0 in proba-
bility, so Zns+1 tends in law to F too. Note that, for 1 ≤ m < n,

Zn = Zm + �m

n−m∑
j=1

(
j−1∏
k=1

Mk+m

)
Qj+m = Zm + �m�Zn−m ◦ θm��

where θ denotes the shift operator that adds 1 to the indices of the Qj and
the Mj. Take n �= ns + 1, m �= 1, to write

Zns+1 = Q1 + M1Z̃ns
� Z̃ns

independent of �Q1�M1�� Z̃ns

L=Zns

If Z′ is a (possibly improper) r.v. with d.f. F, this tells us that, on ��Z′� < ∞�,

Z′ L=Q1 + M1Z
′� Z′ independent of �Q1�M1��

Now let Z have the distribution of Z′ conditional on �Z′� < ∞; that is, Z is
a proper r.v. with d.f. G satisfying G�x� �= �F�x� −F�−∞��/�F�∞� −F�−∞��
for all real x. Since ��Z′� < ∞� = ��Q1 + M1Z

′� < ∞�, we have

Z
L=Q + MZ� Z independent of �Q�M��

This says that G is a fixed-point distribution. Iterate this to get

Z
L=

n∑
k=1

Qk�k−1 + �nZ� Z independent of ��Qk�Mk��k=1�����n�

The right-hand side is just Zn +�nZ. Since �n → 0 a.s. and Z is proper, �nZ
tends in probability to 0. It follows that Zn tends in law to Z, that is, to the
distribution G.
Now we will deduce that the integral in (2.1) is finite. We need to extend a

method from Goldie [(1991), pages 136, 157] employing a maximal inequality
of Grincevičius (1980). Define

�j�n �=
n∏

k=j+1
Mk� Zj�n �=

n∑
k=j+1

�j�k−1Qk�

and let “med” denote a median. The inequality is

P

(
max

j=1�����n
(
Zj+�j med

(
Zj�n+�j�ny

))
> x

)
≤ 2P

(
Zn+�ny > x

)
x�y ∈ ��

valid for n = 1�2� � � � . We need only the y = 0 case. We note also that Zj�n =L

Zn−j. Thus

P

(
max

j=1�����n
(
Zj + �j med Zn−j

)
> x

)
≤ 2P

(
Zn > x

)
� x ∈ ��
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By applying this to the pairs �−Q1�M1�� � � � � �−Qn�Mn� we deduce a similar
inequality with −Zj in place of Zj, so

P

(
max

j=1�����n
�Zj + �j med Zn−j� > x

)
≤ 2P��Zn� > x�� x ≥ 0�

Write mn �= med Zn. The above implies, a fortiori, that for n ≥ k ≥ 1,

P

(
max

j=1�����k
�Zj + �jmn−j� > x

)
≤ 2P��Zn� > x�� x ≥ 0�(5.12)

Let n → ∞ with k fixed. The right-hand side converges, at least for x ≥ 0 in
the set Cz of continuity points of Z, to 2P��Z� > x�. Because Zn →L Z we can
assume that mn → m0, a median of Z. So (5.12) yields

P

(
max

j=1�����k
�Zj + �jm0� > x

)
≤ 2P��Z� > x�� x ∈ �0�∞� ∩ Cz�

Now let k → ∞, to conclude that supj∈N �Zj + �jm0� is a.s. finite.
The a.s. finiteness of supj∈N �Zj +�jm0� together with �n −→ 0 a.s. yields

that lim supn→∞ �Zn� < ∞ a.s. We then have lim supn→∞ ��n−1��Qn� < ∞ a.s.,
because �n−1Qn = Zn −Zn−1. With �̃n defined as in Lemma 5.3, we have the
left-hand inequality of (5.9), and therefore lim supn→∞ �̃n−1�Qn� < ∞ a.s. The
a.s. convergence of �n to 0 implies that M̃ �= min��M��1� has P�M̃ = 1� < 1.
We now have all the assumptions of Lemma 5.4 satisfied by ��Q�� M̃�, that is,
by the i.i.d. sequence ��Qn�� M̃n�, so the lemma gives∫

�1�∞�

(
log q

ÃM�log q�

)
dP�Q ≤ q� < ∞�

where

ÃM�y� �=
∫ y

0
P�− log M̃ > x� dx =

∫ y

0
P�X+ > x� dx

=
∫ y

0
P�X > x� dx = AM�y��

We thus have the finiteness of the integral in (2.1). ✷

Lemma 5.6. Suppose P�Q = 0� < 1 and P�M = 0� = 0. Then (2.1) holds if
and only if (2.5) holds.

Proof. DefineXj�Yj and Sn as in (1.6) and (1.7). Then (2.1) is equivalent
to

�n

a�s�−→0 �n → ∞�(5.13)

and ∫
�0�∞�

(
y∫ y

0 P�X > z� dz

)
dP�Y+ ≤ y� < ∞�
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while (2.5) is equivalent to

S�x� �= ∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x + Yn

)
< ∞ for all x > 0�(5.14)

Now let (5.13) hold. We have

S�x� ≤ ∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x

)
P�Y ≤ 0�

+
∫
�0�∞�

∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x + y

)
dP�Y+ ≤ y��

(5.15)

We assume Sn → ∞ a.s., and we must have P��M� ≥ 1� < 1 here, since
�n −→ 0 a.s. as n → ∞. So P�X > 0� > 0, and we can apply Lemma 5.1 to
get, for all x ≥ 0,

x

E�X+ ∧ x� ≤ ∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x

)
≤ c+x

E�X+ ∧ x� �(5.16)

But then, by (5.15),

S�x� ≤ c+x
E�X+ ∧ x� +

∫
�0�∞�

(
c+�x + y�∫ x+y

0 P�X > z� dz

)
dP�Y+ ≤ y�

and the integral may be written as the sum of two integrals involving, respec-
tively, x and y in the numerator, which are then seen to converge on apply-
ing (5.13). Hence (5.14) holds.
Conversely suppose (5.14) holds. Then for any x > 0 and y0 > 0,

∞ >
∫
�−y0/y0�

∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x + y

)
dP�Y ≤ y�

≥ P��Y� ≤ y0�
∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x − y0

)
�

(5.17)

Since P��Y� < ∞� > 0 (not all of the mass of Y can be at −∞ because P�Q =
0� < 1) we can choose y0 so large that P��Y� ≤ y0� > 0. Then, with the choice
x = y0, (5.17) gives ∑

n≥1
P

(
max

1≤j≤n−1
Sj ≤ 0

)
< ∞�

Then Sn → ∞ a.s. by the case α = 0 of Kesten and Maller (1996), Theorem
2.1 [see also (1.4) of Kesten and Maller (1996)], and consequently �n → 0 a.s.
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Thus we again have (5.16). Going back to (5.14) we then get

∞ >
∫
�0�∞�

∑
n≥1

P

(
max

1≤j≤n−1
Sj ≤ x + y

)
dP�Y+ ≤ y�

≥
∫
�0�∞�

(
x + y∫ x+y

0 P�X > z� dz

)
dP�Y+ ≤ y�

≥
∫
�0�∞�

(
y∫ y

0 P�X > z� dz

)
dP�Y+ ≤ y��

The last step follows since x/
∫ x
0 P�X > z� dz increases in x. Hence (5.13)

holds. ✷

For the next lemma we need the following inequality due to Esseen, to be
found in Petrov (1995), Theorem 2.15, (2.54). It employs the Lévy concentration
function

Q�X�λ� �= sup
−∞<x<∞

P�x ≤ X ≤ x + λ��
of a r.v. X.

Proposition 5.7. Let X1� � � � �Xn be independent r.v.s, with symmetrized
versions Xs

1� � � � �X
s
n, and set Sn �= ∑n

j=1Xj. Let λ1� � � � � λn be positive numbers
and λ ≥ max�λ1� � � � � λn�. Then

Q�Sn�λ� ≤ Aλ√∑n
j=1 λ

2
jP��Xs

j� ≥ 1
2λj�

�

where A is an absolute constant.

We shall use this in the following way. Since Q�Xs�λ� ≤ Q�X�λ� for all
λ ≥ 0 [cf. Petrov (1995), Lemma 1.11] we may replace Sn by Ss

n in the left-hand
side of the inequality. Then we pick z > 0 and put λ1 = · · · = λn = λ �= 2z,
and deduce that

P��Ss
n� ≤ z� ≤ A√∑n

j=1P��Xs
j� ≥ z�

�(5.18)

Lemma 5.8. Suppose that (2.7) holds, P�M = 0� = 0 and �n does not
converge to 0 a.s. Then �Zn�Z0�� −→P ∞.

Proof. (2.7) implies P�Q = 0� < 1. Assume also that �n does not converge
to 0 a.s. We need the following construction. Since Q and M are real random
variables there exists a regular conditional distribution for Q given M, so we
may define Fm�q� �= P�Q ≤ q�M = m�, such that for each q ∈ �, Fm�q� as a
function of m is a version of the conditional probability P�Q ≤ q�M = m�,
while for each m ∈ �, Fm�q� as a function of q is a proper distribution
function. For each m let F−1

m �·� be a left-continuous inverse of the function
q �→ Fm�q�. By augmenting the probability space if necessary we may sup-
pose it supports a sequence of independent r.v.s �U1�U2� � � ��, independent of
the sequence ��Q1�M1�� �Q2�M2�� � � ��, with each Uj uniformly distributed on
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(0,1). For each j = 1�2� � � � we let Q′
j �= F−1

M �Uj�. Thus we have constructed
�Q′

j�Mj� which are i.i.d. with the same distribution as �Qj�Mj�, and such
that each Q′

j is conditionally independent of Qj, given Mj. Now define con-
ditionally symmetrized r.v.s by

Qs
j �= Qj − Q′

j� Zs
n �=

n∑
j=1

�j−1Q
s
j�

Note that the Qs
j are degenerate at 0 only if Q is a Borel function of M� Q =

f�M�, say. Assume for now that that is not the case. Let �n �= σ�M1� � � � �Mn�.
Applying (5.18) to the conditional distribution of Zs

n given �n−1 we obtain, for
all z > 0,

P��Zs
n� ≤ z��n−1� ≤ A√∑n

j=1P���j−1Q
s
j� ≥ z��n−1�

a�s�(5.19)

The denominator on the right-hand side is, everywhere on the probability
space, nonzero for z > 0 sufficiently small. To see this, note that under the
conditioning on �n−1 we may regard ��n−1� as fixed at m > 0 say; then since
Qs

n is independent of �n−1 and P��Qs
n� ≥ z0� > 0 for some z0 > 0, we have

P���n−1Qs
n� ≥ z��n−1� > 0 for 0 < z < z0/m. From (5.19) we thus have, a.s.,

P2��Zs
n� ≤ z��n−1� ≤ A2

E
(∑n

j=1 1���j−1Q
s
j� > z�∣∣�n−1

)
≤ A2E

(
1∑n

j=1 1���j−1Q
s
j� > z�

∣∣∣�n−1

)
by Jensen’s inequality. Thus

�P��Zs
n� ≤ z��2 = E2�P��Zs

n� ≤ z��n−1�� ≤ E�P2��Zs
n� ≤ z��n−1��

≤ A2E

(
1∑n

j=1 1���j−1Q
s
j� > z�

)
�

(5.20)

Suppose that for some z > 0 the series in the denominator of (5.20) con-
verges, with positive probability and hence a.s. Then P���n−1Qs

n� > z i�o�� = 0.
This implies �n → 0 a.s. as follows. As we have assumed, the Qs

j are not
degenerate at 0, so we may choose δ > 0 so small that P��Qs

n� > δ� > 0.
Define events An �= ���n−1� > z/δ� and Bn �= ��Qs

n� > δ�. Bn is indepen-
dent of An�An−1� � � � �A1, so we have by the lemma for events [Loève (1977),
Section 18] that

P

( ∞⋃
n=m

An ∩ Bn

)
≥ P

( ∞⋃
n=m

An

)
inf

n=m�m+1� ���
P�Bn�

= P��Qs
1� > δ�P

( ∞⋃
n=m

An

)
�
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This shows that if P�An i.o.� > 0 then An ∩ Bn occurs i.o. with positive prob-
ability, hence ��n−1��Qs

n� > z i.o. with positive probability, a contradiction. So
we have P���n−1� > z/δ i.o.� = 0, and thus �n → 0 a.s. since the only alter-
native left for the random walk �Sn� is to diverge to +∞ a.s. But �n → 0 a.s.
contradicts the initial hypothesis of the lemma, so it must be the case that
the series in the denominator of (5.20) diverges a.s. for all z > 0. Then by
monotone convergence we get �Zs

n� →P ∞, as n → ∞. But then

P
(�Zs

n� ≤ z
) = E

(
P
(�Zs

n� ≤ z��n�Z0
))

≥ E

(
P

(
�Zs

n� ≤ z�

∣∣∣∣∣ n∑
k=1

�k−1Q
′
k + �nZ0

∣∣∣∣∣ ≤ z/2
∣∣∣�n�Z0

))

≥ E

(
P

(∣∣∣∣ n∑
k=1

�k−1Qk + �nZ0

∣∣∣∣ ≤ z/2
∣∣∣�n�Z0

)
(5.21)

× P

(∣∣∣∣ n∑
k=1

�k−1Q
′
k + �nZ0

∣∣∣ ≤ z/2
∣∣∣�n�Z0

))

= E
(
P2(�Zn�Z0�� ≤ z/2��n�Z0

)) ≥ P2(�Zn�Z0�� ≤ z/2
)
�

which shows that �Zn�Z0�� −→P ∞ for this case.
Now consider the case when Q = f�M� is a Borel function of M. Then

Z2n�Z0� =
2n∑
i=1

�i−1Qi + �2nZ0

=
n∑

i=1

(
i−1∏
j=1

M̃j

)
Q̃i +

(
n∏

j=1
M̃j

)
Z0

=
n∑

i=1
�̃i−1Q̃i + �̃nZ0 say�

where

�Q̃i� M̃i� �= �Q2i−1 + M2i−1Q2i�M2i−1M2i�
are i.i.d. and �̃n = �2n. Note that if �2n → 0 a.s. then �2n+1 = M1��2n◦θ� → 0
a.s., so �n → 0 a.s. Since we are assuming that �n does not converge to 0 a.s.,
it follows that also �̃n does not converge to 0 a.s. If Q̃i is a Borel function of M̃i

[which includes the possibility that Q̃i = c�1− M̃i� for some c], Q̃i = g�M̃i�,
say, then Q1 + M1Q2 = g�M1M2� and Proposition 1 of Grincevičius (1981)
shows that either Q + cM = c a.s. for some c or �Q�M� = �c1�1� for some c1.
The first of these contradicts (2.7). If �Q�M� = �c1�1� we have c1 �= 0 since
P�Q = 0� < 1. Then by (1.4), �Zn�Z0�� = �nc1 + Z0� −→P ∞. Alternatively,
Q̃i is not a Borel function of M̃i, and the part of the present proof up to
(5.21) then gives �Z2n�Z0�� = �∑n

i=1 �̃i−1Q̃i + �̃nZ0� →P ∞. But the fact that
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Z2n+1�Z0� = Q1 + M1�Z2n ◦ θ��Z0� together with P�M = 0� = 0 then shows
that �Z2n+1�Z0�� −→P ∞, hence �Zn�Z0�� −→P ∞. ✷

Proof of Theorem 2.1. We have P�Q = 0� < 1 and P�M = 0� = 0.
In Lemma 5.2 we proved that (2.1) implies (2.4) and (2.6). In turn, (2.4)

implies (2.3), which implies (2.2).
Suppose (2.2) holds, so that lim supn→∞ ��n−1��Qn� < ∞ a.s. By the Hewitt–

Savage law this r.v. is degenerate, hence P���n−1��Qn� > z i.o.� = 0 for some
z > 0. Exactly as in Lemma 5.8, using the lemma for events, we deduce
that �n −→ 0 a.s. Now we can use Lemma 5.3, and specifically the left-
hand inequality in (5.9), to get supn∈N �̃n−1�Qn� < ∞ a.s. Again, �n → 0 a.s.
implies that M̃ �= min��M��1� has P�M̃ = 1� < 1, so we can use Lemma 5.4
on the pair ��Q�� M̃�, that is, on the sequence ��Qn�� M̃n�. It gives, as at
the end of the proof of Lemma 5.5, that the integral in (2.1) converges. So
we have shown that (2.2) implies (2.1). Thus (2.1)–(2.4) are equivalent and
imply (2.6).
The equivalence of (2.1) and (2.5) follows directly from Lemma 5.6.
For the converse, assume (2.7), and divide the failure of (2.1) into two

cases: first when �n −→ 0 a.s. but the integral in (2.1.) is infinite, second
when it is not the case that �n −→ 0 a.s. In both cases we have proved that
�Zn�Z0�� −→P ∞, namely in Lemmas 5.5 and 5.8, respectively. ✷

Proof of Corollary 2.10. If Q = 0 a.s. or P�M = 0� > 0, the series
always converges, so assume P�Q = 0� < 1 and P�M = 0� = 0. Then (2.1)
gives �n −→ 0 a.s. so AM�y� > 0 when y > 0 (see Remark 2.2), and by
monotonicity and the definition of AM�·�,

AM�y� ≤ cAM�y/c� ≤ cAM�y�� y > 0

for all c ≥ 1. Hence replacing �Q� by �Q�b in the integral in (2.1) does no more
than multiply the integral by a factor between 1 and b, if b > 1, and so has
no effect on finiteness. Similarly if 0 < b < 1.
The effect of replacing �M� by �M�a is to replace X by aX in (1.8), and this

simply multiplies AM�y� by a factor between 1 and a, so again leaves the
finiteness of the integral in (2.1) unaltered. ✷

Proof of Proposition 2.12. Assume P�Q = 0� < 1 and P�M = 0� = 0.
Then AM�y� > 0 for all y > 0 (Remark 2.2), and ÂM�y� ≥ AM�y�, so (2.1)
implies (2.11). Conversely, let (2.11) hold. Instead of (5.10) we write

Sn =
n∑

j=1

(
X+

j − X−
j

) = �1− ân�
n∑

j=1
�Xj��
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where ân �= 2
∑n

j=1X
−
j /
∑n

j=1 �Xj�. By the same reasoning as for (5.8) we have
lim supn→∞ ân < â with probability 1, for some constant â < 1. Thus

��n� =
(

n∏
j=1

exp�−�Xj��
)1−ân

=
(

n∏
j=1

M̂j

)1−ân

�

where M̂j �= exp�−�Xj�� ≤ 1 a.s. So if we set �̂n �= ∏n
j=1 M̂j, then we have

�̂n ≤ ��n� ≤ �̂1−â
n once ân < â. Thus (5.3) holds with �n replaced by �̂n and

X+ replaced by �X�. The working of Lemma 5.2 then gives, for Case 1, (5.5)
with

∑n−1
j=1 X

+
j replaced by

∑n−1
j=1 �Xj�. But for Case 1,

∑n−1
j=1 X

−
j = o�∑n−1

j=1 X
+
j �

a.s., so (5.5) holds as stated and hence (5.6). In Case 2, (5.7) holds again. Thus
(5.4) holds as stated and we again get (5.2). ✷

Proof of Theorem 3.1. For (a) the existence of N is as noted in
Remark 2.4, and the remaining conclusions follow by elementary deduction
or as a special case of Vervaat [(1979), Theorem 1.5]. The whole of (b) is also
given in the latter theorem.
For (c)(i), since Rn�R0� =L Zn�R0� marginally, and by our Theorem 2.1 the

right-hand side converges to Z∞ a.s., it follows that Rn�R0� →L ν and so ν is
a fixed point. By Vervaat (1979), Theorem 1.5, it is the only fixed point. The
condition P�Q + Mc = c� < 1 for all c prevents degeneracy.
Finally, in case (c)(ii), if there is a fixed point distribution ν then on letting

R0 have that distribution we find that Rn�R0� has distribution ν for all n. But
Theorem 2.1 gives that �Zn�R0�� −→P ∞. Since Zn�R0� =L Rn�R0� we arrive
at a contradiction. Thus there is no fixed point. Theorem 2.1 and Zn�R0� =L

Rn�R0� also give �Rn�R0�� −→P ∞. ✷

Proof of Corollary 4.1. Recall that P�Q = 0� < 1 under (2.7) (see
Remark 2.4).
(a) The condition says that −∞ ≤ EX ≤ 0, which prevents Sn → ∞; thus

the first part of (2.1) does not hold and so Theorem 2.1 gives divergence.
(b) −∞ < E log �M� < 0 translates as 0 < EX < ∞, so ��n� = e−Sn −→ 0

a.s. and we have the first part of (2.1). By Theorem 2.1, convergence occurs
if and only if the integral in (2.1) is finite. Since AM�∞� = EX+ < ∞,
this is equivalent to

∫
�C�∞� log q dP��Q� ≤ q� < ∞ for all C > 1, that is, to

E log+ �Q� < ∞.
(c) Here, E log �M� = −∞ means that EX+ = ∞ > EX−, so we have ��n� =

e−Sn −→ 0 a.s. and again, by Theorem 2.1, convergence occurs if and only
if the integral in (2.1) is finite. Since AM�∞� = EX+ = ∞, the integrand is
o�log q� as q → ∞, so it suffices for convergence that E log+ �Q� < ∞ but this
is no longer necessary.
(d) Here we are given that EX+ = ∞ = EX−. By the theorem quoted in

Remark 2.5, �n −→ 0 a.s. is in this case equivalent to J− < ∞. Parts (i) and
(ii) now are seen to be restatements of the possibilities for (2.1) to be satisfied,
hence we complete (d) by applying Theorem 2.1. ✷
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