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LARGE DEVIATION PRINCIPLE FOR RANDOM WALK IN
A QUENCHED RANDOM ENVIRONMENT IN THE LOW
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Carnegie Mellon University and Massachusetts Institute of
Technology

Ž .We consider a one-dimensional random walk X in a randomn n��

environment of zero or strictly positive drifts. We establish a full large
Ž .2deviation principle for X �n of the correct order n� log n in the lown

speed regime, valid for almost every environment. This completes the
large deviation picture obtained earlier by Greven and den Hollander and
Gantert and Zeitouni in the case of zero and positive drifts. The proof uses
coarse graining along with concentration of measure techniques.

1. Introduction.

The model and the main result. In this paper, we continue the study,
� �initiated by Greven and den Hollander 6 , of the large deviation behavior of a

Ž .nearest neighbor random walk on � with quenched frozen-in site-dependent
� �transition probabilities, which are themselves generated randomly. In 6 an

Ž .almost sure with respect to the environment large deviation principle has
been derived governing the rescaled position X �n of the random walk. Then

� � � 4 Žcorresponding rate function I: �1, 1 � � � � which is independent of
.the environment has been identified as the solution of a variational problem

involving specific relative entropy with respect to a certain Markov process.
For certain distributions of the environment, however, the rate function has

� �been found to vanish over parts of the interval �1, 1 , indicating thereby a
� �slower decay of the corresponding tail probabilities. In a subsequent work 4 ,

Gantert and Zeitouni identified the correct order of decay for the most
Žimportant types of environment distributions exhibiting the anomalous large

.deviation behavior mentioned above : the case of ‘‘positive and negative
Ždrifts’’ and the case of ‘‘positive and zero drifts’’ for a recent review of these

� � .and related results we refer to 5 . It is this latter case which we will focus on
in the present paper and establish a full large deviation principle for X �n ofn

Ž .2the correct order n� log n completing thereby the large deviations analysis
for this type of environment.

� .� � Ž .We start with the sample space � � 1�2, 1 � � � � � 1�2 �x x 	 �

4� � 1 which serves as a random environment. For a given probabilityx
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� . � �distribution � on 1�2, 1 , we denote by P the product measure � on �.

� 4If the distribution � puts nonzero, but not all, weight on the singleton 1�2

we speak about an environment with positive and zero drifts. In order to
describe a random walk in the random environment, we first set W �
�Ž . 4 Ž .w � w 	 � and X w � w . For every fixed �, we consider then n	 � n n n

Ž .Markov chain X on � starting at x with transition probabilitiesn n� 0

� , if y � z � 1,
 z
� �� �1 P X � y � X � z �Ž . 1 � � , if y � z � 1,x n�1 n z�

0, otherwise,
�� �where P � denotes the measure on the path space W for the given environ-x

ment �. We usually write P � instead of P �. The annealed measure is0
defined as

� � � � � �� � � P � P d�Ž .Hx x

and we omit the subscript x when x � 0. Note that P � can be viewed as thex
Ž .conditional measure of � on the path space given the environment � and isx

usually referred to as the quenched measure. For a summary of results
Ž .concerning the behavior of a random walk in random environment RWRE

governed by quenched or annealed measures, we refer to the introduction in
� � � � .3 and to 5 .

Ž . Ž . ² : Ž . � Ž .Abbreviate � � � � � 1 � � �� and set � � H� � P d� �x x x x 0
�� � �� �E � , where here and throughout E denotes expectation with respect to0

� Ž� 4.the measure P . From now on we will assume 0 � � 1�2 � 1 throughout,
that is, we will focus on environments with positive and zero drifts. Note that

² : � �in this case � � 1. Solomon’s result 9 guarantees that the RWRE is
transient, and for P �-a.e. �,

�1 ² : ² :lim n X � 1 � � � 1 � � � v .Ž . Ž .n �
n��

� �As mentioned above, Greven and den Hollander 6 established a large
deviation principle for X �n of order n. In the case of positive and zero drifts,n

Ž . � �the corresponding rate function J v , v 	 �1, 1 turns out to be strictly
� . Ž � Ž .positive on �1, 0 � v , 1 and vanishes on 0, v . Indeed, quite recently� �

� � Ž .Gantert and Zeitouni 4 showed that on 0, v the correct order of decay is�

Ž .2n� log n . Our main result is the following large deviation principle.

Ž . Ž� 4.THEOREM 1 Positive and zero drifts . Suppose that 0 � � 1�2 � 1. We
� Ž . � .have for P a.e. �, for any open and nonempty G � 0, v with G � 0, v ,� �

2log nŽ . �1� inf I v � lim inf log P n X 	 GŽ . Ž .nnn��v	G
2Ž .

2log nŽ . �1� lim sup log P n X 	 G � � inf I v ,Ž .Ž .nn v	Gn��
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Ž .where G denotes the closure of G and I v is given by

2� 4� log � 1�2Ž .Ž .
3 I v � 1 � v�v .Ž . Ž . Ž .�8

Ž .We remark that the lower bound in 2 was in fact already shown in
� �Theorem 3 of 4 .

Explanation of the rate function. To give some idea about the particular
form of the rate function, let us briefly sketch how the lower bound can be
derived. The basic idea is that whenever the walk is slower than v , it must�

Žhave lost time in relatively long regions made of ‘‘fair sites’’ a site x will be
.called fair if � � 1�2 . By a famous result of Erdos and Renyi on longest˝ ´x

head runs, we know that for a.e. environment and all large n we can find in
� � � Ž� 4. �0, vn a fair region of length � log n� log � 1�2 . Since by Solomon’s
result typically X � nv, we can expect that when X �n � v, the walknv� v n�

Ž .has to stay � 1 � v�v n steps in such a fair region. It turns out that on�

this level of accuracy all excursions to the left of this region can be discarded.
This simply corresponds to putting a reflection on the leftmost site of the
fair region. Using classical asymptotic bounds on the tail of the exit time
of a simple random walk from an interval, we can derive a lower bound

� Ž Ž .2 . 2 � Ž� 4. � 2Ž .4� exp � n�8 log n � log � 1�2 1 � v�v on the probability that the�

Ž .reflected walk stays � 1 � v�v n steps in our fair stretch. This basically�

Ž .yields the lower bound in 2 .
We will now give an outline of the strategy of the proof of the upper bound.

One of the main ingredients is coarse graining. Here the time will be split up
Žin larger units corresponding to visits in three different types of partly

.overlapping regions. To describe them, we first divide � into blocks of
Ž .1�	intermediate scale log n , where 	 � 0 is a small constant. We will

distinguish between biased and fair blocks corresponding to the proportion of
Ž . �fair sites a site x is called fair if � is close to 1�2 in the block. Fair or typex

Ž .�1 regions are ‘‘connected components’’ of fair blocks to which we attach the
neighboring biased block on both sides. The role of the biased block attached
to the left of such a region is to ignore all the small but numerous left
excursions. The biased block on the right simply guarantees that after
leaving the fair region to the right, the walk automatically has a barrier to
the left which keeps it away from reentering the fair stretch too often. In
particular, once we have a control on the number of left crossings of biased

Ž .blocks, we will be able to bound the number of visits in type 1 regions. Next
we introduce regions where the walk basically has a constant speed v . These�

Ž .regions are called type 2 regions and are made of pairs of biased blocks
Ž .satisfying some additional requirements; see 9 for a precise definition. The

remaining pairs of biased blocks, whose number turns out to be too small to
Ž .be of any importance, will be called type 3 regions.

Ži. Ž .Let S denote the total time until n the walk spends in type i regions;n
Ž .compare 12 . In view of the arguments leading to the lower bound we split up
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� 4the event X �n � v as follows:n

� 4 Ž1.X �n � v � X �n � v , S � n 1 � v�v � 2
Ž .� 4n n n �

� X �n � v , SŽ2. � n v�v � 
Ž .� 4n n �4Ž .
� X �n � v , SŽ3. � n
� 4n n

� A � A � A ,1 2 3

where 
 � 0 is a small parameter which eventually will tend to zero.
�� �In order to estimate P A we note that for a.e. environment, when n is1

� �large enough, the length of the longest fair region intersecting �n, n is of
� Ž� 4. �the order log n� log � 1�2 . We will show that the number of fair regions is

Ž .3 Ž Ž .2 .a.s. bounded by n� log n � o n� log n . This, together with a classical
result on the tail of the exit time of a simple random walk from an interval,

Ž .will lead to the correct upper bound in 2 . This also explains why we call
�� �P A the leading term.1

�� �To control the negligible term P A we will use that the number of type3
Ž .3 regions is small. This can be shown by using the martingale method,
which gives a strong enough bound on the probability that a double block is of

Ž . �� �type 3 . Finally, we will show that P A is also negligible. This will be2
Ž2. Ž .1�	done by observing that S is the sum of � nv� log n ‘‘independent’’ butn

not identically distributed random variables, namely, the exit times from
double blocks. However, the expected value as well as the tail of these
random variables can be controlled uniformly. In fact, the control of the

Ž .expected value is an immediate consequence of the definition of type 2
regions. The control of the tail will be established by using the martingale
method once more.

Related results. Let us briefly comment on previous work closely related
to this topic. The type of coarse graining we use has been introduced in a

� � � �Brownian motion context in 8 and was adapted in 7 to analyze the large
deviation behavior of RWRE in the annealed setting. Perhaps the closest

� �problem to ours has been studied by Sznitman in 10 . In that article, large
Ždeviations of the position of Brownian motion in a quenched random posi-

. Ž .2� dtive potential have been obtained on the critical scale t� log t . Besides
intuitive similarities between both models, there are some striking analogies
between the results in d � 1.

The paper is organized as follows. In Sections 2.1 and 2.2 we define our
basic objects and prove some preliminary lemmas. In Section 2.3 we state

�� �Propositions 1 and 2 which provide the necessary estimates on P A ,i
� 4i 	 1, 2, 3 . We also show how they imply the upper bound part of Theorem 1.

In Section 2.4 we give the proof of Proposition 2, which deals with the leading
term. Finally, in Section 2.5 we give the proof of Proposition 1, which takes
care of the negligible term.
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2. The upper bound. Our first observation is that in order to prove the
upper bound in Theorem 1 it is enough to show the following, slightly weaker

Ž . �statement. For each fixed v 	 0, v , for P -a.e. �,�

2log nŽ . �15 lim sup log P n X � v � �I v .Ž . Ž .Ž .nnn��

� ŽŽ .2 . Ž �1 . Ž .4Indeed, setting � � �; lim sup log n �n log P n X � q � �I q ,q n�� n
Ž . Ž �

�the upper bound in 2 follows for each � 	 � � which has Pq 	 � , q � v q�

. Ž . �measure 1 by approximating v 	 0, v by q 	 � from above and using� k
Ž .the continuity of I � . We suppose that from now on, we are working with an

� for which the assumptions of Theorem 1 are valid. In particular, we have
Ž� 4.0 � � 1�2 � 1.

2.1. Basic definitions.
Intervals and regions. In this section we introduce three types of regions

according to the environment �, namely, fair regions, regular double biased
blocks and irregular double biased blocks. To this end, we start by introduc-

� � Ž .ing fair and biased blocks in the same spirit as in 7 . Let 	 	 0, 1�3 be fixed
�Ž .1�	 � Ž .and let n � 10. We divide � into blocks B of length log n : j 	 � ,j

1�	 1�	6 B � j log n , j � 1 log n � �.Ž . Ž . Ž . Ž . .j

1�	 1�	� �Ž . � Ž . �Ž . � �The closed block B is defined as j log n , j � 1 log n � �.j
Ž .Next we pick a � 	 0, 1�2 , such that

� �7 p � 	 � 1�2 � � , 1 � 0Ž . Ž . Ž .

Ž Ž ..and � 	 0, p � . We say that the site x is biased if � � 1�2 � � . Note thatx
Ž .p � is the probability that x is biased. We call the block B biased if thej

proportion of biased sites in B exceeds � . Otherwise the block is called fair.j
We next define when a biased block is strongly biased, which we abbreviate

Ž Ž . .by s-biased. To this end we pick 
 	 0, 1 � 	 �2 , and chop B into intervalsj
�Ž .
 � �Ž .
 �of length log n . If the last one is shorter than log n , then we attach it

to the previous interval. In this way we obtain what we call subblocks. Note
�Ž .
 �that the length of a subblock cannot exceed 2 log n . We say that B isj

s-biased, if each of its subblocks itself is biased. If this is not the case, we call
Ž .B w-biased weakly biased .j

Ž . Ž Ž1..Type 1 regions. We are now ready to define fair regions. Let F bei i	 IŽ1.
the collection of all stretches of maximal length consisting of consecutive fair

Ž . Ž1. Ž .blocks. For every i 	 I 1 , we attach to F when present the neighboringi
closed biased blocks on the left and on the right. The resulting interval is

Ž1. � Ž .�denoted by FF and is called a fair or type 1 region. Note that twoi
different fair regions might have a biased block in common.

Ž . � Ž .Type 2 regions. Next we define regular double biased blocks or type 2
�regions . For i 	 � such that B and B are biased, we set BB � B � B .i�1 i i i�1 i
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We introduce the stopping time
1�	Žn.8 V � inf k � 0; X � i � 1 log n .Ž . Ž . Ž .� 4i k

² �:, � � �For given � let us denote by E � the quenched expectation starting fromi
�Ž .1�	 �i log n , where we have replaced the environment to the left of BB byi

Ž ² :. Ž ² :.the constant 1� 1 � � � 1�2, that is, � � 1� 1 � � for all x �x
Ž .�Ž .1�	 �i � 1 log n , and the rest of the environment is left untouched.

� Ž .Pick � � 0. We say that BB is a regular double biased block or type 2i
�region , if B and B are s-biased andi�1 i

1�	² �: , � Žn.9 E V � 1�v � � log n .Ž . Ž . Ž .i i �

Ž . � Ž . �Type 3 regions. Finally, irregular double biased blocks type 3 regions
are those double biased blocks which are not regular.

Stopping times. We define a sequence of stopping times which allows us
to identify the time the walk spends in various regions up to time n. To this

Ž .end we define the boundary of the region interval RR to be the set contain-
ing the leftmost and rightmost point of RR. The interior of a region consists of
all points of � which lie strictly between the boundary of this region. Let us

�Ž .1�	 �denote the set of division points log n � by ZZ. Observe that for z 	 ZZ,
there exists a unique region such that z is contained in its interior. We

Ž . Ž � 4.denote this region by FF z and set i 	 1, 2, 3 ,

10 � z � i if FF z is of type i .Ž . Ž . Ž . Ž .
We now define epochs of time associated with visits of regions. First we set
T � 0 and for k � 1,0

11 T � inf t � T ; X 	 �FF X .Ž . � 4Ž .k k�1 t Tk� 1

T indicates the end of the kth epoch as well as the beginning of thek
Ž . � Žk � 1 th epoch. Note that for P a.e. �, all these variables are finite and

.therefore also well defined .
Observe that T � T � T �� , where � denotes the canonical shift.k�1 k 1 Tk

� 4For i 	 1, 2, 3 we define

12 SŽi. � T � n � T ,Ž . Ž .Ýn j j�1
j

Ž . Ži.where the sum runs over all j � 1: � X � i, T � n. In words, ST j�1 nj�1

represents the total amount of time until n the walk spends visiting regions
Ž . 3 Ži.of type i . In particular, n � Ý S .i�1 n

Crossings. We close this section by introducing the notion of left crossings
� �of biased blocks up to time n. As in 7 we define for x 	 �, k � 1,

1 � 4 k k�113 � � inf t � 0 � X � x and for k � 2, � � inf t � � � X � x ,Ž . � 4x t x x t

Ž kthe successive times of hitting the site x. During the time intervals � �x
k�1 � Ž . Ž .n, � � n , k � 1 , excursions take place starting at x either to the left orx
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Ž .to the right of x unless the time interval is empty. The height of such an
excursion is defined by

k k�1
max X � x � t 	 � � n , � � n ;� 4Žt x x

kX � x right excursion ,Ž .� �1x

k k�1k �min X � x � t 	 � � n , � � n ;14 H �Ž . � 4Žt x xx

kX � x left excursion ,Ž .� �1x

k k�1�0; � � n , � � n � �.Ž x x

The number of left crossings of the block B until time n is given byj

1�	k
1� 	15 N � k � H � � log nŽ . Ž .½ 5j , n Ž j�1.�Žlog n. �

and the total number of left crossings of biased blocks up to time n can be
written as
16 N �� N ,Ž . Ýn j , n

bj	J

b � 4where J � j 	 �; B is biased , the set of indices of biased blocks.j

Parameter ranges. We finally give a list of all our parameters with their
allowed range. It will be necessary to introduce one further small parameter

Ž .
 whose use will become apparent only later; compare 35 . Nevertheless, in
order to have a complete reference, we include it in the following list:

v : 0 � v � v fixed�

	 : 0 � 	 � 1�3 fixed

 : 0 � 2
 � 1 � 	 fixed
� : 0 � � and p � � 0 � � 0Ž . Ž .

17Ž .

 : 0 � 
 � 1 � v�v 
 � 0Ž .�



� : 0 � � � p � � � � 0Ž . Ž .

4 1�v � 1Ž .�

� : 0 � � � 
�4 � � 0 ,Ž .
Ž . � � �� �where p � � � 1�2 � � , 1 � P 0 is biased . For future use we notice that

by this choice of parameters the following inequality holds:

18 
 � 2� v � 2� 1�v � 2� ,Ž . Ž .�

Ž .which plays a role in the proof of Proposition 4 and 87 .
ŽWe will adopt the convention that dependence on v, 	 and 
 as well as on

.the measure � will always be suppressed in contrast to the other parame-
ters, which sometimes will be used explicitly in the notation.

2.2. Preliminary lemmas. In this section we provide some preliminary
lemmas which will be constantly used in the sequel.
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LEMMA 1. Let � � 0 and define the event

� 4G � , n � � left crossing of length � � n up to time nŽ .1

� 4� X � X � � n .� s t
0�t�s�n

19Ž .

For P � a.e. �,

1 �
� � ² : �20 lim sup log P G � , n � � log � .Ž . Ž .1n 2n��

Ž . � �PROOF. Using Chebyshev’s inequality and 19 from 7 we find for large
enough n,

� n² :�2Ž� �2.n �Ž� �2.n� � ² : ² :P � ; P G � , n � � � � 2n n � 1 .Ž . Ž .� 41 ² :1 � �

² :Since � � 1, the claim follows from Borel�Cantelli. �

Note that G is negligible for the purpose of proving the upper bound in1
Ž .2 � �� 4 �Theorem 1, since lim sup log n �n log P X �n � vn � G � ��. Then�� n 1

next lemma provides a P � a.s. upper bound on the number of fair blocks.

Ž . �LEMMA 2. Let k � 1 and pick � , � according to 17 . For P a.e. �,
Ž .�n � n �, k, � , � such that for all n � n ,0 0 0

n
� �21 number of fair blocks intersecting �n, n � .Ž . klog nŽ .

PROOF. By Cramer’s theorem,´
1�	 
� � �22 q 	 P B is fair � exp � log n � � ,Ž . Ž . Ž .½ 51 pŽ � .


 Ž .where � � denotes the logarithmic moment generating function of apŽ � .
Ž . �� � Ž .Bernoulli variable with parameter p � � P � � 1�2 � � 	 0, 1 . Note0


 Ž . Ž . Ž .that � � � 0 since � � p � ; compare 17 . Next we define Y to be thepŽ � . i
indicator function in the event that B is fair. Let I be the set of indicesi n

� � � � Ž .kof blocks intersecting �n, n and N � I . Set c � n� log n and � �n
Ž . Ž . Ž .log c�Nq . One can easily check that c� Nq � � as n � �. Since the Yi i

are i.i.d. 0�1 variables, we find for large enough n using Chebyshev’s inequal-
ity,

� � �P Y � c � exp ��c � N log E exp �Y � exp ��c � NqeŽ . Ž .Ž .Ý i 1
i	In

n
� exp � .kž /log nŽ .

23Ž .

Our claim now follows from Borel�Cantelli. �
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At this point we make the following remark, which will be useful later.

REMARK 1. The proof of Lemma 2 shows the following. Assume that the
Ž .fact that B has a certain property � depends only on the restriction of � toi

�� Ž .�B . Then, as soon as we know that for a, b � 0, P B has property � �i i
� Ž .b4exp �a log n for every n large enough, we can conclude that � k � 1,

� Ž .P a.s. � n � such that � n � n ,0 0
n

� �i � B has property � , B � �n, n � � � .� 4Ž .i i klog nŽ .
The next lemma provides a P � a.s. upper bound on the maximal length of a

� �fair region in �n, n when n is large. This Erdos�Renyi type upper bound˝ ´
will be crucial for the derivation of the correct rate function.

Ž . � Ž .LEMMA 3. Let � , � be as in 17 . Then P a.s. � n �, � , � such that1
� n � n ,1

1 � �
Ž1. � �24 max F � �n, n � log n .Ž . Ž .i 
� �i Ž .pŽ � .

PROOF. Not surprisingly, we have only to modify the proof of the well-
known theorem of Erdos�Renyi on longest head runs. We first introduce˝ ´

�Ž . Ž �Ž .. Ž . �Ž� .N n N n to be the largest smallest index such that B �N Žn.
� � �Ž� .Ž . Ž�n, n � �. By l n we denote the number of the longest run consecu-

. Ž . Ž .� �tive sequence of fair blocks to the left right of B B beginning at thoseN N
Ž . Ž .Ž Ž ..	 
 Ž .blocks. Set c n � 1 � � log n �� � and observe thatpŽ � .

� � �P max l n , l n � c n� 4Ž . Ž . Ž .
Ž .c n� � � � �� 2P l n � c n � 2P B is fairŽ . Ž . 025Ž .

	1�	� 2 exp � 1 � � log n log n ,Ž . Ž . Ž .Ž .Ž .
Ž . �where we have used 22 . It follows now from Borel�Cantelli that for P a.e.

Ž .�, there exists n � n � such that for every n � n ,0 0 0

26 max l� n , l� n � c n .� 4Ž . Ž . Ž . Ž .
Ž . Ž .For any such �, we define n � to be the smallest number � n with1 0

Ž .�Ž .1�	 � Ž .c n log n � 2n . Let n � n . In order to show 24 , pick one of the fair0 1
Ž1. Ž1. � �regions F such that F 	 F � �n, n � �. Let n* and n� denote thei i

� � � �rightmost and leftmost point of F. Either n* � n� or n* � n� . We will
focus on the first case; the second can be treated analogously. So assume

� � Ž . �Ž . Ž . Ž .n* � n� . If n* � n � 0, we know from 26 that l n* � c n* � c n ,0
which implies

1 � �1�	 1�	�� �27 F � l n* log n � c n log n � log n .Ž . Ž . Ž . Ž . Ž . Ž .
� �Ž .pŽ � .

� � Ž .If n* � n we have F � n* � n� � 1 � 2n* � 1 � 2n � 1 � �0 0
Ž . 
 Ž .�log n �� � , and the proof of Lemma 3 is complete. �1 pŽ � .
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We close this section with a lemma which gives control over N � , the totaln
Ž .number of left crossings of biased blocks up to time n; compare 16 . This is in

� �the same spirit as Lemma 2 from 7 .

LEMMA 4. We have for all � 	 �,

2log n nŽ .
� �28 lim sup log P N � � ��.Ž . n 3�2 	n log nŽ .n��

� �PROOF. We pick � such that there is at least one biased block in �n, n ;
b � 4otherwise there is nothing to show. We denote by J � j 	 �; B is biasedj

�Ž .�Ž .1�	 �4band introduce the set RR � � j � 1 log n of right endpoints ofj	 J
biased blocks. Next we introduce the stopping times,

1�	� �D � inf t � 0 X � X � log n ,Ž .½ 5t 0
29Ž .

� 4� � inf t � 0 � X 	 RR , D � D�� � �1 t 1 � 11

and for k � 2 we continue inductively by

� 430 � � inf t � D ; X 	 RR , D � D�� � � ,Ž . k k�1 t k � kk

where we set D�� � � when � � �. Note that 0 � � � D � � � D ��� .k k 1 1 2 2
For k � 1 we set

31 Y � 1 1 ,Ž . k �D ��4 �X � X 4k � Dk k

the indicator of the kth left crossing of a biased block. Observe that since
�Ž .1�	 �each crossing takes at least log n steps, the maximal number of back-

Ž . �Ž .1�	 �crossings up to time n is bounded above by m � m n � n� log n .
� mŽn. �Ž .1�	 �Moreover, N � Ý Y . Let us denote X � x and y � x � log n .n k�1 k � k k kk� �From 2 , page 73, we find for all k � 1, for large n,

� � � � � �1 P X � X , D � � � P X � y�� ��4 X D 0 x D kk � kk

yk
1�	� log n � �Ž . Ž .Ł x

x�xk32Ž .
1�	 1� 	� Žlog n.� log n ��Ž .

1�	 � �� exp ���2 log n log �� � p n ,Ž . Ž .� 4
Ž . Ž . Ž . Ž .where �� � � 1�2 � � � 1�2 � � 	 0, 1 and where we have used that

� . Ž . Ž .3�2 	y , x is biased. Denote by c � c n � n� log n and introduce � �k k
Ž . Ž Ž ..� n � log c� mp . It is easily seen that for large enough n, � �
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Ž .1�	 � � Ž .� log n log �� �4. Using the strong Markov property and 32 , we find

� �P N � c nŽ .n

Ž . Ž .m n m n
� �� P Y � c n � exp ��c n E exp �Y� 4Ž . Ž .Ý Ýk k½ 5

k�1 k�1

Ž .m n �1
�� exp ��c n E exp �Y� 4Ž . Ý k½ 5ž k�1

Ž .m n �1
� ��e E exp �Y , Y � 1Ý k mŽn.½ 5 /k�1

Ž .m n �1
�� exp ��c n E exp �Y� 4Ž . Ý k½ 5ž k�1

33Ž .
Ž .m n �1

� � � � ��e E exp �Y 1 E X � X , D � �Ý k �� ��4 X D 0m �½ 5 m /k�1

Ž .m n �1
� �� exp ��c n E exp �Y 1 � p n e� 4Ž . Ž .Ž .Ý k½ 5

k�1

Ž .m n�� exp ��c n 1 � p n e� 4Ž . Ž .Ž .
n � 1�	 � �� exp � log n log �� � 1Ž .3�2 	 ž /½ 54log nŽ .

� n 	 � �� exp � log n log ��Ž .Ž .2½ 58 log nŽ .Ž .

Ž .and 28 follows �

2.3. Proof of the upper bound. Now we are ready to describe the first step
Ž .in the proof. For fixed parameters as in 17 , define

A � , � , n � � left crossing of length � � n�Ž .1

up to time n , N �� c n ,4Ž .n

34Ž .

Ž . Ž .3�2 	where c n � n� log n . We set

A � , � , 
 , n � A � X �n � v , SŽ1. � n 1 � v�v � 2
 ,Ž . Ž .� 42 1 n n �
35Ž .

A � , � , 
 , n � A � X �n � v , SŽ1. � n 1 � v�v � 2
 ,Ž . Ž .� 43 1 n n �

Ž1. Ž .where S was defined in 12 and writen

� 4 c � 436 X �n � v � A � X �n � v � A � A .Ž . Ž .n 1 n 2 3
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Ž .In order to prove statement 5 , we start by looking at the set
2log nŽ .Ž .

� c37 � � , � � � lim sup log P A � , � , n � �� .Ž . Ž . Ž .1 1½ 5nn��

�� �By Lemmas 1 and 4 we know that P � � 1. Next we state two proposi-1
Ž .tions from which the statement 5 will follow.

Ž .PROPOSITION 1. Let v 	 0, v be fixed and set�

2log nŽ .Ž .
� � , � , 
 � � 	 � lim supŽ .2 ½ nn��

38Ž .
��log P A � , � , 
 � �� .Ž .2 5

�� �We then have P � � 1.2

Ž .PROPOSITION 2. Let v 	 0, v be fixed and set�

2log nŽ .Ž .
�� � , � , 
 � � 	 � lim sup log P A � , � , 
Ž . Ž .3 3½ nn��

39Ž .

� �I v , � , � , 
 ,Ž . 5
where

2
2� 1 � v�v � 2
 � �Ž . Ž .� pŽ � .
40 I v , � , � , 
 � .Ž . Ž . 48 1 � �Ž .

�� �We then have P � � 1.3

Ž . Ž . Ž .Statement 5 and Theorem 1 follow now easily. Indeed, pick v 	 0, v .�

Set

41 �
 � � � , �Ž . Ž .� �1 1
� ��	� �	�


Ž .p � �0 Ž .��p � �
Ž .4 1�v �1�

and for i � 2, 3,

42 �
 � � � , � , 
 .Ž . Ž .� � �i i
� � �
	� �	� �	�



�1�v�v Ž .p � �0� Ž .��p � �
Ž .4 1�v �1�

Finally, we set �* � �
 � �
 � �
. From Propositions 1, 2 and Lemmas 11 2 3
�� �and 4 we know that P �* � 1. On the other hand, for any � 	 �* and

Ž . Ž .for arbitrary � , � , 
 � 0 with 0 � 
 � 1 � v�v , p � � 0, � � p � ��
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� Ž .�
� 4 1�v � 1 , we have�

2log nŽ .Ž .
� � �43 lim sup log P X �n � v � �I v , � , � , 
 .Ž . Ž .nnn��

Since

2 � � 2� 4lim lim lim I v , � , � , 
 � 1 � v�v � log � 1�2 �8 � I v ,Ž . Ž . Ž .Ž .�

�0 ��0 ��0

Ž .2 � � �we have that for each � 	 �*, lim sup log n �n log P X �n � v �n�� n
Ž . Ž .�I v and 5 follows.

2.4. The leading term. In this section we give the proof of Proposition 2.
� Ž .�We start with introducing the set with k � 3 in 21

44 �

 � , � � � 	 � � 21 and 24 hold for all large enough n .� 4Ž . Ž . Ž . Ž .3

�� 
 � 
From Lemmas 2 and 3 we know that P � � 1. We claim that � � � ,3 3 3
from which Proposition 2 clearly follows. Pick � 	 �


 and define NN the3 1
indices of the epochs corresponding to visits in fair regions. More precisely,

NN � j � 1 � � X � 1, T � nŽ .½ 51 T j�1j� 1

� � Žand set N � NN . The first observation is that on A , for n large enough cf.1 1 1
Ž . � �.35 in 7 ,

n n n
45 0 � N � � 2 � 3 .Ž . 1 3 3�2 	 3�2 	log n log n log nŽ . Ž . Ž .

Indeed, when the walk starts it will possibly cross all fair regions from the
left, making thereby only right crossings of the attached biased blocks. After

Ž .one of these biased blocks has been right- crossed, the next crossing of the
� Ž .3�2 	same block is necessarily a left crossing. Since on A , N � n� log n1 n

and since for � 	 �

 , the number of fair regions is bounded above by3

Ž .3 Ž .n� log n for all large n, 45 follows. For future use we make the following
remark.

REMARK 2. We will show in the proof of Proposition 1 that the number of
Ž . � � � Ž .3type 3 regions in �n, n is P a.s. bounded above by n� log n , for n large

enough. Using exactly the same arguments given above, one can see that for
Ž .each � for which this bound holds, on A the number of visits in type 31

Ž .3�2 	regions is bounded above by 3n� log n , provided n is large enough
Ž . Ž .depending on � . Using 45 one easily sees that the claim of Proposition 2
follows once we have shown that, for � 	 �


 ,3

2log nŽ .
lim sup sup

n3�2 	46Ž . n�� Ž .0�K�3n� log n

� � 4� log P A � , � , 
 � N � K � �I v , � , � , 
 .Ž . Ž .3 1
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Ž . Ž .3�2 	 ŽTo show 46 , pick K with 1 � K � 3n� log n for K � 0 there is
. � 4 Ž .nothing to show . On the set N � K denote the set of random elements of1

� 4NN by 1 � j � j ��� � j � �. Then, on N � K we have1 1 2 K 1

K
Ž1.47 S � T � n � T .Ž . Ýn j j �1k k

k�1

Recall that T � T � T �� . It is easily seen thatj j�1 1 Tj� 1

T � n � T � T � T �� .Ž .j j �1 1 ��n , n � Tk k j �1k

Pick � � 0 and use Chebyshev’s inequality to find
� � Ž1.� �P A , N � K � exp ��n 1 � v�v � 2
 E exp �S ; N � K� 4Ž . � 43 1 � n 1

� exp ��n 1 � v�v � 2
� 4Ž .�48Ž .
K

�� E exp � T � T �� ; N � KŽ .Ý 1 ��n , n � T 1j �1½ 5k
k�1

Ž .We would like to use the strong Markov property in 48 . In order to do this
Ž .and to simplify notation we rename the beginning of the kth epoch spent in

Ž .a fair region note that these are stopping times as follows. We set

49 � � min T � j � 1, 0 � T � �, � X � 1Ž . Ž .½ 51 j�1 j�1 Tj�1

and for k � 2,

50 � � min T � j � 1, � � T � �, � X � 1 ,Ž . Ž .½ 5k j�1 k�1 j�1 Tj� 1

� 4where min � � �. Observe now that on N � K , we have � � T . Coming1 k j �1k
Ž .back to 48 and using the strong Markov property, we find

� � �P A , N � K � exp ��n 1 � v�v � 2
� 4Ž .3 1 �

K
�� E exp � T � T �� ; � � �Ž .Ý 1 ��n , n � � kk½ 5

k�1

� exp ��n 1 � v�v � 2
� 4Ž .�
51Ž .

K�1
�� E exp � T � T ��Ž .Ý 1 ��n , n � � k½ 5

k�1

��E exp � T � T ; � � � .� 4Ž .X 1 ��n , n � k�K

ŽBy choosing an appropriate �, we now give a uniform upper bound uniform
.in � as well as in the starting point of the inner expectation appearing in

Ž . � 4 Ž .51 . Indeed, on � � � , � X � 1, hence T � T is the exit time fromK � 1 ��n, n �KŽ1. � �a fair region FF � �n, n for some i. We will now use a well-knowni
Ž .estimate for the exponential moments of these exit times. We pick � 	 0, 1
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and choose

� 2 1 � �Ž .
52 � � .Ž .

2Ž1. � �8 max FF � �n, niž /i

Ž . � � � Ž . � ��Using now Lemma 3 and 48 from 7 , we see see also 47 from 7 that on
� 4� � � ,K

�53 E exp � T � T � � � 	 1, � .Ž . Ž . Ž .� 4Ž .X 1 ��n , n ��K

Ž . Ž � 4 � 4Iterating this in 51 with � � � replaced by � � � , and so on, we findK K�1

K� � �54 P A , N � K � � � exp ��n 1 � v�v � 2
 .� 4Ž . Ž . Ž .3 1 �


 � Ž .�Since � 	 � , we find for n large enough cf. 24 ,3

1 � � 1�	Ž1. � �max FF � �n, n � log n � 2 log nŽ . Ž .i 
� �i Ž .pŽ � .

21 � �Ž .
� log n .Ž .
� �Ž .pŽ � .

55Ž .

Ž . 
 Ž .Coming back to 54 we find that for � 	 � � , � ,3

2log nŽ .
� � �lim sup max P A , N � K3 1

3�2 	 nŽ .0�K�3n� log nn��
56Ž .

� 2 1 � � 1 � v�v � 2
Ž . Ž .� 2
� � � � .Ž .pŽ � .48 1 � �Ž .
Ž . Ž .Since � 	 0, 1 was arbitrary, 46 follows and the proof of Proposition 2 is

complete. �

2.5. The negligible term. In this section we give the proof of Proposition 1.
The proof will be carried out by splitting A into two events corresponding to2

Ž . Ž .times the walk spends in regions of type 2 and 3 , respectively. Recall that
n � SŽ1. � SŽ2. � SŽ3., where SŽ2. and SŽ3. is the total amount of time until nn n n n n
the walk spends in regular and irregular biased blocks, respectively. Then we
can write

� � Ž2. Ž3.P A � , � , 
 � P A , X �n � v , S � S � n v�v � 2
Ž . Ž .2 1 n n n �

� Ž3.� P A , X �n � v , S � 
n1 n n57Ž .
� Ž2.� P A , X �n � v , S � n v�v � 
Ž .1 n n �

� P � � , � , 
 , � � P � � , � , 
 , �Ž . Ž .4 5

Ž .and A was defined in 34 .1
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Ž .PROPOSITION 3. For any choice of parameters satisfying 17 we have for
P � a.e. �,

2log nŽ .
�58 lim sup log P � , � , 
 , � � ��.Ž . Ž .4nn��

The main ingredient of the proof is the next lemma.

LEMMA 5. For P � a.e. �,

n
� �59 � of irregular double biased blocks intersecting �n, n � .Ž . 3log nŽ .

Ž . Ž .Let us postpone the proof of 59 and show first how 58 follows. In fact, we
will use the same arguments which had been used to show Proposition 1.
Recall that that proof was based on two facts:

Ž . Ž .3�2 	1. The number of visits in type 1 regions is bounded by 3n� log n . Note
that by Lemma 5 and Remark 2 we have the same bound for the number
of visits in irregular double biased blocks.

Ž . Ž .2 Ž . 
 Ž .2. The length of a type 1 region can not exceed 1 � � log n �� � .pŽ � .
Ž �Ž .1�	 � .Clearly, a double biased block is much smaller its length is 2 log n .

Ž .Note that the exponential moment arising in the Chebyshev estimate of
the exit time from any region RR of finite length can be controlled, uniformlyi

Ž1.Ž . � Ž .in the environment, by 53 where � is given by 52 where FF has to bei
� 2 Ž Ž �Ž .1�	 �.2 . �replaced by RR . Choosing now � � � � 16 2 log n which corre-i

Ž .�sponds to the choice of � � 1�2 in 52 we find as in the proof of Proposition
1 that

� Ž3. � Ž3.P A , X �n � v , S � 
n � P A , S � 
n1 n n 1 n

3n 3� 2 	Ž .3n� log n� � 1�2Ž .3�2 	log nŽ .60Ž .
n

2� exp �� 
 2�2 	ž /64 log nŽ .

and the claim of Proposition 3 follows once we have proved Lemma 5.

PROOF OF LEMMA 5. Once we have shown

b� � �61 P BB is an irregular double biased block � exp �a log n ,Ž . Ž .Ž .0

Ž .where a, b � 0 are independent of n, Lemma 5 will follow from 61 by using
Ž .Remark 1 with k � 4 applied to the double blocks with even odd indices

� �having nonempty intersections with �n, n . Indeed, Remark 1 yields the
Ž . Ž .4 Ž .3upper bound on the number of type 3 regions: 2n� log n � n� log n , for
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Ž . � 4n large enough. To show 61 we first set S � � � BB is s-biased . Then0

�P BB is of type 3Ž .0

� � c �� P S62Ž .
1�	� ² �: , � Žn.� P S � � � E V � 1�v � � log n .Ž . Ž .½ 50 0 �

Ž . cThe first summand in 62 is easily estimated. Indeed, on S there exists at
Ž .least one fair subblock. Using 22 and the fact that a subblock has a length

�Ž .1�	 �at least log n , we find for large enough n

1 
 
� c� �63 P S � exp � log n � � .Ž . Ž . Ž .pŽ � .ž /2

Ž .It remains to give an upper bound on the second summand in 62 . To this
� � Ž .end we will use Azuma’s inequality 1 in the following form: Let �, AA, P

Ž .be a probability space with a filtration AA and S 	 AA. Letk k�0, . . . , n
M , M , . . . , M be martingales with the property that for k � 1, . . . , n,0 1 n

� �M � M 1 � c .Ž . �k k�1 S k

Then for every t � 0,

1 t 2

� 464 P M � M � t � S � exp � .Ž . n 0 n 2ž /2 Ý ck�1 k

Ž .In order to use this inequality, we first set for x 	 �, U � � � andx x
�Ž .1�	 �N � log n . For � 	 � and 0 � k � 2 N, we define the martingale on �,

Žn.65 M � � � V � � U , . . . , U �Ž . Ž . Ž . Ž .k 0 0 N�k N

� Žn. 1Ž .where � is the annealed measure with start at the origin. V 	 L �0 0 0
Ž Žn.. Ž . Ž . �since � V � N�v , which will be clear from 68 and 73 . For � 	 � and0 0 �

j 	 �, we define E² �:, j, � to be the quenched expectation starting from 0,0
where we have replaced the environment strictly to the left of j by the

Ž ² :.�1homogeneous environment given by � � 1 � � , and the rest of thex
environment has been left untouched. In particular, using the notation

Ž . ² �:, �N , � ² �:, �introduced in 9 , we have that E � E . We claim that for � 	 �,0 0
0 � k � 2 N,

² �: , N�k , � Žn.66 M � � E V .Ž . Ž .k 0 0

Ž . Ž Ž .To check 66 , we have to show that for 0 � k � 2 N and A 	 � U � ,N� k
Ž ... . . , U � ,N

Žn. � ² �: , N�k , � Žn.67 � V 1 � E E V 1 .Ž . 0 0 A 0 0 A

We will use the representation for V Žn. given by0

N�1
Žn. i68 V � � ,Ž . Ý0 i�1

i�0
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i � 4 iwhere � � � �� with � � inf t � 0 � X � X � i , � � 0. In words, �i�1 1 � i t 0 0 i�1i
Ž . Ž . Ž .is the time it takes to reach i � 1 starting from i. Inserting 68 into 67 ,

we see that as soon as we know for i � 0, . . . , N � 1,

i � ² �: , N�k , � i69 � � 1 � E E � 1 ,Ž . 0 i�1 A 0 i�1 A

Ž . � �67 follows. The next observation is that for fixed k 	 0, 2 N � �, we can
look at the measure P � as the product of the measures P � and P �, where P �

1 2 1
� .� � Ž��, N�k . �is the product measure 
 � on � 	 1�2, 1 and P � 
 � on1 2i i

� .� �� N�k , �. � �� 	 1�2, 1 . Pick i 	 0, N � 1 . Then2

i � � i � � � i70 � � 1 � E 1 E � � E 1 E E � .Ž . 0 i�1 A A 0 i�1 2 A 1 0 i�1

�� ² �:, N�k , � � i � � �� ² �:, N�k , � � i � � Ž .Since E E � 1 � E E � 1 , we see that 690 i�1 A 2 0 i�1 A
follows once we have shown

² �: , N�k , � i � � i71 E � � E E � .Ž . 0 i�1 1 0 i�1

Ž . Ž Ž . Ž . � �.To check 71 we will use the following formula cf. 12 , 15 in 3 :

� � �E � � 1 � 2 � � � � � � �Ž . Ž . Ž .Ži 1 i i i�1

�� � � � � � � ��� ,Ž . Ž . Ž . .i i�1 i�2

72Ž .

Ž . Ž .where we recall that � � 1 � � �� . If we now write � � � , � withi i i 1 2
� 	 � for i � 1, 2, by using the strong Markov property we findi i

� � iE E �1 0 i�1

� � �� 1 � 2E � � � � � ���1 i i i�1


 2² : ² :1 � 2 � � � � ��� , i � N � k ,Ž .
�1 � 2 � � � ��� �� � ��� � �Ž . Ž . Ž .Ž� i 2 i 2 N�k 2

2� ² : ² :1 � � � � � ��� , i � N � k .Ž . .

73Ž .

² �:, N�k , � Ž . Ž ² :.�1Since E denotes the quenched path measure with � � 1 � �0 i
Ž .for i � N � k, the right-hand side of 73 is easily seen to be equal to

² �:, N�k , � � i � Ž . Ž .E � . This shows 71 and the proof of 66 is complete. To apply0 i�1
Ž . ² �:, � � Žn.� Ž .Azuma’s inequality, note first that M � � E V , and M � �2 N 0 0 0

² �:, N � Žn.� Ž ² :k . Ž . Ž .E V � N 1 � 2Ý � � N�v ; compare 2 . Hence, by 64 ,0 0 k �1 �

1 1�	� ² �: , � Žn.P S � � E V � � � log nŽ .0 0½ 5ž /v�

74Ž .
21 � NŽ .

� exp � .2ž /2 Ý ck�1, . . . , 2 N k
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It remains to give an upper bound on c . To this end we pick � 	 S and byk
Ž . Ž .using 66 and 68 we find for 1 � k � 2 N,

N�1
² �: , N�k , � ² �: , N�k�1, �� � � �M � � M � � E � � E �Ž . Ž . Ž . Ž .Ýk k�1 i 1 i 1

i�1

N�1
² �: , N�k , � ² �: , N�k�1, �� �� E � � E �Ž . Ž .Ý i 1 i 1

i�N�k

N�1 ² :1 �
� 2 � ���� �� ����Ý i N�k i N�k�1² : ² :1 � � 1 � �i�N�k

75Ž .

N�12
� ² : �� � ��� � � � �Ý i N�k�1 N�k² :1 � � i�N�k

N�12
� � ��� � ,Ý i N�k�1² :1 � � i�N�k

where we have adopted the convention that the product � ��� � is equal to 1i j
if i � j. For i � N � k � 1, we set

i � N � k � 1Ž .
L � 
i 2 log nŽ .

�which is an upper bound on the number of subblocks contained in i, N �
� Ž �Ž .
 �.k � 1 recall that the last subblock might have a length 2 log n . Since

� � �Ž .
 �� 	 S implies that each subblock of �N, N has at least � log n biased
sites in it. Thus, for 1 � k � 2 N and n large enough,

�2 
� �Žlog n. � Li� �M � � M � � ��Ž . Ž . Ýk k�1 ² :1 � � i�N�k

2
L� ��Ý Ý² :1 � � L�0 i�N�k�1

L �Li

2 
 L� 2 log n ��Ž .Ý² :1 � � L�0

76Ž .



4 log nŽ .

� ,² :1 � � 1 � ��Ž .Ž .
Ž . Ž . Ž . Ž .where �� � 1�2 � � � 1�2 � � 	 0, 1 . Coming back to 74 , we find

1 1�	� ² �: , � Žn.P S � � E V � � � log nŽ .0 0½ 5ž /v�77Ž .
1 2 2 1�	�2
2 ² :� exp � � 1 � � 1 � �� log nŽ . Ž .Ž .ž /128
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Ž . Ž .This together with 63 implies 61 and the proof of Proposition 3 is com-
plete. �

The last step in the proof of the upper bound of Theorem 1 is to establish
the following proposition.

Ž .PROPOSITION 4. For any choice of parameters satisfying 17 we have, for
each � 	 �,

2log nŽ .
�78 lim sup log P � , � , 
 , � � ��,Ž . Ž .5nn��

�Ž . Ž .where P � , � , 
, � has been defined in 57 .5

Ž .PROOF. We first introduce the random variables i 	 � ,
1�	Žn.79 Z � V � log n ,Ž . Ž .i i

Žn. Ž .where the V were defined in 8 . The following lemma, which provides taili
estimates on Z in the case where the corresponding double block is regulari
� Ž .�i.e., type 2 , is the key to the proof of Proposition 4.

Ž . Ž . Ž .LEMMA 6. Set t � 2 2 � v�v . There exists a constant � � 	 0, � and0 �

Ž . Ž .n � � 10 such that for each � 	 � with the property that BB is of type 2 ,0 0
we have for n � n and t � t ,0 0

² �: , � � �80 P Z � t � exp �� � t .Ž . Ž .Ž .0 0

Note the the choice of the index i � 0 plays no role in the statement.
Before we give the proof of Lemma 6, which involves the martingale

method once more, let us first show how the claim of Proposition 4 follows. As
� Ž . 4 � �before, we define NN � j � 0 � � X � 2, T � n and set N � NN . As2 T j�1 2 2j� 1

� 4in the proof of Proposition 1, it follows that on the set A � X �n � v , we1 n
have for large enough n,

n n
0 � N � v � � � 2Ž .2 3�2 	1�	 log nlog n Ž .Ž .

n
� v � 2� .Ž .1�	log nŽ .

81Ž .

The claim of Proposition 4 will follow, once we have shown that for � 	 �,
2log nŽ .

lim sup max
1�	 n82 Ž . Ž .Ž . 0�K�n v�2 � � log nn��

� Ž2.� log P N � K , S � n v�v � 
 � ��.Ž .2 n �

In order to estimate the probability on the left-hand side, we follow closely
Ž .the arguments of the proof of 46 . Denote by � the beginning of the kth visitk
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Ž . Ž .of a type 2 region, where � is defined as in 50 except that we are dealingk
Ž . Ž .with type 2 instead of type 1 regions. Adapting the arguments leading to

Ž .51 , we obtain for any � � 0, � 	 �,
� Ž2.P N � K , S � n v�v � 
Ž .2 n �

� exp ��n v�v � 
Ž .Ž .�

K�1
�� E exp � T � T ��Ž .Ý 1 ��n , n � � kž /

k�1
83Ž .

��E exp � T � T ; � � �Ž .Ž .X 1 ��n , n � K�K

Ž . � 4with T defined in 11 . We observe that on � � � ,1 K

� ² �: , �E exp � T � T � sup E exp �TŽ .Ž .Ž .X 1 ��n , n � i 1�K Ž .i : BB is of type 2i

² �: , � Žn.� sup E exp �V .Ž .i i
Ž .i : BB is of type 2i

84Ž .

1�	Ž . Ž . Ž Ž .Set � � � log n . Iterating in 83 we arrive at 0 � K � n v � 2� �
Ž .1�	 .log n ,

� Ž2.P N � K , S � n v�v � 
Ž .2 n �

n
� exp �� v�v � 
Ž .�1�	ž log nŽ .

1
² �: , � Žn.�K� sup log E exp �ZŽ .i i /�Ž .i : BB is of type 2i85Ž .

n
� exp �� v�v � 
 � v � 2�Ž . Ž .�1�	ž log nŽ .

1
² �: , � Žn.� sup log E exp �Z ,Ž .i i /�Ž .i : BB is of type 2i

Žn. Ž .where Z was defined in 79 .i
Ž . Ž .Let � be such that BB is regular. Pick n � n � � 10 , t � t and0 0 0

Ž . Ž .� � � � �log n see Lemma 6 for definitions . Then,

�1 1
² �: , � Žn. �u ² �: , � Žn.log E exp �Z � log 1 � � e P Z � u duŽ . H0 0 0 0ž /� � 0

t
�t ² �: , � Žn.� e P Z � u duH 0 0

0
86Ž .

�
�u ² �: , � Žn.� e P Z � u du.H 0 0

t
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Ž .By Lemma 6, we estimate the second term by 2�� exp �� t�2 and the first
Ž Ž . .Ž . ² �:, � � Žn.�one by exp � � t�log n 1�v � � , where we have used that E V �� 0 0

Ž .1�	 Ž . Ž . Ž .1�2log n 1�v � � . Choosing now t � t n � log n we find for large�

enough n,
� Ž2.P N � K , S � n v�v � 
Ž .2 n �

� � nŽ .
� exp � v�v � 
 � v � 2�Ž . Ž .�2�	 ½ž log nŽ .

� �Ž .
� exp 1�v � �Ž .�1�2ž /ž log nŽ .87Ž .

2 � �Ž . 1�2� exp � log nŽ .ž / 5/ /� � 2Ž .

� � nŽ .
� exp � v�v � 
 � v � 2� 1�v � 2� .Ž . Ž . Ž .Ž .� �2�	ž /log nŽ .

Ž .Since by our choice of parameters we have that 
 � 2� v � 2� 1�v � 2��

� Ž .� Ž .cf. 18 , 82 follows and it remains only to prove Lemma 6.

�Ž .1�	 �PROOF OF LEMMA 6. For convenience we set N � log n . Recall that
V Žn. is the hitting time of the point N. It will be useful to introduce the path0
measure P � which agrees with P² �:, � except that at N we now have a0 0

Ž .reflection to the left , that is, � � 0. Otherwise the transition probabilitiesN
Ž . Ž .are unchanged and, of course, depend on � . Let H w be the number ofr

Ž . � Ž .1�	 �visits in N up to time r, and for given t, set s � s t, n � t log n . We
have

² �: , � ² �: , � Žn.� �P Z � t � P V � s0 0 0 0
88Ž .

² �: , � � � � � �� P H � 0 � P H � 0 .0 s 0 s

Since we have a basically homogeneous drift in BB , during time n we expect0
� � 4� const � n hits at N under the measure P . Thus the event H � 0 is very0 s

unlikely. We will use the martingale method to estimate the corresponding
probability. For k � 0 we first define the martingale,

�89 M w � E H � � X , . . . , X w .Ž . Ž . Ž . Ž .k 0 s 0 k

� � � � � � � �Note that M � E H and M � H . Since P H � 0 � P H �0 0 s s s 0 s 0 s
� � � � � � � � Ž .E H � �u , where u � E H , Azuma’s inequality now yields cf. 640 s 0 s

�applied to �Mk

² �: , � � � � � �P Z � t � P M � M � �u0 0 0 s 0

2� 2� �� exp �E H � 2 c .Ý0 s kž /½ 5
k�1, . . . , s

90Ž .
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We first claim that since BB is strongly biased we have for 1 � k � s,0



91 c � k � log n ,Ž . Ž . Ž .k 1

Ž . Ž .where k � is a constant depending only on � . To show 91 , first note that1
� � Ž .� � � �for 0 � k � s; E H � � X , . . . , X � H � E H by the Markov0 s 0 k k X s�kk

property. For 1 � k � s, we now have
�� �M w � M w � E H � � X , . . . , XŽ . Ž . Ž .k k�1 0 s 0 k

��E H � � X , . . . , XŽ .0 s 0 k�1

� �� � � �� 1 � E H � E HX s�k X s�k�1k k�1

� �� � � �� 1 � E H � E HX s�k X s�kk k�1

92Ž .

� �� � � �� E H � E HX s�k X s�k�1k� 1 k�1

� �� � � �� 2 � sup E H � E H .x s�k x�1 s�k
x�N

We claim that for each n � 1,

1� � �� � � � � �93 sup E H � E H � sup E � ,Ž . x n x�1 n x�1 x2x�N x�N

Ž .where we recall that � is the hitting time of x. To show 93 , we first observex
� � � � � �that E H � E H . On the other hand,x n x�1 n

�
� � �� � � � � �94 E H � E H � � � j P � � j .Ž . Ýx�1 n x�1 n x x�1 x

j�1

Now
� � �� � � �E H � � � j � 1 E H � E H � j�2,x�1 n x j� n x n�j x n

where we used the fact that for j � n, H � j�2 � H and that in anyn� j n
Ž . � � � � � �case H � n�2. Coming back to 94 , we see that E H � E H �n x�1 n x n

� � � Ž . Ž .1�2E � , which implies 93 . Using 92 , we have for 1 � k � s,x�1 x

� � � ² �: , � � �95 c � 2 � 1�2 sup E � � 2 � 1�2 sup E � .Ž . k x�1 x x�1 x
x�N x�N

² �:, � � � Ž . ŽNote that for x � N, E � is equal to the r.h.s. of 73 with i � x � 1x�1 x
. Ž . Ž .and k � 2 N . Exactly as in 76 we obtain for n � n � .0

2 
 

96 c � 2 � 1�2 1 � 2 log n � k � log nŽ . Ž . Ž . Ž .k 1ž /² :1 � � 1 � ��Ž .Ž .

Ž .for a certain constant k � � 0. It remains to give a lower bound on1
� � � � Ž .1�	 � Ž .Ž .1�	E H . Recall that s � t log n . Set s 	 2 1�v � � log n and0 s 0 �

observe that t � t and n � n � 10 implies s � s . We will use the simple0 0 0
� � ��fact that for any nonnegative random variable X we have P X � 2 E X �

1�2. For a later purpose we set



97 K � s � s � 8 log n k � .Ž . Ž . Ž . Ž .Ž .0 1
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Ž .Observe that K � 1, provided t � t and n � n � . Now0 0

K1� � Žn. � Žn.� �98 E H � P H � k � V � 2E V .Ž . Ý0 s 0 s 0 0 02 k�1

� � Žn.� ² �:, � � Žn.� Ž .Ž .1�	Note that 2E V � 2E V � 2 1�v � � log n � s , since0 0 0 0 � 0
BB is regular. Hence0

K1� �� �99 E H � P H � k � 1 .Ž . Ý0 s N�1 s�s02 k�1

Ž .For i � 1 let us denote by D the duration of the ith passage from N � 1 toi
� Ž .N. Note that all of these variables are P -a.s. finite hence well defined .0

Thus
K k1� �� �E H � P D � s � sÝ Ý0 s N�1 i 02 k�1 i�1

K k1 �� 1 � P D � s � sÝ ÝN�1 i 0ž /2 k�1 i�1
100Ž .

K1 k � � �� 1 � E � ,Ý N� 1 Nž /2 s � s0k�1

where we used Chebyshev’s inequality in the last line together with the fact
� � � � � �that for each i � 1: E D � E � , where � is the hitting time ofN�1 i N�1 N N

the point N.
� � � ² �:, � � � Ž .Ž .
 � Ž . Ž .�Recall that E � � E � � 2k � log n cf. 95 , 96 . ThanksN�1 N N�1 N 1

� Ž .� Ž Ž .to our choice of K cf. 97 , we have for 0 � k � K that 1 � 2k �1
Ž .
 Ž ..� log n � s � s � 1�2 and we arrive at0

1� � �101 E H � K .Ž . 0 s 4

Ž . Ž . ŽComing back to 90 we find, together with our bound on c from 96 s �k
� Ž .1�	 �.t log n ,

K 2

� �P Z � t � exp �0 0 2
2½ 532k � s log nŽ . Ž .1

21�	
 �1 t log n � 1 � s 1Ž . 0� �� exp � � 1
2 1�	�2
� �32k �Ž . 8 log n k �Ž . Ž . t log nŽ .1 1

102Ž .

Observing that this estimate is monotone decaying in n, the claim of Lemma
6 follows. �

Acknowledgments. We are happy to acknowledge useful exchanges
with O. Zeitouni and we thank an anonymous referee for valuable sugges-
tions for improving the presentation.



LARGE DEVIATIONS FOR RWRE 1413

REFERENCES
� � Ž .1 AZUMA, K. 1967 . Weighted sums of certain dependent random variables. Tohoku Math. J.ˆ

19 357�367.
� � Ž .2 CHUNG, K. L. 1967 . Markov Chains with Stationary Transition Probabilities. Springer,

Berlin.
� � Ž .3 DEMBO, A., PERES, Y. and ZEITOUNI, O. 1996 . Tail estimates for one-dimensional random

walk in random environment. Comm. Math. Phys. 181 667�683.
� � Ž .4 GANTERT, N. and ZEITOUNI, O. 1998 . Quenched sub-exponential tail estimates for one-di-

mensional random walk in random environment. Comm. Math. Phys. 194 177�190.
� � Ž .5 GANTERT, N. and ZEITOUNI, O. 1998 . Recent results on large deviations for one-dimensional

random walk in random environment. Preprint.
� � Ž .6 GREVEN, A. and DEN HOLLANDER, F. 1994 . ‘‘Large deviations for a random walk in random

environment.’’ Ann. Probab. 22 1381�1428.
� � Ž .7 PISZTORA, A., POVEL, T. and ZEITOUNI, O. 1997 . Precise large deviation estimates for

one-dimensional random walk in random environment. Probab. Theory Related Fields.
To appear.

� � Ž .8 POVEL, T. 1997 . Critical large deviations of one-dimensional annealed Brownian motion in
a Poissonian potential. Ann. Probab. 25 1735�1773.

� � Ž .9 SOLOMON, F. 1975 . Random walks in random environment. Ann. Probab. 3 1�31.
� � Ž .10 SZNITMAN, A.-S. 1995 . Quenched critical large deviations for Brownian motion in a Poisso-

nian potential. J. Funct. Anal. 131 54�77.

DEPARTMENT OF MATHEMATICAL SCIENCES ZURICH RE

CARNEGIE MELLON UNIVERSITY GENERAL-GUISAN-QUAI 26
5000 FORBES AVENUE 8022 ZURICH

PITTSBURGH, PENNSYLVANIA 15213 SWITZERLAND

E-MAIL: pisztora@andrew.cmu.edu E-MAIL: tobias.povel@zurichre.com


