Open Access
October 1999 Gaussian Measures of Dilatations of Convex Symmetric Sets
Rafał Latała, Krzysztof Oleszkiewicz
Ann. Probab. 27(4): 1922-1938 (October 1999). DOI: 10.1214/aop/1022874821

Abstract

We prove that the inequality $\Psi^-1(\mu(tA))\geq t\Psi^-1(\mu(A))$ holds for any centered Gaussian measure $\mu$ on a separable Banach space $F$, any convex, closed, symmetric set $A\subset{F}$ and $t\geq1$, where $\Psi(x)=\gamma_1(-x,x)=(2\pi)^-1/2\int_{-x}^x\exp(-y^2)2)dy$. As an application, the best constants in comparison of moments of Gaussian vectors are calculated.

Citation

Download Citation

Rafał Latała. Krzysztof Oleszkiewicz. "Gaussian Measures of Dilatations of Convex Symmetric Sets." Ann. Probab. 27 (4) 1922 - 1938, October 1999. https://doi.org/10.1214/aop/1022874821

Information

Published: October 1999
First available in Project Euclid: 31 May 2002

zbMATH: 0966.60037
MathSciNet: MR20001H:60026
Digital Object Identifier: 10.1214/aop/1022874821

Subjects:
Primary: 60G15
Secondary: 60B11 , 60E15

Keywords: Convex bodies , Gaussian measures , Isoperimetry , Moment inequalities

Rights: Copyright © 1999 Institute of Mathematical Statistics

Vol.27 • No. 4 • October 1999
Back to Top