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If X is integrable, F is its cdf and Fn is the empirical cdf based on
an i.i.d. sample from F, then the Wasserstein distance between Fn and
F, which coincides with the L1 norm

∫∞
−∞ �Fn�t� −F�t��dt of the centered

empirical process, tends to zero a.s. The object of this article is to obtain
rates of convergence and distributional limit theorems for this law of large
numbers or, equivalently, stochastic boundedness and distributional limit
theorems for the L1 norm of the empirical process. Some limit theorems
for the Ornstein–Uhlenbeck process are also derived as a by-product.

1. Introduction. The Kantorovich or L1-Wasserstein distance between
two probability measures P1 and P2 on R with finite mean, defined as

�1�1�
d1�P1	P2� �= inf

{∫
�x− y�dµ�x	y��

µ ∈ � �R2� with marginals P1	P2

}
	

is an interesting distance in probabilistic limit theory because it metrizes
weak convergence plus convergence of first absolute moments. It is well known
[Shorack and Wellner (1986), page 64] that, letting F1, F2, respectively, be the
cumulative distribution functions (cdf ’s) of P1 and P2 and Q1, Q2 their left
continuous inverses or quantile functions, Qi�t� = inf	x� Fi�x� ≥ t�, this
distance can be alternatively written as

�1�2� d1�P1	P2� =
∫ 1

0
�Q2�t� −Q1�t��dt =

∫ ∞

−∞
�F2�t� −F1�t��dt�

We will refer to any of these three expressions as the Wasserstein distance
between F1 and F2.

Let now X	Xi, i ∈ N, be i.i.d. integrable random variables with common
cdf F and quantile function Q, and let

Fn�t� = 1
n

n∑
i=1

IXi≤t	 t ∈ R	 n ∈ N	
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be their empirical measures. By Glivenko–Cantelli and the law of large num-
bers for �X�,

Fn�t	ω� → F�t� for all t ∈ R and
∫

�t�dFn�t	ω� →
∫

�t�dF�t� a.s.

Therefore, by dominated convergence,

�1�3� d1�Fn	F� → 0 a.s.

[If X is not integrable, then d1�Fn	F� = ∞ for all n.] The object of this
article is to obtain the distributional limit theorems associated to the “law of
large numbers” (1.3) and, more generally, to obtain rates of convergence in
probability for this law of large numbers. The relationship between d1�Fn	F�
and the weighted uniform empirical process adds interest to this problem.
Since Q�θ�, θ uniform on �0	1�, has the law of X, taking Xi = Q�θi� in (1.2),
with θi i.i.d. uniform, gives, by a change of variables that, as is well known,

�1�4� d1�Fn	F� =d

∫ 1

0
�Hn�t� − t�dQ�t�	 n ∈ N	

where Hn is the nth empirical cdf corresponding to the sequence θi. If Q
is differentiable, then the right side of (1.4) is the L1 norm of the uniform
empirical process weighted by Q′�t�. So, the results to be obtained in this
article can be viewed in different lights, as limit theorems for a particularly
important functional of the general empirical process Fn on R, namely the L1
norm, or as the asymptotic behavior of the Wasserstein distance between the
empirical and the true distributions or as limit theorems for the L1 norm of
the weighted uniform empirical process.

In fact, the Lp norm for p ≥ 1 of the weighted empirical process,

�1�5�
∫ 1

0
��Hn�t� − t�/q�t��p dt

has been studied by several authors. Csörgő, Csörgő, Horváth and Mason
(1986a) (Hereafter CCHM) adapt the Kómlos–Major–Tusnády approximation
of partial sums by Wiener processes to a weighted approximation of the uni-
form quantile process by Brownian bridges, and obtain from this a weighted
approximation of the uniform empirical process by Brownian bridges [for a
history and a simpler proof of the latter, see Mason (1991)], which has become
an invaluable tool for the study of the empirical cdf. This approximation is
then shown in CCHM (1986b) to provide an approximation in probability of
integral functionals of Hn by the same functionals for Brownian bridges. M.
Csörgő and Horváth (1988a, 1993) [see also M. Csörgő, Horváth and Shao
(1993)] also use these approximations to obtain limit theorems for the inte-
grals in (1.5) over different domains of integration contained in �0	1�. The
results of these authors on (1.5) constitute a nice complement to the cele-
brated Chibisov–O’Reilly theorem. For p = 2 and weights q�t� = f�Q�t��, f
the density of F, these integrals are related to tests of goodness-of-fit. In the
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present work, the Wasserstein distance gives precise additional meaning to
very general weights.

It turns out that the natural settings for distributional limit theorems for
the Wasserstein distance between Fn and F are the domains of attraction of
α-stable laws with 1 ≤ α ≤ 2 (assuming E�X� < ∞ in the α = 1 case). The
technically most interesting cases are α = 1 and α = 2, for which there are few
results in the literature. The following theorem describes the results about
our problem that are contained in, or can be obtained without effort from,
previous work [see Theorems 5.3.1, 5.3.2 and 5.3.3 in the Csörgő–Horváth
(1993) book]. Here and elsewhere, the notationX ∈ DAα�an� will indicate that
the distribution of X is in the domain of attraction of an α-stable law with
normalizing constants an. Convergence in distribution is denoted by →d for
random variables and by →w for probability measures. Then B�t�, 0 ≤ t ≤ 1,
will denote a Brownian bridge process, that is, a centered Gaussian process
with continuous sample paths and covariance EB�s�B�t� = s ∧ t− st.

Theorem 1.1. LetX	Xi, i ∈ N, be a sequence of independent random vari-
ables with a differentiable distribution function F and let Q be the associated
quantile function. Assume that X ∈ DAα�an� for some 1 < α ≤ 2 and let γ be
the α-stable limit law of 	∑n

i=1�Xi − EX�/an�∞
n=1� Then:

(a) In the case α = 2;

(a1) If, in addition,
∫∞
−∞

√
F�t��1 −F�t��dt <∞, then

�1�6� √
n
∫ ∞

−∞
�Fn�t� −F�t��dt→d

∫ 1

0
�B�t��dQ�t�

and
(a2) If X is symmetric, has a positive density and satisfies Pr	�X� >

t� � 1/t2, then there exists a constant D such that

�1�7� n√
Dan

(∫ ∞

−∞
�Fn�t� −F�t��dt− E

(∫ ∞

−∞
�Fn�t� −F�t��dt

))
→d g	

where g is standard normal.

(b) If 1 < α < 2 and γ = cPoisµ�c1	 c2	 α�, then

�1�8�

n

an

∫ ∞

−∞
�Fn�t� −F�t��dt →d

1
α

(
c1

α

)1/α ∫ ∞

0
�N1�s� − s�s−1−1/α ds

+ 1
α

(
c2

α

)1/α ∫ ∞

0
�N2�s� − s�s−1−1/α ds	

where 	Ni�t�� 0 < t < ∞�, i = 1	2, are independent Poisson processes with
intensity 1.

We should recall that the centered compound Poisson measure with
Lévy (or driving) measure µ satisfying

∫∞
−∞ 1 ∧ x2 dµ�x� < ∞, µ	0� = 0 and∫

�−1	1�c �x�dµ�x� <∞, is defined as the probability measure with characteristic
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function

�1�9� �cPoisµ�ˆ�t� = exp
(∫ ∞

−∞
�exp�itx� − 1 − itx�dµ�x�

)
�

we will also use below the partially centered Poisson measure

�1�10� �cδPoisµ�ˆ�t� = exp
(∫ ∞

−∞
�exp�itx� − 1 − itxI�x�≤δ�dµ�x�

)
	

needed when µ does not integrate �x� at infinity or is not symmetric. The Lévy
measure µ�c1	 c2	 α�, whose corresponding compound Poisson is α-stable, is
defined as

�1�11� dµ�c1	 c2	 α� =
{
c1x

−1−α dx	 if x > 0	
c2�x�−1−α	 if x < 0

[cf. Araujo and Giné (1980), Chapter 2]. It is also convenient to note that the
condition

∫∞
−∞

√
F�t��1 −F�t��dt < ∞ implies finite second moment for X

but not conversely [this condition defines the Banach space L2	1�%	&	Pr� [cf.
Ledoux and Talagrand (1991), page 10]. In particular, the previous theorem
is far from covering the basic case EX2 < ∞ [or, more generally, the case
X ∈ DA2�bn� for general bn].

Here is a brief description of the contents of this article.

1. Parts (a1) and (b) of Theorem 1.1 are proved without assuming F differ-
entiable and, moreover, the type of convergence is improved in the sense
that it is a consequence of convergence in law of certain processes in L1�R�;
stochastic boundedness for larger classes of distributions is also considered
(Section 2).

2. Two converses of (a1) are obtained [Theorem 2.1(b) and Corollary 4.5].
3. A limit theorem is proved for the partially centered Wasserstein distance

when X is in the domain of attraction of a 1-stable law, with E�X� < ∞;
this generalizes Theorem 1.1(b) to this case (Section 3).

4. We show that the centered and normalized Wassertein distances,
	nb−1

n �d1�Fn	F� − Ed1�Fn	F���∞
n=1, are stochastically bounded for all

X ∈ DA2�bn� (Section 4) and prove that they actually converge in law
for EX2 < ∞ and also for X ∈ DA2�bn� with bn � √

n�log n��α+1�/2,
−1 < α < ∞, and bn � √

n log log n, significantly expanding the scope
of (a2), which corresponds to α = 0 (Sections 5 and 6). Other norming
sequences 	bn� are possible, but we restrict to these for simplicity.

5. All the above theorems are shown to hold with convergence of moments as
well.

These results constitute an essentially complete description of the first-
order asymptotics for the Wasserstein distance d1�Fn	F� or, what is the same,
for the L1 norm of the empirical process, at least for X ∈ DAα, α ∈ �1	2�.

The results for the uncentered Wasserstein distance [corresponding to (a1)
and (b)] are all obtained from the central limit theorem in the Banach space
L1�R� for adequate processes. This CLT, obtained in the seventies, is relatively
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elementary (as L1 is a well-behaved Banach space in this regard) and the
proofs straightforward. We believe this method is more elementary than the
one based on approximation of the weighted empirical process by the Brownian
bridge, particularly if based on KMT. It has the added advantage of providing
convergence of moments as well.

We devote Sections 4 to 6 to the more delicate case of the domain of attrac-
tion of the normal law, with X not in L2	1. In Section 4 we obtain stochas-
tic boundedness plus uniform integrability of up to the second moments by
means of a new, very powerful, exponential inequality of Talagrand (1996) for
empirical processes (Section 4). We should remark that this inequality, whose
original proof is quite difficult, has now a simple proof based on log Sobolev
inequalities (Ledoux, personal communication). Section 5 contains the conver-
gence result for the finite variance case. The tools used are the aforementioned
Talagrand’s inequality and the Borell–Sudakov–Tsirel’son concentration in-
equality for Gaussian processes (in the simpler version of Maurey and Pisier).
Section 6 is devoted to the central limit theorem in the infinite variance case.
Because the norming constants are not determined by integrals over bounded
intervals, but by the integrals at infinity, it does not seem that this result can
be obtained using the previous inequalities in combination with approxima-
tion by integrals over bounded intervals. Here, not only strong approximation
seems unavoidable, but it is perfectly suited to reduce the limit theorem for
the empirical process to one for Gaussian processes. For this, we use a result
of CCHM (1986a) on weighted approximation of the uniform empirical process
by Brownian bridges; this result has a relatively elementary proof based on
Skorohod embedding [Mason (1991), Csörgő and Horváth (1986)]. Talagrand’s
inequality is still helpful to obtain convergence of moments (which play an im-
portant part in the proofs). After this article had been written, Mason (1998)
improved the weighted approximation from a probability statement to one on
exponential moments; if we used his result in the present analysis we could
avoid Talagrand’s inequality. However, since Mason’s result is based on KMT
and there exists a simple proof of Talagrand’s inequality, it is unclear whether
this would amount to any real simplifications.

The derivation of (1.7) in, for example, Csörgő and Horváth (1993) uses
a central limit theorem for integrals of centered functionals of stationary
Markov processes with respect to Lebesgue measure [Mandl (1968)], applied
to the Ornstein–Uhlenbeck process. In order to extend it, a limit theorem for
integrals with respect to measures other than Lebesgue (thus, not tied to sta-
tionarity) has had to be derived, which may have some independent interest.
[See Csörgő and Horváth (1988b) for limits of integral functionals of other
Gaussian processes.] Our approach is quite indirect and takes most of Sec-
tion 6. We view this proof and the extensive use of Banach space methods in
the problem at hand as the main technical innovations in this article.

The results for the L1 norm of the empirical process presented here have
natural analogues for the Lp norm; since the changes in the proofs would
only be formal, we refrain from pursuing this subject [see, e.g., Csörgő and
Horváth (1993), Theorem 3.1, pages 316 and 317, for statements on the Lp
norm, p ≥ 1, corresponding to Theorem 1.1(a) above].
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CCHM (1986b) obtained two very useful explicit formulas for the norming
constants bn in DA2�bn�, which we use in Sections 4 and 5. Because of their
interest, we rederive them, directly from first principles of classical central
limit theory, in an Appendix.

2. The uncentered Wasserstein distance. In this section we study con-
vergence in distribution of the normalized but uncentered Wasserstein dis-
tance between the empirical and the true probabability measures. We derive
results related to (a1) and (b) in Theorem 1.1, in fact stronger, by means of sim-
ple proofs based on techniques from probability in Banach spaces. These tech-
niques are definitely more elementary than those used in Csörgő and Horváth
(1993). Since part of the statements that follow are in terms of weak conver-
gence of probability measures in L1 �= L1�R�, we should recall that (1) if Y is
a jointly mesurable process with almost all its trajectories in L1�R� thenY can
be identified to a Borel random variable in L1�R� and conversely [Byczkowski
(1977)], and (2) if Yn, Y are processes with almost all their sample paths in
L1�R�, then the processesYn converge in law toY in L1�R�, � �Yn� →w � �Y�
in L1, if limn→∞ Ef�Yn� = Ef�Y� for all functions f� L1 → R which are
bounded and continuous; in particular then, �Yn�L1

→d �Y�L1
. We also de-

note this convergence by Yn →� Y in L1.
We also observe that, if X has distribution F, then the condition

�2�1�
∫ ∞

−∞

√
F�t��1 −F�t��dt <∞

is equivalent to the condition

�2�1′� )2	1�X� �=
∫ ∞

0

√
Pr	�X� > t�dt <∞�

The functional )2	1 is equivalent to a norm defining the Banach space
L2	1�%	&	Pr�, dual of the weak-L2 space L2	∞, and we have L2+δ ⊂ L2	1 ⊂ L2
for all δ > 0, as is easy to check [e.g., Ledoux and Talagrand (1991), page 10].
We mention this because this quantity appears in several other instances in
probability.

Theorem 2.1. Let X	Xi, i ∈ N, be i.i.d. random variables with common
distribution F. Let

�2�2� Y�t� �= IX>t − Pr	X > t�	 −∞ < t <∞	
and let Yi, i ∈ N, denote the processes obtained by replacing X by Xi in (2.2).
Then:

(a) The processes
∑∞
i=1Yi/

√
n = √

n�Fn −F� converge in law in L1�R� to
the process B�F�t��, t ∈ R, where B is a Brownian bridge, if and only if
)2	1�X� <∞.

(b) The sequence∥∥∥∥
∞∑
i=1

Yi√
n

∥∥∥∥
L1

= √
n
∫ ∞

−∞
�Fn�t� −F�t��dt	 n ∈ N	

is stochastically bounded if and only if )2	1�X� <∞.
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Proof. It is known that a mean zero process Y with sample paths in
L1�R� satisfies the

√
n central limit theorem if and only if

�2�3�
∫ ∞

−∞

√
E�Y�t��2 dt <∞�

[Jain (1977), Theorem 11; see also, e.g., Araujo and Giné (1980), Exercise 14,
page 205; this is a direct consequence of the central limit theorem in cotype
2 spaces and can also be directly obtained from probability inequalities as,
e.g., in Giné (1983) where the case of Lp with p < 1 is considered.] For the
process Y�t� defined by (2.2), condition (2.3) is nothing but condition (2.1) and
therefore the sequence 	∑n

i=1Yi/
√
n� converges in law in L1�R� if and only

if )2	1�X� < ∞, and the limit is Gaussian. The limiting Gaussian process
is B�F�t�� because this Gaussian process has the same covariance as Y�t�,
hence �Y�t1�	 � � � 	Y�tk�� →d �B�F�t1�	 � � � 	B�F�tk��� for all t1	 � � � 	 tk in R

and all k ∈ N by the central limit theorem in R
k, and it is known that, if there

is weak convergence in L1, then the limit in law of the finite-dimensional
distributions corresponding to any t1	 � � � 	 tk outside a set of measure zero,
and all k ∈ N, is the law of the corresponding finite dimensional distributions
of the limit [Lawniczak (1983)]. Part (a) is proved and so is the sufficiency
part of (b).

The proof of the necessity part of (b), which ultimately is an exercise on
Hoffmann–Jørgensen’s inequality, requires some work, as follows. By consid-
ering X+ and X−, we can assume X ≥ 0. It is now convenient to write

Z�t� �= IX>t	 Zi�t� = IXi>t
	 i ∈ N	 t ∈ R	

so that Y�t� = Z�t� − EZ�t� and likewise for Yi. The stochastic boundedness
hypothesis simply asserts

�2�4� lim
M→∞

sup
n

Pr
{

1√
n

∥∥∥∥
n∑
i=1

�Zi − EZi�
∥∥∥∥
L1

>M

}
= 0�

Montgomery-Smith’s (1994) Lévy type inequality for i.i.d. random vectors then
implies, from (2.4), that

�2�5� lim
M→∞

sup
n

Pr
{

1√
n

max
1≤i≤n

�Zi − EZi�L1
>M

}
= 0�

The classical inequality for independent random variables, say ξi,

Pr
{
max
i

�ξi� > t
}

≥ 1 − exp
(
−∑

Pr	�ξi� > t�
)

then gives that there is a constant M<∞ such that

sup
n
nPr

{
1√
n

�Z− EZ�L1
>M

}
<∞	

or, equivalently,

�2�6� )2	∞�Z− EZ� �= sup
t>0

t2 Pr	�Z− EZ�L1
> t� <∞�
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As a consequence of (2.6) we have

�2�7�

E max
1≤i≤n

�Zi − EZi�L1√
n

= 1√
n

∫ ∞

0
Pr

{
max
1≤i≤n

�Zi − EZi�L1
> t

}
dt

≤ 1 + √
n
∫ ∞
√
n

Pr	�Zi − EZi�L1
> t�dt

≤ 1 + √
n)2	∞�Z− EZ�

∫ ∞
√
n
t−2 dt

= 1 + )2	∞�Z− EZ� <∞�
Now, Hoffmann–Jørgensen’s inequality for general independent vectors [e.g.,
Ledoux and Talagrand (1991), equation (6.8), page 156] in combination with
Montgomery-Smith’s (1994) Lévy inequality for i.i.d. vectors gives that for
every r > 0 there exist finite positive constants ci, i = 1	2, depending only on
r, such that

�2�8� E

∥∥∥∥
∑n
i=1�Zi − EZi�√

n

∥∥∥∥
r

L1

≤ c1

[
E max

1≤i≤n

�Zi − EZi�rL1

nr/2
+ tr0	 n

]
	

where

�2�9� t0	 n = inf
[
t� Pr

{�∑n
i=1�Zi − EZi��L1√

n
> t

}
≤ c2

]
�

On one hand, the stochastic boundedness hypothesis (2.4) implies supn t0	 n <
∞, and on the other, inequality (2.7) asserts the finiteness of the sup over n
of the first summand at the right-hand side of inequality (2.8) for r = 1. We
thus conclude from inequality (2.9) for r = 1 that

�2�10� sup
n

E

∥∥∥∥
∑n
i=1�Zi − EZi�√

n

∥∥∥∥
L1

<∞�

Let now ξ be a binomial �n	p� random variable such that 4c1/n ≤ p ≤ 1/2,
c1 as in (2.8). Then, inequality (2.8) (Hoffmann–Jørgensen’s combined with
Montgomery-Smith’s) gives

np

2
≤ E�ξ − Eξ�2 ≤ c1�1 + �c−1

2 E�ξ − Eξ��2� ≤ np

4
+ c1

c2
2

�E�ξ − Eξ��2�

In other words, there exist positive finite constants C1 and C2 such that

�2�11� � �ξ� = Bin�n	p� with
C1

n
≤ p ≤ 1

2
implies E�ξ − Eξ� ≥ C2

√
np�

[This also follows from symmetrization and Corollary 3.4 in Giné and Zinn
(1983).] Inequality (2.11), applied to the empirical process, yields√

Pr	X > t� ≤ 1
C2

E

∣∣∣∣
∑n
i=1�IXi>t

− Pr	Xi > t��√
n

∣∣∣∣
�2�12�

for med�X� < t < Q�1 −C1/n��
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Then, if we integrate in inequality (2.12) and apply inequality (2.10), we obtain

sup
n

∫ Q�1−C1/n�

med�X�

√
Pr	X > t�dt

≤ 1
C2

sup
n

∫ Q�1−C1/n�

med�X�
E

∣∣∣∣
∑n
i=1�IXi>t

− Pr	Xi > t��√
n

∣∣∣∣dt <∞�

Since Q�1 −C1/n� → ess supX as n→ ∞, this last inequality gives∫ ∞

0

√
Pr	X > t�dt <∞	

that is, )2	1�X� <∞, proving the theorem. ✷

Remark 2.1. Note, from Theorem 2.1, that condition (2.1) not only implies
convergence in law of 	√n�Fn −F�L1

�, but convergence in law, in the space
L1, of processes that have these random variables as their L1 norms, which
is a stronger form of convergence; also, stochastic boundedness of the set of
random variables 	√n�Fn −F�L1

� implies condition (2.1), without assuming
any a priori conditions on X. Thus, Theorem 2.1 considerably strengthens
statement (a1) in Theorem 1.1.

If in Theorem 2.1(b) we consider variables not necessarily in DAα�an�, then
we also obtain necessary and sufficient conditions for tightness of the normal-
ized, uncentered Wasserstein distance. To keep things simple, we only deal
with power type normalizations.

Theorem 2.2. Let X	Xi, i ∈ N, be i.i.d. with common cdf F and let α ∈
�1	2�. Then, the sequence

�2�13�
{
n

n1/α

∫ ∞

−∞
�Fn�t� −F�t��dt

}∞

n=1

is stochastically bounded if and only if

�2�14� )α	∞�X� �= sup
t>0

tα Pr	�X� > t� <∞�

Proof. Necessity. Let ξi be Bernoulli �p� independent random variables,
and let ξ = ∑n

i=1 ξi. Using the classical Marcinkiewicz inequality we obtain
that, if p ∈ �1/n	1/2� and n ≥ 2, then

E�ξ − Eξ� ≥ 1

2
√

2
E

[ n∑
i=1

�ξi − p�2
]1/2

≥ 1

2
√

2
E max

1≤i≤n
�ξi − p�

≥ 1

2
√

2
�1 − p� Pr	ξ ≥ 1� ≥ 1

2
√

2
�1 − p�

[
1 −

(
1 − 1

n

)n]
≥ 3

16
√

2
�

That is, there exists C > 0 such that

�2�15� � �ξ� = Bin�n	p� with
1
n

≤ p ≤ 1
2

implies E�ξ − Eξ� ≥ C�
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[This also follows from Corollary 3.4 in Giné and Zinn (1983).] Consequently,
since tightness of the sequence (2.13) implies boundedness of its first moments
by a proof entirely analogous to the proof of (2.10), we have

sup
n

Q�1 − 1/n� − med�X�
n1/α

≤ 1
C

sup
n

∫ Q�1−1/n�

med�X�
E

∣∣∣∣
∑n
i=1�IXi>t

− Pr	Xi > t��
n1/α

∣∣∣∣dt <∞�

So, there exists K < ∞ such that Q�1 − 1/n� ≤ Kn1/α for all n ≥ 2, and
therefore, Pr	X >Kn1/α� ≤ 1/n for all n, a condition equivalent to (2.14).

Sufficiency. Now we assume that condition (2.14) holds and that, without
loss of generality, X ≥ 0. Setting

�2�16� Zn	 i�t� �= I�0	Xi/n
1/α��t�	 t ≥ 0	

a simple change of variables shows that

�2�17�

n

n1/α

∫ ∞

0
�Fn�t� −F�t��dt =

∫ ∞

0

∣∣∣∣
n∑
i=1

(
IXi>tn

1/α − Pr
{
X > tn1/α})∣∣∣∣dt

=
∥∥∥∥
n∑
i=1

(
Zn	 i − EZn	 i

)∥∥∥∥
L1

�

The following computations are classical. We will use repeatedly that
�Zn	1�L1

= ∫∞
0 I�0	X1/n

1/α��t�dt = X1/n
1/α and similar computations. In

particular, for any M> 0,

n
∥∥EZn	1I�Zn	1�L1

>M

∥∥
L1

= n
∫ ∞

0
Pr	X > n1/α�t ∨M��dt

= nMPr	X >Mn1/α� + n
∫ ∞

M
Pr	X > tn1/α�dt

≤ )α	∞�X�
[
M1−α +

∫ ∞

M
t−α dt

]
= α

α− 1
)α	∞�X�
Mα−1

�

Since this last quantity is smaller than M/2 for all M larger than some M0 <
∞, we have, for such M’s,

�2�18�

Pr
{∥∥∥∥

n∑
i=1

�Zn	 i − EZn	 i�
∥∥∥∥
L1

>M

}

≤ Pr
{∥∥∥∥

n∑
i=1

�Zn	 i − EZn	 iI�Zn	 i�L1
≤M�

∥∥∥∥
L1

>
M

2

}

≤ Pr
{∥∥∥∥

n∑
i=1

�Zn	 iI�Zn	 i�L1
≤M − EZn	 iI�Zn	 i�L1

≤M�
∥∥∥∥
L1

>
M

4

}

+ nPr	X >Mn1/α�
�= �In� + �IIn��
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Now,

�2�19� sup
n

�IIn� = sup
n
nPr	X >Mn1/α� ≤ )α	∞�X�

Mα
→ 0 as M→ ∞�

As for �In�, we have

�In� ≤ 4
M

∫ ∞

0
E

∣∣∣∣
n∑
i=1

�Zn	 iI�Zn	 i�L1
≤M − EZn	 iI�Zn	 i�L1

≤M�
∣∣∣∣dt

≤ 4
M

∫ ∞

0

[
E

( n∑
i=1

�Zn	 iI�Zn	 i�L1
≤M − EZn	 iI�Zn	 i�L1

≤M�
)2]1/2

dt

≤ 4n1/2

M

∫ ∞

0

[
E�Zn	1I�Zn	1�L1

≤M�2]1/2
dt

≤ 4n1/2

M

∫ M
0

�Pr	X > tn1/α��1/2 dt

≤ 4)α	∞�X�
M

∫ M
0
t−α/2 dt = 4)α	∞�X�

1 − α/2
1

Mα/2
�

Hence, it follows that

�2�20� lim
M→∞

sup
n

�In� = 0�

Combining the estimates (2.19) and (2.20) with inequality (2.18) and the iden-
tity (2.17) gives stochastic boundedness of the sequence in (2.13). ✷

This theorem, together with Theorem 2.1, gives us estimates of the rate of
convergence to zero of d1�Fn	F� for relatively large classes of random vari-
ables. It also tells us that, if we exclude the L2	1 case, domains of attraction of
α-stable laws, 1 < α < 2, are, in a sense, the natural classes of random vari-
ables for which to look for more precise results about the convergence rate to
zero of d1�Fn	F�. The cases α = 1 with X integrable and, particularly, the
large class of random variables in the domain of attraction of the normal law
but not in L2	1 are extreme. In both cases the behavior of d1�Fn	F� is radi-
cally different from the other cases, and will be treated in subsequent sections.
Next we look at the cases in between these two extremes.

Concretely, we prove a stronger form of Theorem 1.1(b) for X in the domain
of attraction of an α-stable law with 1 < α < 2. The limit will be given in terms
of generalized Poisson measures, thus obtaining another (arguably not as nice)
representation of the limit in Theorem 1.1(b). We begin with a simple argu-
ment showing that the limit law in Theorem 1.1(b), if it exists, corresponds
to the sum of the integrals of two-scaled independent Poisson processes. Let
X	Xi	 and an be as in Theorem 1.1(b). By the change of variables already
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encountered in the previous proof,

�2�21�

n

an

∫ ∞

−∞

∣∣Fn�t� −F�t�∣∣dt =
∫ 0

−∞

∣∣∣∣
n∑
i=1

�IXi≤tan − Pr	Xi ≤ tan��
∣∣∣∣dt

+
∫ ∞

0

∣∣∣∣
n∑
i=1

�IXi>tan
− Pr	Xi > tan��

∣∣∣∣dt�
Since the integrands are (absolute values of) centered binomial random vari-
ables whose probabilities of success, respectively, Pr	X ≤ −tan� and Pr	X >
tan�, satisfy

�2�22� lim
n→∞nPr	X>tan� = c1

αtα
	 lim

n→∞nPr	X≤ − tan� = c2

αtα
	 t>0	

by the stable convergence criterion in R [cf. Feller (1971) or Araujo and Giné
(1980)], and since the indicators in each integrand are disjoint, it follows from
elementary probability (the law of rare events, multivariate version) that the
finite-dimensional distributions of the processes

�2�23� Kn�t� �=




n∑
i=1

�IXi≤tan − Pr	Xi ≤ tan��	 for t < 0	

0	 for t = 0	
n∑
i=1

�IXi>tan
− Pr	Xi > tan��	 for t > 0

converge to the corresponding finite-dimensional distributions of the process

�2�24� K�t� − EK�t� �=




N1

(
c1

αtα

)
− c1

αtα
	 for t > 0	

0	 for t = 0	

N2

(
c2

α�t�α
)

− c2

α�t�α 	 for t < 0	

where N1 and N2 are two independent standard (intensity 1) Poisson pro-
cesses on �0	∞�. Hence, the above-mentioned result of Lawniczak (1983)
shows that, if there is convergence in law in L1 of the processes Kn, then
their limit must be the process defined by (2.24), whose L1 norm is precisely
the limit process specified in Theorem 1.1(b), so that, if this is the case,
Theorem 1.1(b) follows by continuous mapping. The next theorem proves
that the processes Kn do indeed converge in law in L1 to N (tightness of
	Kn� would suffice, but proving convergence is equally easy). [See CCHM
(1986b), for a representation of all α-stable laws, 0 < α < 2, as integrals of
the processes (2.24) or modifications thereof.]
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Theorem 2.3. Let X	 Xi, i ∈ N, be i.i.d. and such that

�2�25� �

(
1
an

n∑
i=1

�Xi − EXi�
)

→w cPoisµ�c1	 c2	 α�

for constants 0 ≤ c1, c2 < ∞, but not both equal to zero, and 1 < α < 2,
where the α-stable law cPoisµ�c1	 c2	 α� is given by (1.9) and (1.11). Let Kn�t�,
−∞ < t < ∞, be the processes defined by (2.23) from these variables Xi. Let
µi, i = 1	2, be measures on L1�R�, respectively, concentrated on the sets of
functions 	I�0	 x�� x > 0� and 	I�−x	0�� x > 0�, such that

�2�26� µ1	I�0	 x�� x > u� = c1

αuα
	 µ2	I�x	0�� x < −u� = c2

αuα
	 u > 0�

Then the measures µi, i = 1	2, are Lévy measures on the Banach space L1�R�
and

�2�27� � �Kn� →w �cPoisµ1� ∗ �cPoisµ2� in L1�R��
Conversely, if the limit (2.27) holds with µi, i = 1	2, as in (2.26) and with
constants an regularly varying at infinity with exponent 1/α, thenX ∈ DAα�an�
and the limit (2.25) holds.

The proof of this theorem is based on the following Poisson convergence
criterion in Banach spaces [a consequence of the general CLT of de Acosta,
Araujo and Giné (1978), made explicit by Mandrekar and Zinn (1980); see
Araujo and Giné (1980), Theorem 3.5.9 on page 129 and Exercise 5 on page
134. In the second part of this exercise the conclusion should be tightness of
the laws of 	Sn−ESn	δ� for all δ > 0 instead of tightness of the laws of 	Sn�].

Generalized Poisson convergence criterion in Banach spaces. Let
	Zn	 i� i = 1	 � � � 	 n	 n ∈ N� be an infinitesimal array of row-wise indepen-
dent integrable B-valued random variables, where B is a Banach space (a
triangular array is infinitesimal if maxi Pr	�Zn	 i� > ε� → 0 for all ε > 0).
Then, in order that there exist a Lévy measure µ such that

�

( n∑
i=1

�Zn	 i − EZn	 i�
)

→w cPoisµ	

it is necessary and sufficient that the following three conditions be met:

(i) For all δ �= 0 in a dense set D of R
+,

n∑
i=1

� �Zn	 i�
∣∣
�x�>δ →w µ

∣∣
�x�>δ

for some measure µ on B.
(ii) limδ→0 lim supn E�∑n

i=1�Zn	 iI�Zn	 i�≤δ − EZn	 iI�Zn	 i�≤δ�� = 0.
(iii) For some δ ∈ D (or for all δ ∈ D), the sequence 	∑n

i=1 EZn	 iI�Zn	 i�>δ�
converges in B.
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Moreover, conditions (i) and (ii) together are equivalent to

�

( n∑
i=1

�Zn	 i − EZn	 iI�Zn	 i�≤δ�
)

→w cδPoisµ

for all δ such that µ	�x� = δ� = 0.

Let 	Zn	 i� be an infinitesimal array of row-wise independent vectors, as
above. Since, if µi, i = 1	2, are Lévy measures then so is µ1+µ2 and cPois�µ1+
µ2� = cPoisµ1 ∗ cPoisµ2, it follows trivially from this criterion that if for
disjoint measurable sets Ck ⊂ B, i = 1	2, we have

�2�28� �

(∑
i

�Zn	 iIZn	 i∈Ck − EZn	 iIZn	 i∈Ck�
)

→w cPoisµk	 k = 1	2	

then

�2�29� �

(∑
i

�Zn	 iIZn	 i∈C1∪C2
− EZn	 iIZn	 i∈C1∪C2

�
)

→w �cPoisµ1� ∗ �cPoisµ2�	

a fact to be used below. The same comment applies to the second part of the
theorem.

To prove Theorem 2.3 we will freely use the properties of random variables
in domains of attraction (DA) of stable laws in R, as described, for example,
in Feller (1971) [or in Araujo and Giné (1980)].

Proof of Theorem 2.3. We begin with the direct part. By [(2.28) ⇒ (2.29)]
we may assume Xi ≥ 0 and

�2�25′� 1
an

n∑
i=1

�Xi − EXi� →� cPoisµ�c	0	 α��

Then,

Kn�t� =
n∑
i=1

�Zn	 i�t� − EZn	 i�t��	 t > 0	

and Kn�0� = 0, with

Zn	 i �= I�0	Xi/an�	 i = 1	 � � � 	 n	 n ∈ N	

which are L1�0	∞�-valued random variables. Since �Zn	 i�L1
= Xi/an, we

have maxi≤n Pr	�Zn	 i�L1
> ε� = Pr	X > εan� → 0 for all ε > 0, showing

that the array 	Zn	 i� is infinitesimal. So, we can apply the above generalized
Poisson convergence criterion for B = L1. Let µ be the measure obtained from
µ1 in (2.26) replacing c1 by c. We must prove

�2�27′� �

( n∑
i=1

�Zn	 i − EZn	 i�
)

→w cPoisµ in L1�0	∞�	

which we do by checking (i)–(iii) above.
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Proof of (i). Since the map T� R ∪ 	0� → L1�0	∞� given by T�x� = I�0	 x�
is an isometry and the image of T is closed in L1, proving (i) is equivalent, by
the continuous mapping theorem, to showing

n�� �Zn	1���x�L1
>δ� ◦T→w �µ��x�L1

>δ� ◦T	 δ > 0	

that is, to showing

n� �X/an�
∣∣
x>δ

→ µδ	 δ > 0	

where µδ	x > u� = c/�α�u ∨ δ�α�. This is equivalent to proving

nPr	X > uan� → c

αuα

for all u > 0, which holds because of (2.25′) and the stable DA criterion in R.

Proof of (ii). First we observe that, by stable convergence in R and the
asymptotic properties of regularly varying functions [Feller (1971), Theo-
rem 1b, page 281],

�2�30� u�Pr	X > u��1/2∫ u
0 �Pr	X > s��1/2 du

→ 1 − α

2
as u→ ∞�

Then, this gives

E

∥∥∥∥
n∑
i=1

�Zn	 iI�Zn	 i�L1
≤δ − EZn	 iI�Zn	 i�L1

≤δ�
∥∥∥∥
L1

=
∫ δ

0
E

∣∣∣∣
n∑
i=1

Itan<Xi≤δan − Pr	tan < Xi ≤ δan�
∣∣∣∣dt

≤
∫ δ

0

[
E

( n∑
i=1

Itan<Xi≤δan − Pr	tan < Xi ≤ δan�
)2]1/2

dt

≤
∫ δ

0
n1/2�Pr	X > tan��1/2 dt

= n1/2

an

∫ δan
0

�Pr	X > u��1/2 du

� δ

1 − α/2 �nPr	X > δan��1/2	

where An � Bn indicates that An/Bn → 1 as n → ∞. Now, by the stable DA
criterion in R, the limit of the last sequence as n → ∞ is c1/2δ1−α/2/�α1/2�1 −
α/2��, which in turn tends to zero as δ→ 0, proving (ii).

Proof of (iii). We obviously can assumeX is nondegenerate. Then, ifX ∈
DAα, the tail probability function Pr	X > u� is regularly varying at infinity
with exponent −α and the representation of slowly varying functions in, for
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example, Feller (1971), page 282, gives the existence of two functions c�y� →
c ∈ �0	∞� and ε�y� → 0 as y→ ∞ such that

Pr	X > u� = u−αc�u� exp
(∫ u

1

ε�y�
y

dy

)
�

As a consequence, given ε > 0 that we take to satisfy ε < α − 1, there exist
u0 <∞ such that

�2�31� Pr	X > u� ≤ 2
(
u

v

)−α+ε
Pr	X > v�

for all u ≥ v ≥ u0. If, more concretely, X satisfies (2.25′) then, as mentioned
above,

�2�32� E

n∑
i=1

Zn	 iI�Zn	 i�L1
>δ = nPr	X > �t ∨ δ�an� → c

α�t ∨ δ�α

as n→ ∞. In order to prove (iii), we must show this limit holds in L1 for some
δ > 0. We show it does for δ = 1: by (2.31), for n large enough independently
of t ≥ 1, we have

nPr	X > tan� ≤ 2nPr	X > an�
tα−ε ≤ K

tα−ε

for some K < ∞, also independent of t, because an → ∞ and the sequence
	nPr	X > an�� converges. Since K/tα−ε is integrable on �1	∞�, the domi-
nated convergence theorem and (2.32) show that

∫ ∞

0

∣∣∣∣E
n∑
i=1

Zn	 iI�Zn	 i�L1
>1 − c

α�t ∨ 1�α
∣∣∣∣ → 0

as n → ∞, proving (iii) and hence the direct part of the theorem, by the
generalized Poisson convergence criterion in L1.

For the converse, we still can asume X ≥ 0, and we just note, from the
proof of (i) and the convergence criterion in L1, that, if the limit (2.27) holds,
then

nPr	X > uan� → c

αuα

for all u > 0, which ensures that X satisfies (2.25′) [by Lemma 3 in Feller
(1971), page 277, and the stable DA criterion in R]. ✷

Theorem 2.3 thus improves on the type of convergence in Theorem 1.1(b).
Note that the proof we just gave consists of a relatively simple exercise on the
stable convergence criterion in Banach spaces, a result known since 1978. In
view of the comment that follows, it is the change of variables in (2.21), which
yields the definition of the processes Kn, that makes this reduction possible.



THE L1 NORM OF THE EMPIRICAL PROCESS 1025

Remark 2.2. Next we comment on a curiosity, but skip details. The pro-
cesses Kn defined by (2.20) are not the most natural ones satisfying

�Kn�L1
= n

an
�Fn −F�L1

	

the first choice for such processes being, for example, for X ≥ 0,

K̃n �= n

an

∞∑
i=1

�IXi>t
− Pr	X > t���

It is easy to see that, under the conditions of Theorem 2.3, the sequence of pro-
cesses 	K̃n� is not uniformly tight in L1�0	∞�. Hence, these processes provide
an example of a sequence of B-valued random variables 	K̃n� which is not
uniformly tight while the sequence of their norms, 	�K̃n�L1

�, does converge
in law. They also provide an example of two sequences of random vectors
	K̃n� and 	Kn� which have the same norms, but one of then converges in law
whereas the other is not even tight.

Theorems 1.1(a1) and (b) can be improved in another direction, namely,
convergence of moments.

Theorem 2.4. Let X	Xi be i.i.d., with common distribution F, and let Fn
denote the empirical distribution based on X1	 � � � 	Xn, n ∈ N, as usual. Then
the following holds:

(a) If X ∈ L2	1 and E�X�p <∞ for some p ≥ 2, then

�2�33� lim
n→∞ E

[√
n
∫ ∞

−∞
�Fn�t� −F�t��dt

]r
= E

[∫ ∞

−∞
�B�F�t���dt

]r
for all 0 < r ≤ p.

(b) If X ∈ DAα�an� for some α ∈ �1	2� and K is the Poisson process defined
by (2.4), then

�2�34� lim
n→∞ E

[
n

an

∫ ∞

−∞
�Fn�t� −F�t��dt

]β
= E

[∫ ∞

−∞
�K�t� − EK�t��dt

]β
for all 0 < β < α.

Proof. Part (a) follows from general principles. Theorem 5.1 in de Acosta
and Giné (1979) [cf. Araujo and Giné (1980), page 136], applied to the processes
Yi in the proof of Theorem 2.1 above, asserts that, if E�Y1�pL1

< ∞ for some
p ≥ 2, then the pth moment of �∑n

i=1Yi�L1
converges to the pth moment of

the limit since Y1 satisfies the central limit theorem in L1 by Theorem 2.1;
this result applies to give part (a) because, as a simple computation shows,
�Y1�L1

≤ �X� + E�X�.
In order to prove part (b), by Theorem 2.3 and uniform integrability, it

suffices to show that

�2�35� sup
n

E

(
1
an

∫ ∞

0

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt
)β
<∞
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and

�2�35′� sup
n

E

(
1
an

∫ ∞

0

∣∣∣∣
n∑
i=1

�IXi≤−t − Pr	X ≤ −t��
∣∣∣∣dt

)β
<∞

for all 1 ≤ β < α. Both bounds having similar proofs, we will only consider the
first. We can assume without loss of generality that X ≥ 0 and that c �= 0 in
(2.25′). By the generalized Minkowski inequality,

�2�36�

[
E

(
1
an

∫ ∞

0

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt
)β]1/β

≤ 1
an

∫ ∞

0

[
E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣
β]1/β

dt

≤ 1
an

∫ Q�1−1/n�

0

[
E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣
2]1/2

dt

+ 1
an

∫ ∞

Q�1−1/n�

[
E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣
β]1/β

dt

�= An +Bn�
Boundedness of An is a trivial consequence of regular variation of the tail
probabilities Pr	X > t�; by (2.30),

An ≤ 1
an

∫ Q�1−1/n�

0
�nPr	X > t��1/2 dt

� 1
1 − α/2

1
an
Q�1 − 1/n��nPr	X > Q�1 − 1/n���1/2	

which is uniformly bounded. By definition of Q, nPr	X > Q�1 − 1/n�� ≤ 1,
and moreover, since nPr	X ≥ uan� → c/�uαα�, we have that Q�1 − 1/n� is
bounded by 2an�α/c�1/α from some n on.

To prove boundedness of Bn, we first note that if Ei are independent events
with PrEi = p, that is, if Z = ∑n

i=1 IEi is a binomial �n	p� random variable,
and if np ≤ λ <∞, then there are constants C�λ	 r� such that

�2�37� E�Z− EZ�r ≤ C�λ	 r�np
for all r ≥ 1. To see this, we apply Hoffmann–Jørgensen’s inequality in com-
bination with Montgomery-Smith’s inequality, precisely, inequality (2.8) with
L1 norms replaced by absolute values, and bound t0	 n in (2.9) using Markov’s
inequality, to obtain

E�Z− EZ�r ≤ c1�nE�IE1
− PrE1�r + �E�Z− EZ��r/cr2�

≤ �c12r−1n�p+ pr� + c−r2 �2np�r�
≤ C�λ	 r�np	
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where the last inequality follows because pr ≤ p and �np�r ≤ λr−1np.
Since nPr	X > t� ≤ 1 if t ≥ Q�1 − 1/n�, inequality (2.37) then gives

Bn ≤ 1
an

∫ ∞

Q�1−1/n�
�C�1	 β�nPr	X > t��1/β dt�

The properties of regular variation [Feller (1971), page 281], then imply that
the integral at the right-hand side of this inequality is asymptotically of the
order of

�α/β− 1�−1Q�1 − 1/n��nPr	X > Q�1 − 1/n���1/β/an�

Here Q�1 − 1/n� cancels with 1/an (as shown above, when bounding 	An�)
and nPr	X > Q�1 − 1/n�� ≤ 1, proving that supBn <∞, and concluding the
proof of (2.35). ✷

Theorem 2.4 cannot be improved since, for X ∈ )2	1 or X ∈ DAα�n1/α�, it
gives convergence for the moment of order r if and only if E��F1−F�L1

�r <∞.

3. Integrable random variables in domains of atraction of 1-stable
laws. The Wasserstein distance d1�Fn	F� is defined if and only if E�X� <
∞, hence, in particular, it is defined for integrable variables in domains of
attaction of 1-stable laws. However, the limit law in Theorem 1.1(b) does not
exist if X ∈ DA1 since �N�t� − t�/t2 is just 1/t for the a.s. positive amount of
time that N�t� is zero. It turns out that we still have convergence, with the
same normalizers, provided we choose the right centerings. We begin with an
analogue of Theorem 2.3.

Theorem 3.1. Let X, Xi, i ∈ N, be i.i.d. integrable random variables such
that

�3�1� �

(
1
an

n∑
i=1

�Xi − EXiI�Xi�≤δ�
)

→w cδPoisµ�c1	 c2	1�

for constants 0 ≤ c1, c2 < ∞, but not both equal to zero, and δ > 0, where the
1-stable law cδPoisµ�c1	 c2	 α� is given by (1.10). Let

�3�2� Zn	 i�t� �=



IXi>tan

	 for t > 0	
0	 for t = 0	
IXi≤tan	 for t < 0	

as above. Let µi, i = 1	2, be measures on L1�R�, respectively, concentrated on
the sets of functions 	I�−x	0�� x > 0� and 	I�0	 x�� x > 0�, such that

�3�3� µ1	I�0	 x�� x > u� = c1

u
	 µ2	I�x	0�� x < −u� = c2

u
	 u > 0�

Then the measures µi, i = 1	2, are Lévy measures on the Banach space L1�R�
and, for all δ > 0,

�3�4� �

( n∑
i=1

�Zn	 i− EZn	 iI�Zn	 i�L1
≤δ�

)
→w �cδPoisµ1� ∗ �cδPoisµ2� in L1�R��
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Conversely, if X is integrable and the limit (3.4) holds with µi, i = 1	2, as in
(3.3) and with constants an regularly varying with exponent 1 at infinity, then
X ∈ DA1�an� and the limit (3.1) holds.

Proof. As in the previous section, there is no loss of generality in assum-
ing X ≥ 0 and nondegenerate. In this case, the processes Zn	 i are as in the
proof of Theorem 2.3. Proceeding as in the proof of that theorem, we see that
the triangular array 	Zn	 i� satisfies conditions (i) and (ii) of the Poisson con-
vergence criterion in L1. [However, it does not satisfy (iii); while there is point-
wise convergence of E

∑n
i=1Zn	 iI�Zn	 i�L1

>δ, convergence in L1 fails because it
involves the nonintegrable functions c/t.] Moreover, the measure µ = µ1 gives
mass zero to all the sets 	f� �f�L1

= δ�. Hence, by the Poisson convergence
criterion, second part, the limit (3.4) is satisfied. The converse is also as in
Theorem 2.3. ✷

Theorem 3.2. Let X	 Xi be be i.i.d. integrable random variables in the
domain of attraction of a 1-stable law, with normalizing constants an and
parameters c1	 c2 for the limit law, as in (3.1). Set

�3�5� βn �=
∫ ∞

an

Pr	�X� > t�dt�

Then,

(a)

�3�6� lim
n→∞βn = 0	 lim

n→∞
n

an
= ∞ and lim

n→∞
nβn
an

= ∞�

(b) The sequence

�3�7�
{
n

an

[∫ ∞

−∞

∣∣Fn�t� −F�t�∣∣dt− βn
]}∞

n=1

converges in distribution to the law of the random variable

�3�8�
2∑
i=1

ci

[∫ ∞

ci

�Ni�t� − t�dt
t2

+
∫ ci

0
��Ni�t� − t� − t�dt

t2

]
	

where Ni are two independent standard Poisson processes.

Proof. Without loss of generality, we restrict the proof to the case X ≥ 0,
which means in particular that c1 �= 0 and c2 = 0, and take c = c1. Then
βn → 0 because an → ∞ and X is integrable. Also, since nPr	X > an� → c,
if lim infn n/an < ∞, then tPr	X > t� �→ 0, hence EX = ∞. So, n/an → ∞.
Finally, since the function Pr	X > t� is regularly varying at infinity with
exponent −1, we can apply Theorem 1(a) in Feller [(1971), page 281] with
γ = −1 and p = 0 to obtain

lim
n→∞

an Pr	X > an�
βn

= 0	
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or, since 	nPr	X > an�� converges to a positive number,

lim
n→∞

an
nβn

= 0	

which completes the proof of (a).
To prove (b) we first observe that, in Theorem 3.1, we can replace the trun-

cated moments
∑n
i=1 EZn	 iI�Zn	 i�L1

≤1 at the left of (3.4) by the set of centerings
Cn defined as

Cn�t� �= nPr	X > tan�I�0	1��t�	 t ∈ R	

and still have weak convergence [to a shift of the limit in (3.4)], that is,

�3�4′�
{ n∑
i=1

Zn	 i −Cn
}∞

n=1
converges in law in L1�0	∞��

This is so because the difference between these centerings and the original
ones, nPr	X ≥ an�I�0	1��t�, converges in L1 [to the function cI�0	1��t�]. We
can write

n

an

[∫ ∞

0

∣∣Fn�t� −F�t�∣∣dt− βn
]

=
∫ 1

0

∣∣∣∣
n∑
i=1

�IXi>tan
− Pr	X > tan��

∣∣∣∣dt
+

∫ ∞

1

(∣∣∣∣
n∑
i=1

�IXi>tan
− Pr	X > tan��

∣∣∣∣ − nPr	X > tan�
)
dt

=
∫ ∞

0

[∣∣∣∣
n∑
i=1

Zn	 i�t� −Cn�t�
∣∣∣∣I�0	1��t�

+
(∣∣∣∣

n∑
i=1

�Zn	 i�t� − Pr	X > tan��
∣∣∣∣ − nPr	X > tan�

)
I�1	∞��t�

]
dt

�=
∫ ∞

0
�Y�1�

n �t� +Y�2�
n �t��dt�

By the multidimensional version of the law of rare events, the finite-
dimensional distributions of the processes Y�1�

n �t� +Y�2�
n �t� converge in law to

the corresponding ones of the process

Y�t� =
∣∣∣∣N

(
c

t

)
− c

t

∣∣∣∣I�0	1��t� +
(∣∣∣∣N

(
c

t

)
− c

t

∣∣∣∣ − c

t

)
I�1	∞��t�	 t ≥ 0	

where N is the standard Poisson process on �0	∞�. Hence, by Lawniczak’s
(1983) proposition, already mentioned above, in order to prove that the vari-
ables in (3.7) converge in law to the variable in (3.8), it suffices to show that
the processes Y�1�

n +Y�2�
n , n ∈ N, are uniformly tight in L1�0	∞�. [As, if this is
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the case, we have convergence in law in L1 of Y�1�
n +Y�2�

n to Y and the contin-
uous mapping theorem yields the result.] The proof thus reduces to showing
that each of the two sequences 	Y�i�

n �, i = 1	2, is uniformly tight.
Since the map πA�f� �= �f�IA of L1 into L1�0	∞� is continuous for any

measurable set A ⊂ �0	∞�, it follows from (3.4′) that the sequence Y�1�
n =

�∑n
i=1Zn	 i −Cn�I�0	1�, n ∈ N, converges in law in L1, hence is uniformly tight

in L1.
The fact that c/t is not integrable complicates the issue of tightness for

the second sequence, but it can be dealt with by approximation due to the
cancellation occurring in the limit; ��N�u� − u� − u�/u2 is integrable at zero
because N�u� = 0 for an a.s. positive amount of time immediately following
zero. So, we set

�3�9� YM	n �= Y�2�
n I�1	M�	 M > 1�

Continuity of the map π�1	M� plus the fact that

nPr	X > tan�I�1	M��t� → cI�1	M��t�/t in L1�0	∞�
as n→ ∞ imply, by Theorem 3.1 and the continuous mapping theorem, that

�3�10� YM	n →� YM in L1�0	∞�
as n→ ∞, where

YM�t� �=
(∣∣∣∣N

(
c

t

)
− c

t

∣∣∣∣ − c

t

)
I�1	M��t��

[The limit YM is determined by the law of rare events via Lawniczak’s propo-
sition, whereas the convergence in law of YM	n follows from convergence in
law in L1 ×L1 of the random vectors(( n∑

i=1

Zn	 i −Cn
)
I�1	M�	 nPr	X > tan�I�1	M�

)

together with the continuous mapping theorem.] Setting

Y�2��t� �=
(∣∣∣∣N

(
c

t

)
− c

t

∣∣∣∣ − c

t

)
I�1	∞��t�	 t > 0	

we have ∫ ∞

0

∣∣Y�2��t� −YM�t�∣∣dt =
∫ ∞

M

∣∣∣∣
∣∣∣∣N

(
c

t

)
− c

t

∣∣∣∣ − c

t

∣∣∣∣dt
= c

∫ c/M
0

∣∣�N�t� − t� − t∣∣dt
t2

→ 0 a.s.

as M → ∞ because max0≤t≤c N�t� = N�c� < ∞ a.s. and N�t� = 0 on �0	 t1�
with t1 > 0 a.s. That is, �Y�2� −YM�L1

→ 0 a.s. In particular,

�3�11� YM →� Y�2� in L1�0	∞��
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Because of (3.10) and (3.11), a typical 3ε approximation argument, concretely
Theorem 4.2 in Billingsley [(1968), page 25] gives

�3�12� Y
�2�
n →� Y�2� in L1�0	∞�

provided we show that

�3�13� lim
M→∞

lim sup
n→∞

Pr
{�YM	n −Y�2�

n �L1
≥ ε} = 0

for all ε > 0. Now, for M > 1, and letting Ỹ be a process whose law is the
limit law of

∑n
i=1�Zn	 i − EZn	 iI�Zn	 i�L1

≤1� (Theorem 3.1), we have

∫ ∞

0

∣∣YM	n −Y�2�
n

∣∣dt
=

∫ ∞

M

∣∣∣∣
∣∣∣∣
n∑
i=1

�Zn	 i�t� − Pr	X > tan��
∣∣∣∣ − nPr	X > tan�

∣∣∣∣dt
≤

∫ ∞

M

n∑
i=1

Zn	 i�t�dt

=
∫ ∞

0

∣∣∣∣
n∑
i=1

�Zn	 i − EZn	 iI�Zn	 i�L1
≤1�

∣∣∣∣I�M	∞��t�dt

→�

∫ ∞

M
�Ỹ�t��dt	

where in the first inequality we use that ��a− b� − b� ≤ a for a	 b ≥ 0, and the
limit follows from Theorem 3.1 and continuous mapping. Hence,

lim sup
n→∞

Pr
{�YM	n −Y�2�

n �L1
≥ ε} ≤ Pr

{∫ ∞

M
�Ỹ�t��dt ≥ ε

}
�

By dominated convergence,
∫∞
M �Ỹ�t��dt → 0 a.s. as M → ∞, and this proves

(3.13), hence the theorem. ✷

For example, if Pr	X > t� � 1/�t�log t�1+δ�, then n/an � �log n�1+δ and
βn � 1/�δ�log n�δ�.

Weak convergence of (normalized, centered versions of) �Fn −F�L1
in the

case of variables in domains of attraction of 1-stable laws does not seem to
have been treated before in the literature. Theorem 3.2 completes the picture
on the asymptotic behavior of the Wasserstein distance between the empirical
and the true distributions from the side of weakest integrability.

As in the case of domains of attraction of stable laws with index α ∈ �1	2�,
we also have convergence of moments in Theorem 3.2.

Theorem 3.3. Let X	Xi, i ∈ N, be i.i.d. integrable random variables in
DA1�an�, that is, satisfying the limit (3.1) for some c1	 c2 ≥ 0. Let βn be as in
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Theorem 3.2. Then,

�3�14�
lim
n→∞ E

[
n

an

(∫ ∞

−∞

∣∣Fn�t� −F�t�∣∣dt− βn
)]β

= E

[ 2∑
i=1

ci

(∫ ∞

ci

�Ni�t� − t�dt
t2

+
∫ ci

0
��Ni�t� − t� − t�dt

t2

)]β

for all 0 < β < 1.

Proof. Proceeding as in the proof of Theorem 2.4 and assuming (w.l.o.g.)
that X ≥ 0, it suffices to show that

�3�15� sup
n

E

[
1
an

∫ an
0

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt
]β
<∞

and

�3�16� sup
n

E

∣∣∣∣ 1
an

∫ ∞

an

(∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣ − nPr	X > t�
)
dt

∣∣∣∣
β

<∞�

It is easy to check that (3.15) holds, exactly the way boundedness of 	An� is
established in Theorem 2.4:

1
an

∫ an
0

E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt ≤ 1
an

∫ an
0

�nPr	X > t��1/2 dt→ 2
√
c�

To prove (3.16) we just note that, using that �∑ai�β ≤ ∑
a
β
i for ai ≥ 0 and

0 < β < 1, regular variation and that nPr	X > an� → c,

E

∣∣∣∣ 1
an

∫ ∞

an

(∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣ − nPr	X > t�
)
dt

∣∣∣∣
β

≤ E

∣∣∣∣ 1
an

∫ ∞

an

∣∣∣∣
∣∣∣∣nPr	X > t� −

n∑
i=1

IXi>t

∣∣∣∣ − nPr	X > t�
∣∣∣∣dt

∣∣∣∣
β

≤ E

∣∣∣∣ 1
an

∫ ∞

an

n∑
i=1

IXi>t
dt

∣∣∣∣
β

= E

(
1
an

n∑
i=1

�Xi − an�+
)β

≤ E

(
1
an

n∑
i=1

XiIXi>an

)β
≤ n

a
β
n

EXβIX>an

= βnPr	X > an� + βn

a
β
n

∫ ∞

an

tβ−1 Pr	X > t�dt

�
(

1 + 1
1 − β

)
βnPr	X > an� �

(
1 + 1

1 − β
)
βc� ✷
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4. The domain of attraction of the normal law I: rates. It will be
shown that, for X in the domain of attraction of the normal law, with nor-
malizing constants bn, the Wasserstein distances between the empirical and
the true distributions, centered at expected values and normalized by bn/n
are indeed stochastically bounded; actually, that their pth moments are uni-
formly bounded for 0 < p < 2. Stochastic boundedness is proved by applying
a recent exponential inequality of Talagrand (1996). The sizes of the center-
ing and norming are then compared and this gives, as corollaries, both, a law
of large numbers for the uncentered Wasserstein distance and a variation on
Theorem 2.1(b).

Let X	Xi, i ∈ N, be i.i.d., with X ∈ DA2�bn�. We recall from the theory of
domains of attraction [Feller (1971) or Araujo and Giné (1980)] that, setting
U�t� = EX2I�X�≤t, the function U�t� is slowly varying, that, equivalently,

�4�1� lim
t→∞

t2 Pr	�X� ≥ t�
U�t� = 0

and that, if

�4�2� lim
n→∞

n

b2
n

U�bn� = 1

and EX2 = ∞, then
∑n
i=1�Xi−EXi�/bn is asymptotically standard normal; in

fact we can take the sequence in (4.2) to be constantly 1. In what follows we
will take bn satisfying (4.2) if EX2 = ∞ and bn = √

n if EX2 <∞. We also set

�4�3� Q�y� = inf �t� Pr	X ≤ t� ≥ y�	 y ∈ �0	1�	
to be the quantile function of X, as in the introduction, and recall that, if F
is the distribution function of X,

�4�4� F�Q�y�−� ≤ y ≤ F�Q�y��	 y ∈ �0	1�
and

�4�5� Q�y� ≤ x if and only if y ≤ F�x�	 y ∈ �0	1�	 x ∈ R�

The following lemma allows for truncation of the domain of integration in
nd1�Fn	F�/bn. Equation (4.6) was obtained by CCHM (1986b), (A.5), (A.20),
using a particular form of bn.

Lemma 4.1. If X ∈ DA2�bn�, then

�4�6� lim
n→∞

�Q�1 − 1/n�� ∨ �Q�1/n��
bn

= 0

[CCHM (1986b)] and

�4�7� lim
n→∞ E

[
n

bn

∫
�Q�1/n�	Q�1−1/n��c

�Fn�t� −F�t��dt
]r

= 0

for all 0 < r < 2.
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Proof. Since nPr	�X� ≥ bn� → 0 [by (4.1) and (4.2)] whereas nPr	�X� ≥
�Q�1 − 1/n�� ∨ �Q�1/n��� ≥ 1 [by (4.4)], it follows that eventually bn > �Q�1 −
1/n�� ∨ �Q�1/n��. The limit (4.6) is obvious if EX2 < ∞: if X is bounded then
the numerator is bounded and the denominator is

√
n, whereas if, for example,

X+ is unbounded then yn �= Q�1 − 1/n� → ∞ and

y2
n

n
≤ y2

n Pr	X ≥ yn� → 0

and likewise for Q�1/n� if X− is unbounded. If EX2 = ∞, also, for example,
assuming yn = Q�1 − 1/n� → ∞, the limits (4.1) and (4.2) together with the
previous observation give

b2
n

y2
n

� nU�bn�
y2
n

≥ U�bn�
y2
n Pr	X ≥ yn�

≥ U�yn�
y2
n Pr	X ≥ yn�

→ ∞	

proving (4.6).
The limit (4.7) is equivalent to

�4�7′�
lim
n→∞ E

[
1
bn

∫ ∞

Q�1−1/n�

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt
]r

= lim
n→∞ E

[
1
bn

∫ Q�1/n�

−∞

∣∣∣∣
n∑
i=1

�IXi≤t − Pr	X ≤ t��
∣∣∣∣dt

]r
= 0�

Since both limits in (4.7′) have similar proofs, we only prove one of them and
assume 1 ≤ r < 2. By (4.5), if t ≥ Q�1 − 1/n� then nPr	X > t� ≤ 1 so that
we can apply inequality (2.37) to

∑n
i=1�IXi>t

− Pr	X > t�� for t in this range.
This and the generalized Minkowswki inequality give

�4�8�

(
E

[
1
bn

∫ ∞

Q�1−1/n�

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt
]r)1/r

≤ 1
bn

∫ ∞

Q�1−1/n�

(
E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣
r)1/r

dt

≤ C�1	 r�1/r

bn

∫ ∞

Q�1−1/n�
�nPr	X > t��1/r dt�

Now we decompose these last integrals into two parts, from Q�1 − 1/n� to
bn and from bn to ∞. For the first, since nPr	X > Q�1 − 1/n�� ≤ 1 and
nPr	X > bnt� → 0 as n → ∞ by (4.1), (4.2) and regular variation of U�t�, it
follows by bounded convergence that

�4�9� 1
bn

∫ bn
Q�1−1/n�

�nPr	X > t��1/r dt =
∫ 1

Q�1−1/n�/bn
�nPr	X > bnt��1/r dt→ 0

as n → ∞. For the second integral, setting δn = supt≥bn t
2 Pr	X ≥ t�/U�t�,

which tends to zero as n → ∞ by (4.1), and using regular variation [Feller
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(1971), Theorem 1(a) applied to U�t�] and the limit (4.2), we obtain

1
bn

∫ ∞

bn

�nPr	X > t��1/r dt =
b

2/r−1
n

∫∞
bn

�Pr	X > t��1/r dt

�b2
n/n�1/r

�
b

2/r−1
n

∫∞
bn

�Pr	X > t��1/r dt

�U�bn��1/r

≤ δ
1/r
n b

2/r−1
n

�U�bn��1/r

∫ ∞

bn

(
U�t�
t2

)1/r

dt

� 1
2/r− 1

δ1/r
n → 0�

(4.10)

Now, combining (4.8)–(4.10), we obtain that the first limit in (4.7′) is zero. ✷

As indicated above, the main result of this section will be proved by appli-
cation of an inequality of Talagrand (1996). For ease of reference we state it.

Talagrand’s exponential inequality. Let Xi be independent random
variables with values in a measurable space �S	� �, let � be a countable
class of measurable functions on S and let

�4�11� Z �= sup
f∈�

n∑
i=1

f�Xi��

Let

�4�12� U �= sup
f∈�

�f�∞ and V �= E

[
sup
f∈�

n∑
i=1

f2�Xi�
]
�

Then there exists a universal constant (independent of Xi, n and S) such that

�4�13� Pr	�Z− EZ� ≥ t� ≤K exp
(

− 1
K

t

U
log

(
1 + tU

V

))
�

Theorem 4.2. Let X ∈ DA2�bn� and set

�4�14� Zn �= n
∫ ∞

−∞

∣∣Fn�t� −F�t�∣∣dt	 n ∈ N�

Then,

�4�15� sup
n

E

∣∣∣∣Zn − EZn
bn

∣∣∣∣
r

<∞

for all 0 < r < 2. (In particular, the sequence 	�Zn − EZn�/bn�∞
n=1 is stochas-

tically bounded.)
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Proof. We can decompose each variable Zn into the sum of two, one for
which the integral runs from 0 to ∞ and the other with limits −∞ and 0. Each
of the two resulting sequences can be treated in the same way, hence we will
only consider the first. We may as well assume Q�1 − 1/n� > 0. Lemma 4.1
allows reduction of the domain of integration of theses variables to �0	Q�1 −
1/n�� [resp. �Q�1/n�	0�]. Hence, defining

�4�14′� Z̃n �=
∫ Q�1−1/n�

0

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt	
where 	Xi� is as usual an i.i.d. sequence with � �Xi� = � �X�, we must show
that the rth moments of the variables in the sequence

�4�15′�
{
Z̃n − EZ̃n

bn

}∞

n=1

are uniformly bounded. For ease of notation we set Qn = Q�1−1/n�. To apply
Talagrand’s inequality, we define

S �= Sn �= {
hx ∈ L1�R�� x > 0	 hx�t� �= �Ix>t − Pr	X > t��I0<t<Qn

}
	

� as the restriction of the Borel sigma algebra of L1�R� to S, and

Xi�t� �= hXi
�t� = �IXi>t

− Pr	X > t��I0<t<Qn
�

Since L1�R� is separable, there is a countable family � of elements of the unit
ball of L∞�R� such that

�h�L1
= sup
f∈�

"f	h# = sup
f∈�

�"f	h#� = sup
f∈�

∣∣∣∣
∫
f�t�h�t�dt

∣∣∣∣
for all h ∈ L1. We take � in Talagrand’s theorem to be this class, more exactly,
the functions that act on h ∈ L1 as h→ "f	h#, where f ∈ � (since these maps
are continuous in L1, they are Borel measurable). Note that ess sup �f� ≤ 1 for
all f ∈ � . Next we estimate U and V from (4.12) in our case,

�4�16�

U = sup
f∈�

�f�∞ = sup
f∈�

sup
hx∈Sn

�"f	hx#�

= sup
f∈�

sup
x>0

∣∣∣∣
∫ Qn∧x

0
f�t�dt−

∫ Qn

0
f�t� Pr	X > t�dt

∣∣∣∣
= sup
f∈�

sup
x>0

∣∣∣∣
∫ Qn∧x

0
f�t��1 − Pr	X > t��dt−

∫ Qn

Qn∧x
f�t� Pr	X > t�dt

∣∣∣∣
≤ Qn
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and

�4�17�

V = E

[
sup
f∈�

n∑
i=1

"f	Xi#2
]

= E

[
sup
f∈�

n∑
i=1

(∫ �Xi∨0�∧Qn

0
f�t�dt−

∫ Qn

0
f�t� Pr	X > t�dt

)2]

≤ 2E

[
sup
f∈�

n∑
i=1

(∫ �Xi∨0�∧Qn

0
f�t�dt

)2]

+ 2 sup
f∈�

n∑
i=1

(∫ Qn

0
f�t� Pr	X > t�dt

)2

≤ 2nE��X ∨ 0� ∧Qn�2 + 2n�E��X ∨ 0� ∧Qn��2

≤ 4nE��X� ∧ bn�2 ≤ 5b2
n

for all n large enough [recall (4.1), (4.2) and (4.6)]. Taking into account that the
function −u−1 log�1+u/c2� is nondecreasing for u > 0, plugging the estimates
(4.16) and (4.17) into Talagrand’s inequality (4.13) gives

Pr
{∣∣Z̃n − EZ̃n

∣∣ > t} ≤ K exp
(

− 1
K

t

U
log

(
1 + tU

5b2
n

))

≤ K exp
(

− 1
K

t

Qn

log
(

1 + tQn

5b2
n

))

for all n satisfying (4.17). Then, if n0 is such that (4.17) and 0 < Qn ≤ bn both
hold for all n ≥ n0 [recall (4.6)], we have

sup
n≥n0

Pr
{∣∣Z̃n − EZ̃n

∣∣ > tbn} ≤K exp
(

− 1
K
t log

(
1 + t

5

))
�

This implies that supn≥n0
E��Z̃n − EZ̃n�/bn�r < ∞ for all r > 0. Since the

essential supremum of the variable maxn≤n0
�Z̃n − EZ̃n� is finite, this proves

the theorem. ✷

Remark 4.1 (The order of magnitude of EZ̃n). If Z is a binomial �n	p�
variable, then Hölder’s inequality gives

E�Z− EZ� ≤
√
np�1 − p�	

which is of the right order for np�1 −p� large. Therefore, assuming, as in the
previous proof, that X ≥ 0, we have

�4�18� 0 ≤ EZ̃n ≤ √
n
∫ Q�1−1/n�

0

√
Pr	X > t�dt�

In particular, if X ∈ L2	1, the centering in (4.15′) satisfies

0 ≤ EZ̃n ≤ )2	1�X�√n�
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Hence, the centering in (4.15) is not needed in the L2	1 case, and the above
theorem recovers the sufficiency part of Theorem 2.1(b). Next we bound EZ̃n
from below. The case X ∈ L2	1 has already been considered in Section 2. By
Theorem 2.4 and Lemma 4.1, if X ∈ L2	1 then

lim
n→∞

EZ̃n√
n

= lim
n→∞

EZn√
n

=
∫ ∞

−∞
E�B�F�t���dt =

√
2
π

∫ ∞

−∞

√
F�t��1 −F�t��dt�

So, we can assume )2	1�X� = ∞, and, without loss of generality, X ≥ 0. The
binomial estimates (2.11) and (2.15) give

EZ̃n ≥
∫ Q�1−1/n�

med�X�
E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣dt
≥ C2

√
n
∫ Q�1−C1/n�

med�X�

√
Pr	X > t�dt+

∫ Q�1−1/n�

Q�1−C1/n�
Cdt

≥ �C2 +C/
√
C1�

√
n
∫ Q�1−1/n�

med�X�

√
Pr	X > t�dt�

If )2	1�X� = ∞,
∫Q�1−1/n�

med�X�
√

Pr	X > t�dt/ ∫med�X�
0

√
Pr	X > t�dt → ∞ and

therefore, for all n large enough,

EZ̃n ≥ 1
2�C2 +C/

√
C1�

√
n
∫ Q�1−1/n�

med�X�

√
Pr	X > t�dt�

This and (4.18) give

�4�19� EZ̃n � √
n
∫ Q�1−1/n�

0

√
Pr	X > t�dt�

Here the exact meaning of � is that the quotient of the two quantities becomes
bounded and bounded away from 0 as n → ∞, with bounds independent
from X. In connection with (4.19), we should mention that this estimate is
improved to the limit (5.18) in Corollary 5.4 below, in particular showing that
the centering EZn in (4.15), Theorem 4.2, can be replaced by the easier to
compute

�4�20� γn =
√

2n
π

∫ Q�1−1/n�

Q�1/n�

√
F�t��1 −F�t��dt�

Theorem 4.2 determines the size in probability of the centered Wasserstein
distance for X ∈ DA2 \ L2	1 (L2	1 is considered in Theorem 2.1); in order to
retrieve information from Theorem 4.2 about the size of the uncentered Zn
as well, we must compare the sizes of the centerings EZn and the normings
bn occurring in (4.15) for all X ∈ DA2 \ L2	1, and this is done in the next
proposition. The norming constants bn admit several forms besides the implicit
one in (4.2), as shown in CCHM (1986b); in particular, bn can be taken to be

�4�21� bn = √
n

(∫ 1−1/n

1/n
Q2�t�dt

)1/2
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if EX2 = ∞. [See the Appendix for an alternative proof of (4.21)]. Recall that
we take bn = √

n if EX2 <∞.

Proposition 4.3. Let X ∈ DA2�bn� \L2	1 and let

Zn = n
∫ ∞

−∞
�Fn�t� −F�t��dt	 n ∈ N	

as in (4.14). Then,

�4�22� lim
n→∞

EZn
bn

= ∞�

Proof. Almost as in (4.14), we set

Z̃n �= n
∫ Q�1−1/n�

Q�1/n�
�Fn�t� −F�t��dt�

A slight modification of the arguments in Remark 4.1 shows that

�4�19′� EZ̃n� √
n
∫ Q�1−1/n�

Q�1/n�

√
F�t��1 −F�t��dt= √

n
∫ 1−1/n

1/n

√
t�1 − t�dQ�t��

In particular, if EX2 < ∞ and )2	1�X� = ∞, then EZn/
√
n → ∞. So, we can

assume from now on that EX2 = ∞. Then, by (4.21) and (4.19′), (4.22) reduces
to showing

�4�23� lim
n→∞

∫ 1−1/n
1/n

√
t�1 − t�dQ�t�

�∫ 1−1/n
1/n Q2�t�dt�1/2

= ∞�

Integration by parts yields

∫ 1−1/n

1/n

√
t�1 − t�dQ�t� =

√
1
n

(
1 − 1

n

)(
Q

(
1 − 1

n

)
−Q

(
1
n

))

−
∫ 1−1/n

1/n

� 1
2 − t�Q�t�√
t�1 − t� dt�

By (4.6) in Lemma 4.1, the first summand at the right of this identity is of a
smaller order than bn and, therefore, it suffices to prove

�4�24� lim
n→∞

∫ 1−1/n
1/n �t�1 − t��−1/2�Q�t��dt

�∫ 1−1/n
1/n Q2�t�dt�1/2

= ∞�

Set

f�x� �=
∫ 1−x

x
�Q�t���t�1 − t��−1/2 dt

and

g�x� �=
(∫ 1−x

x
Q2�t�dt

)1/2

	 0 < x < 1/2	
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and note that limx→0 g�x� = ∞ (as EX2 = ∞). Both f and g are absolutely
continuous and their a.s. derivatives are, respectively,

f′�x� = −�Q�1 − x�� + �Q�x��√
x�1 − x� and g′�x� = −Q

2�1 − x� +Q2�x�
2
√∫ 1−x

x Q2�s�ds
�

We claim that

�4�25� lim
x→0

f′�x�
g′�x� = ∞�

To see this we write
√

1 − x
2

f′�x�
g′�x� =

√∫ 1−x
x Q2�s�ds

√
x��Q�1 − x�� + �Q2�x�/�Q�1 − x����

+
√∫ 1−x

x Q2�s�ds
√
x��Q2�1 − x�/�Q�x��� + �Q�x���

�= b1�x� + b2�x��
Let 	xk� be a sequence of positive numbers converging to zero such that �Q�1−
xk��/�Q�xk�� → c ∈ �0	∞� as k→ ∞. If c <∞ then, for k large enough,

b2�xk� ≥ 1
c+ 1

√∫ 1−xk
xk

Q2�s�ds
√
xk��Q�1 − xk�� + �Q�xk���

→ ∞

as k → ∞ because of (4.1) and (4.4) [see also (4.6)]. Likewise, if c = ∞ then
b1�xk� → ∞, which proves (4.25).

If Q were continuous, f and g would be everywhere differentiable and the
result would follow from (4.25) by l’Hôpital’s rule. The general case requires
a simple extra argument. By absolute continuity of f and g we have

�4�26� f�x� − f�x0�
g�x� − g�x0�

=
∫ x0
x f′�s�ds∫ x0
x g′�s�ds�

For M > 0 fixed, we can choose x0 satisfying f′�x�/g′�x� > M for all 0 < x <
x0. Now we fix ε > 0 and choose x1 < x0 such that

f�x0�
f�x� < ε and

g�x0�
g�x� < ε

for all 0 < x < x1. Then, if x < x1,

f�x� − f�x0�
g�x� − g�x0�

= f�x�
g�x�

�1 − f�x0�/f�x��
�1 − g�x0�/g�x�� = f�x�

g�x�θx

for some θx ∈ ��1 − ε�/�1 + ε�	 �1 + ε�/�1 − ε��. Therefore, by (4.26),

f�x�/g�x� >M�1 − ε�/�1 + ε�	
proving (4.24). ✷
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Combining Theorem 4.2 and Proposition 4.3 yields some interesting conse-
quences. First we will focus on a law of large numbers for Zn.

Corollary 4.4. Let X	Xi, i ∈ N, be i.i.d. random variables in DA2�bn� \
L2	1 and let Zn, n ∈ N, be as defined in (4.14). Then

Zn
EZn

→ 1

in probability.

Proof. By Theorem 4.2 and Proposition 4.3,

bn
EZn

Zn − EZn
bn

→ 0

in probability. ✷

Note that, by Lemma 4.1, the size of EZn is determined up to constants
by equation (4.19′), assuming X �∈ L2	1. Actually, the approximation (4.19′) is
asymptotically correct (Corollary 5.4 below).

Theorem 4.2 also implies the following version of Theorem 2.1(b) (here X
is restricted to be in DA2 but we consider more general normings).

Corollary 4.5. Let X	Xi, i ∈ N, be i.i.d. random variables in DA2�bn�
and let Zn, n ∈ N, be as defined in (4.14). Then the sequence 	Zn/bn�∞

n=1 is
stochastically bounded if and only if )2	1�X� <∞.

Proof. Sufficiency is already contained in Theorem 2.1 and necessity is
an immediate consequence of Theorem 4.2 and Proposition 4.3. ✷

5. The domain of attraction of the normal law II: limit theorems,
finite variance case. Theorem 4.2 suggests that if X ∈ DA2�bn� then the
centered and normalized Wasserstein distances, 	�Zn−EZn�/bn�∞

n=1, converge
in law. Such a result would constitute the central limit theorem associated to
the law of large numbers in Corollary 4.4 and would basically complete the
weak limit theory for the Wasserstein distance between the empirical and the
true distributions. Here we prove this CLT in the finite variance case.

An important tool we will use here and in the next section is the Borell–
Sudakov–Tsirel’son concentration inequality for Gaussian processes [Sudakov
and Tsirel’son (1974), Borell (1975)]. Since we do not need its full power,
we state and use the Maurey–Pisier version, which has an elementary proof
[Pisier (1986); see also Ledoux and Talagrand (1991), page 57].

Gaussian concentration inequality. Let Z be a centered Gaussian E-
valued random vector, E a separable Banach space, and let

�5�1� σ2 = sup
f∈D

E"f	Z#2	
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where D is a countable subset of the unit ball of E′ such that �x� =
supf∈D �"f	x#� for all x ∈ E. Then, E�Z� <∞ and

�5�2� Pr
{∣∣�Z� − E�Z�∣∣ ≥ t} ≤ 2 exp

(
− 2
π2

t2

σ2

)
�

Given a random variable X we let, as usual, F and Q be respectively its
cumulative distribution and quantile functions, and we also set, as in (4.14),

Zn = n�Fn −F�L1
	

where Fn, n ∈ N, are the empirical cumulative distribution functions associ-
ated to a sequence of i.i.d. random variables 	Xi� with the same law as X.
As usual, B�t� will denote the Brownian bridge process. Theorem 2.1(a) shows
that

Zn√
n

→d

∫ ∞

−∞
�B�F�t���dt =

∫ 1

0
�B�t��dQ�t�

whenever X ∈ L2	1. Moreover, by moment convergence [Theorem 2.4(a)],
EZn/

√
n → ∫ 1

0 E�B�t��dQ�t� = √
2/π

∫ 1
0

√
t�1 − t�dQ�t�. The following theo-

rem generalizes this to X ∈ L2, although in this case we do not have separate
convergence of Zn/

√
n and EZn/

√
n [see, e.g., Proposition 4.3].

Theorem 5.1. If EX2 < ∞ then, for any sequences cn ↘ 0 and dn ↗ 1,
cn �= 0, dn �= 1, the sequence

�5�3�
∫ dn
cn

��B�t�� − E�B�t���dQ�t�	 n ∈ N	

is Cauchy in Lp for every p and, moreover, if we denote its limit by

�5�4�
∫ 1

0
��B�t�� − E�B�t���dQ�t�	

then

�5�5� Zn − EZn√
n

→d

∫ 1

0
��B�t�� − E�B�t���dQ�t�

as n→ ∞, with convergence of moments of order p < 2.

Proof. We can and do assume X is nondegenerate [otherwise, both sides
of (5.5) are zero]. First we show that the sequence (5.3) is Cauchy in Lp. To
prove this we use Gaussian concentration. Let n < m, and let D denote an L1
norm determining countable subset of the unit ball of L∞��dn	dm�	 dQ�. Then,
the Gaussian concentration inequality applies with E = L1��dn	dm�	 dQ� and
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Z = 	B�t�� dn ≤ t ≤ dm�. The parameter specified by (5.1) in this case is

σ2
n	m = sup

f∈D
E

(∫ dm
dn

f�t�B�t�dQ�t�
)2

= sup
f∈D

∫ dm
dn

∫ dm
dn

f�s�f�t�E�B�s�B�t��dQ�s�dQ�t�

=
∫ dm
dn

∫ dm
dn

�s ∧ t− st�dQ�s�dQ�t��

It is well known that if K is a function of finite total variation on �0	1� and
if U is uniform on �0	1�, then

Var�K�U�� =
∫ 1

0

∫ 1

0
�s ∧ t− st�dK�s�dK�t�

[e.g., Shorack and Wellner (1986), page 43]. Applying this to

K�u� = Q�u�I�dn	dm��u� +Q�dn�Iu<dn +Q�dm�Iu>dm	
we obtain from the above that

σ2
n	m = Var�Q�dn� ∨ �X ∧Q�dm���

= Var�0 ∨ �X−Q�dn�� ∧ �Q�dm� −Q�dn���
≤ 2 Var�XIX>Q�dn��	

where we use that � �X� = � �Q�U�� in the first identity and that �φ�x� −
φ�y�� ≤ �x − y� for all x	y implies Varφ�Z� ≤ 2 VarZ in the inequality.
Therefore, the concentration inequality (5.2) gives that, for all ε > 0,

Pr
{∣∣∣∣
∫ dm
dn

��B� − E�B��dQ
∣∣∣∣ > ε

}
≤ 2 exp

(
− 2ε2

π2σ2
n	m

)
→ 0

as n ∧ m → ∞. A similar inequality holds for � ∫ cncm ��B� − E�B��dQ�. Hence,
the sequence (5.3) is Cauchy in Lp for all p. Actually, it is Cauchy in some
exponential Orlicz norms as well.

Without loss of generality, we will assume X ≥ 0 for the rest of the proof.
Also, by Lemma 4.1, we can replace Zn − EZn by Z̃n − EZ̃n at the left side of
the limit (5.5), with Z̃n as defined in (4.14′). Next we prove the limit (5.5) with
this replacement. We consider the truncated variables X�r�	X�r�

i 	 defined by
truncation of the X’s as follows:

X�r� �=X ∧Q�1 − 1/r�	

and likewise for X�r�
i , and denote F�r�, Q�r� and F�r�

n , respectively, their com-
mon cdf, quantile function and empirical cdf. We also set

Z
�r�
n = n�F�r�

n −F�r��L1
�
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As indicated above, by Theorem 2.1(a) and moment convergence [Theo-
rem 2.4(a)], since X�r� ∈ L2	1,

�5�6� Z
�r�
n − EZ

�r�
n√

n
→d

∫ 1

0
��B�t�� − E�B�t���dQ�r��t��

Also, since this last integral is just
∫ 1−1/r

0 ��B�t��−E�B�t���dQ�t�	 the first part
of the proof shows that

�5�7� Z�r� �=
∫ 1

0
��B�t�� − E�B�t���dQ�r��t� →d Z �=

∫ 1

0
��B�t�� − E�B�t���dQ�t��

Hence, by the usual 3ε argument [e.g., Billingsley (1968), page 25], it suffices
to prove that

�5�8�

lim
r→∞ lim sup

n→∞

∣∣∣∣Z̃n − EZ̃n√
n

− Z
�r�
n − EZ

�r�
n√

n

∣∣∣∣
= lim
r→∞ lim sup

n→∞
1√
n

∣∣∣∣
∫ Q�1−1/n�

Q�1−1/r�

(∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣
− E

∣∣∣∣
n∑
i=1

�IXi>t
− Pr	X > t��

∣∣∣∣
)
dt

∣∣∣∣ = 0 in Lp

for all p. This is achieved by means of Talagrand’s exponential inequality, as
in the proof of Theorem 4.2. Just as in that proof, (4.16) and (4.17) in the
present case become

U ≤ Q�1 − 1/n� −Q�1 − 1/r� and V ≤ 2nEX2IX>Q�1−1/r��

Using this and that, by Chebyshev’s inequality,

Q2�1 − 1/n� ≤ nEX2I�X�≥Q�1−1/n�	

Talagrand’s inequality gives

Pr
{∣∣∣∣�Z̃n −Z�r�

n � − E�Z̃n −Z�r�
n �

∣∣∣∣ > u
√
nEX2IX≥Q�1−1/r�

}

≤K exp
[
− 1
K
u log

(
1 + u

2

)]

for all u > 0. Now (5.8) follows since EX2IX≥Q�1−1/r� → 0 as r→ ∞. ✷

We should mention that EZn, which may be difficult to compute, satisfies

lim
n→∞

EZn√
n
√

2/π
∫ 1−1/n

1/n

√
t�1 − t�dQt

= 1	

an estimate more precise than (4.19), (4.19′). This is proved in Corollary 6.3.
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6. The domain of attraction of the normal law III: limit theorems,
infinite variance case. In this section we prove a central limit theorem for
�Fn − F�L1

− E�Fn − F�L1
under the assumption that the tail probabilities

of X are smooth and of the order �log t�α/t2, −1 ≤ α < ∞ [the case α =
0 is Theorem 1.1(a2)]. By weighted approximation of empirical processes by
Brownian bridges, this will reduce to proving a central limit theorem for∫ s

−s
��V�t� − E�V�t����t�α/2 dt	

where V is the Ornstein–Uhlenbeck process and s → ∞. [The case α = 0
is known: Mandl (1968), page 95.] Whereas we conjecture that the central
limit theorem to be proved in this section holds for any X in the domain
of attraction of the normal law and with infinite second moment, our method
would only give the CLT for a subset of these (smooth, regularly varying tails);
for this reason and for convenience, we restrict ourselves to the simpler tail
probabilities Pr	�X� > t� � �log t�α/t2, −1 ≤ α < ∞, which, at any rate,
basically cover all the tail sizes for DA2 with infinite variance.

Whereas the proofs of the results in Sections 2 to 5 do not use approxima-
tion of the empirical process by Brownian bridges, the results in this section
are based on such representations. The value of the normalizing constants is
determined by the integrals at the tails and therefore we cannot approximate
the L1 norm of the empirical process by integrals with bounded range, as done
in Theorem 5.1. We use Mason’s (1991) and Csörgő and Horváth (1986) ver-
sion of the weighted strong approximations, which has an elementary proof
based on Skorokhod embedding [as opposed to the deeper and more difficult
Komlós–Major–Tusnády (KMT) strong approximation]. This approximation is
as follows, and was originally stated [with a proof based on KMT] in CCHM
(1986a).

Weighted approximation of the empirical process by Brownian
bridges. There exists a sequence of independent uniform (0,1) random
variables Ui, i ∈ N, and a sequence of Brownian bridges Bn, n ∈ N, sitting on
the same probability space, such that, for all 0 ≤ ν < 1/4,

�6�1� sup
1/n≤s≤1−1/n

nν�αn�s� −Bn�s���s�1 − s��ν−1/2 = OP�1�	

where

�6�2� Hn�s� �= 1
n

n∑
i=1

IUi≤s and αn�s� �= √
n�Hn�s� − s�	 n ∈ N	

are respectively the uniform empirical distribution functions and processes.
We are interested in the following corollary of the weighted approximation.

CCHM (1986b) state a formally weaker result [their Theorem 2.1; see also
CCHM (1986a), Theorems 3.1 and 3.2], but their methods also give it. We
present it with a short proof for the reader’s convenience.

Corollary 6.1 [Essentially contained in CCHM (1986a, b)]. With αn and
Bn as in the weighted approximation theorem, if Q is the quantile function of
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a random variable X in DA2�bn�, then

�6�3� lim
n→∞

√
n

bn

∫ 1−1/n

1/n
�αn�t� −Bn�t��dQ�t� = 0

in probability.

Proof. The approximation of αn by Brownian bridges (6.1) gives that, for
any ε ∈ �0	1/4�,

√
n

bn

∫ 1−1/n

1/n

∣∣αn�t� −Bn�t�
∣∣dQ�t�

≤ n1/2−ε

bn

∫ 1−1/n

1/n
�t�1 − t��1/2−ε dQ�t�

× sup
1/n≤s≤1−1/n

nε
∣∣αn�s� −Bn�s�

∣∣�s�1 − s��ε−1/2

= n1/2−ε

bn

∫ Q�1−1/n�

Q�1/n�
�F�t��1 −F�t���1/2−ε dt×OP�1��

We can decompose the integral in the last term into two parts, from Q�1/n�
to the median of X, and from there to Q�1 − 1/n�. Since both integrals can
be treated in the same way, we only consider one. By the properties of regular
variation [Feller (1971)] applied to U and by (4.1), (4.2) and (4.6), setting
M �= supt>0 t

2 Pr	X > t�/U�t�, which is finite, we have

n1/2−ε

bn

∫ Q�1−1/n�

med�X�
�F�t��1 −F�t���1/2−ε dt

≤ n1/2−ε

bn

∫ Q�1−1/n�

med�X�
�Pr	X > t��1/2−ε dt

≤ M1/2−εn1/2−ε

bn

∫ Q�1−1/n�

med�X�

(
U�t�
t2

)1/2−ε
dt

� M1/2−εn1/2−ε

bn

1
2ε

�U�Q�1 − 1/n���1/2−ε�Q�1 − 1/n��2ε

<∼
M1/2−ε

2ε

(
nU�bn�
b2
n

)1/2−ε(Q�1 − 1/n�
bn

)2ε

→ 0

as n→ ∞. ✷

Let X be a random variable in DA2�bn� for some admissible sequence 	bn�
of normalizing constants. We keep the notation of previous sections, and also
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set

�6�4�
γn �= √

n

√
2
π

∫ Q�1−1/n�

Q�1/n�

√
F�t��1 −F�t��dt

= √
n

√
2
π

∫ 1−1/n

1/n
�t�1 − t��1/2 dQ�t� = √

n
∫ 1−1/n

1/n
E�B�t��dQ�t��

Then, Lemma 4.1 and Corollary 6.1 show that the sequences

�6�5�
{
Zn − γn
bn

}
and

{√
n

bn

∫ 1−1/n

1/n
��B�t�� − E�B�t���dQ�t�

}

are weak convergence equivalent. If X is symmetric and has tails of the order
t−2, concretely, if

dQ�t� = cdt

�t�1 − t��3/2

then, transforming B into the stationary Ornstein–Uhlenbeck process V�t�,
−∞ < t <∞, by the equation

�6�6� B�t� = t1/2�1 − t�1/2V

(
1
2

log
t

1 − t
)
	

yields

�6�7�

√
n

bn

∫ 1−1/n

1/n
��B�t�� − E�B�t���dQ�t�

� c√
log�n− 1�

∫ log�n−1�/2

− log�n−1�/2
��V�t�� − E�V�t���dt

for a specific constant c, and convergence in distribution follows by a central
limit theorem for stationary Markov processes [Mandl (1968), page 95], as ob-
served by Csörgő and Horváth (1993). However, we have been unable to find in
the literature any central limit theorems for integrals of centered functionals
of stationary processes with respect to measures other than Lebesgue. On the
other hand, by the tightness result of Section 4, the Csörgő–Horváth result
[Theorem 1.1(a2) above], and the CLT in Section 5, it is natural to conjecture
that the sequences in (6.5) converge in distribution for general X ∈ DA2�bn�.

As mentioned above, we will prove convergence in law of the sequences in
(6.5), but only for random variables X with smooth tail probabilities of the
order of �log t�α/t2, −1 ≤ α < ∞. This shows, in particular, that Lebesgue
measure dt can be replaced in the second sequence in (6.7) by other measures
and still have a central limit theorem. However, our method of proof does not
seem to extend to all of DA2�bn�.

Here is how we attack the problem. Application of the Borell–Sudakov–
Tsirel’son inequality, as in the proof of Theorem 5.1, yields that the second
sequence in (6.5) is tight with subsequential convergence of moments as well
and that all its subsequential limits have tails of the order of c1 exp�−c2t

2�;
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hence, if these limits are infinitely divisible, they are normal [Horn (1972)].
Then, convergence follows by showing that the limits are indeed infinitely di-
visible and that the second moments do converge. We prove that the second
moments converge by direct computation and prove that the limits are in-
finitely divisible by showing that the sequences in (6.5) are equivalent to the
sequence of row sums of an infinitesimal triangular array.

To carry out this program, we need some lemmas and propositions. We begin
by applying the Gaussian concentration inequality to the second sequence in
(6.5).

Proposition 6.2. Let Q be the quantile function of X ∈ DA2�bn� and let B
be a Brownian bridge. Then, there is c ∈ �0	∞� such that

�6�8� Pr
{√

n

bn

∣∣∣∣
∫ 1−1/n

1/n
��B�t�� − E�B�t���dQ�t�

∣∣∣∣ > u
}

≤ 2 exp�−cu2�

for all u > 0 and n ∈ N. In particular, the sequence

�6�9� Gn �=
√
n

bn

∫ 1−1/n

1/n
��B�t�� − E�B�t���dQ�t�	 n ∈ N	

is stochastically bounded; all its subsequential limits in law G satisfy

�6�10� E exp�λG2� <∞
for all λ < c, and if Gnk →d G, then also E�Gnk �r → E�G�r for all r > 0 and

E exp�λG2
nk

� → E exp�λG2�.

Proof. As is well known [CCHM (1986b)], the norming sequence bn can
be taken to be

�6�11� bn = √
n

(∫ 1−1/n

1/n

∫ 1−1/n

1/n
�u ∧ v− uv�dQ�u�dQ�v�

)1/2

(see also the Appendix for another proof). Now, we apply the Gaussian con-
centration inequality as in the proof of Theorem 5.1. Taking dn = 1/n and
dm = 1 − 1/n in the computation of σn	m in that proof, we get σ2

n	m = b2
n/n,

which gives (6.8) with c = 2/π2 and, in particular, stochastic boundedness
of 	Gn�. The rest of the statements of this proposition follow from (6.8) by
uniform integrability. ✷

At this point we should slightly depart from our program and compare
Theorem 4.2 and Proposition 6.2. To begin, note that, because of the weak
convergence equivalence between 	Gn� and 	�Zn − γn�/bn�, Proposition 6.2
provides an alternative to Theorem 4.2 for proving stochastic boundedness of
a suitably centered and normalized version of 	Zn�. Although the normings
are the same (bn), the centerings are not; they are EZn in Theorem 4.2 and
γn here. While EZn is quite difficult to compute, γn is a simple function of
the distribution of X; hence, it may be of practical interest to compare these
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centerings. The comparison done in Remark 4.1 gave EZn � γn only in the
sense that the lim sup and lim inf of their quotients are finite, but not neces-
sarily equal, constants. In order for us to be able to interchange EZn by γn in
Theorem 4.2, in Corollary 4.3, in Theorem 5.1 and in the limit theorem to be
proved in this section, it is necessary that

�6�12� lim
n→∞

EZn − γn
bn

= 0	

which, at this point, we only know for X ∈ L2	1 (in this case the numerators
are bounded). This is what we observe now as a consequence of both Theo-
rem 4.1 and Proposition 6.2. Note that, since EZn/bn → ∞ and γn/bn → ∞ if
X ∈ DA2�bn� \L2	1 by Proposition 4.3 [see also (4.23)], the limit (6.12) implies
in particular

�6�13� lim
n→∞

EZn
γn

= 1	

a substantial improvement on Remark 4.1 [which is, however, used in the
proof of (6.12) and (6.13)].

Corollary 6.3. LetX ∈ DA2�bn�\L2	1 and letZn and γn, n ∈ N, be respec-
tively defined by equations (4.14) and (6.4). Then, the limit (6.12) is satisfied
[and therefore so is (6.13)].

Proof. Proposition 6.2 implies that any subsequential limit in law G of
the sequence 	Gn� satisfies EG = 0, by convergence of moments; together
with the weak convergence equivalence of the two sequences in (6.5) (which
follows by weighted approximation), it also implies that the sequence 	�Zn −
γn�/bn� is stochastically bounded and has the same subsequential limits G
as the sequence 	Gn�, hence, also centered. By Theorem 4.2, the sequence
	�Zn−EZn�/bn� is also stochastically bounded. Tightness of the two sequences
implies supn �EZn − γn�/bn <∞. This and Theorem 4.2 once more then imply
that

sup
n

E

∣∣∣∣Zn − γn
bn

∣∣∣∣
r

<∞

for 0 < r < 2. Hence, by uniform integrability, if 	�Znk − γnk�/bnk� converges
in law to G then

lim
k→∞

E

(
Znk − γnk
bnk

)
= EG = 0�

Now the corollary follows because this happens for a subsequence of every
subsequence. ✷

Back to the central limit theorem in the infinite variance case, we show
next that the second moment of Gn converges, but only in the particular case
when the tail probabilities of X are regularly varying.
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Proposition 6.4. LetQ be the quantile function of a random variableX in
DA2�bn�. Assume X has regularly varying tails with exponent −2 and EX2 =
∞. Let B be a Brownian bridge and let Gn be as defined by (6.9). Then

�6�14� lim
n→∞ EG2

n = 1 + 2 log 2
π

− 13
3π
�

Proof. We will assume for simplicity that X has a symmetric distribu-
tion [equivalently, that Q�1 − x� = −Q�x�, x ∈ �0	1�] and that Q has a
continuous derivative q. Integration by parts and the type of reasoning in
the proof of Proposition 4.3 extend this proof to general Q. Let �Z1	Z2�
be a centered random vector with bivariate normal distribution such that
Var�Z1� = Var�Z2� = 1 and Cov�Z1	Z2� = ρ. Set K�ρ� �= Cov��Z1�	 �Z2��.
Then, an elementary but cumbersome computation that we omit yields

K�ρ� = 2
π
ρarc sinρ− 1

π
ρ2

√
1 − ρ2 + 2

π

(√
1 − ρ2 − 1

)
�

Therefore, if we take bn as in (5.17), we have

EG2
n =

[∫ 1−1/n

1/n

∫ 1−1/n

1/n

√
u�1 − u�v�1 − v�

×K
(

u ∧ v− uv√
u�1 − u�v�1 − v�

)
dQ�u�dQ�v�

]

×
[∫ 1−1/n

1/n

∫ 1−1/n

1/n
�u ∧ v− uv�dQ�u�dQ�v�

]−1

�

Set

K1�ρ� = 2
π
ρarc sinρ	

K2�ρ� = − 1
π
ρ2

√
1 − ρ2

and

K3�ρ� = 2
π

(√
1 − ρ2 − 1

)
�

Then,

K1�ρ� = 2
π

∞∑
n=0

(−1/2
n

) �−1�n
2n+ 1

ρ2n+2	(6.15)

K2�ρ� = − 1
π

∞∑
n=0

(
1/2
n

)
�−1�nρ2n+2	(6.16)

K3�ρ� = 2
π

∞∑
n=1

(
1/2
n

)
�−1�nρ2n(6.17)
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for all �ρ� ≤ 1. We further define

fk�x� =
∫ 1−x

x

∫ 1−x

x
�u ∧ v− uv�

(
u ∧ v− uv√

u�1 − u�v�1 − v�

)k
dQ�u�dQ�v�	 k≥ 1

and

g�x� =
∫ 1−x

x

∫ 1−x

x
�u ∧ v− uv�dQ�u�dQ�v�	

and set

αk = lim
n→∞

fk�1/n�
g�1/n� �

Then, using (6.15), we obtain

�6�18�

lim
n→∞

[∫ 1−1/n

1/n

∫ 1−1/n

1/n

√
u�1 − u�v�1 − v�

×K1

(
u ∧ v− uv√

u�1 − u�v�1 − v�

)
dQ�u�dQ�v�

]

×
[∫ 1−1/n

1/n

∫ 1−1/n

1/n
�u ∧ v− uv�dQ�u�dQ�v�

]−1

= 2
π

∞∑
n=0

(−1/2
n

) �−1�n
2n+ 1

α2n+1�

[It is straightforward to see that the left term is bounded from below by the
right term, since all the terms in the series expansion are positive. The fact
that (6.15) is valid for ρ = 1 suffices to conclude (6.18).] In order to compute
αk, recall that symmetry of X implies Q�1 −x� = −Q�x� and q�1 −x� = q�x�.
Thus,

f′
k�x� = −4

xk/2+1

�1 − x�k/2q�x�
∫ 1−x

x

uk/2+1

�1 − u�k/2 dQ�u�	

g′�x� = −4xq�x�Q�1 − x�
and, consequently,

lim
x→0

f′
k�x�
g′�x� = lim

x→0

xk/2
∫ 1−x

1/2 �1 − u�−k/2 dQ�u�
Q�1 − x� �

Integration by parts yields

xk/2
∫ 1−x

1/2 �1 − u�−k/2 dQ�u�
Q�1 − x� = 1 − k

2

xk/2
∫ 1−x

1/2 Q�u��1 − u�−k/2−1 du

Q�1 − x� �

Since X has regularly varying tails with exponent −2, Q�1 − u� is regularly
varying at 0 with exponent −1/2 [see, e.g., Resnick (1987)]. Now, since, if
a function L�x� is regularly varying at 0 with exponent σ then L�1/y� is
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regularly varying at ∞ with exponent −σ , the usual properties of regular
variation [Feller (1971)] give

lim
x→0

xk/2
∫ 1−x

1/2 Q�u��1 − u�−k/2−1 du

Q�1 − x� = 2
k+ 1

�

Therefore, limx→0 f
′
k�x�/g′�x� = 1/�k+ 1� and, by l’Hôpital’s rule,

�6�19� αk = lim
x→0

fk�x�
g�x� = 1

k+ 1
�

Plugging (6.19) into (6.18), we obtain

�6�20�

lim
n→∞

[∫ 1−1/n

1/n

∫ 1−1/n

1/n

√
u�1 − u�v�1 − v�

×K1

(
u ∧ v− uv√

u�1 − u�v�1 − v�

)
dQ�u�dQ�v�

]

×
[∫ 1−1/n

1/n

∫ 1−1/n

1/n
�u ∧ v− uv�dQ�u�dQ�v�

]−1

= 2
π

∞∑
n=0

(−1/2
n

) �−1�n
2n+ 1

1
2n+ 2

= 1 − 2
π
�

The last identity follows upon noticing that

x sin−1 x+
√

1 − x2 − 1 =
∞∑
n=0

(−1/2
n

) �−1�n
2n+ 1

1
2n+ 2

x2n+2	 �x� ≤ 1�

We can apply the same reasoning to K2 and K3 to obtain

�6�21�

lim
n→∞

[∫ 1−1/n

1/n

∫ 1−1/n

1/n

√
u�1 − u�v�1 − v�

×K2

(
u ∧ v− uv√

u�1 − u�v�1 − v�

)
dQ�u�dQ�v�

]

×
[∫ 1−1/n

1/n

∫ 1−1/n

1/n
�u ∧ v− uv�dQ�u�dQ�v�

]−1

= − 1
π

∞∑
n=0

(
1/2
n

)
�−1�n 1

2n+ 2
= − 1

3π
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and

�6�22�

lim
n→∞

[∫ 1−1/n

1/n

∫ 1−1/n

1/n

√
u�1 − u�v�1 − v�

×K3

(
u ∧ v− uv√

u�1 − u�v�1 − v�

)
dQ�u�dQ�v�

]

×
[∫ 1−1/n

1/n

∫ 1−1/n

1/n
�u ∧ v− uv�dQ�u�dQ�v�

]−1

= 2
π

∞∑
n=1

(
1/2
n

)
�−1�n 1

2n
= 2
π

�log 2 − 1��

Now, (6.20), (6.21) and (6.22) complete the proof. ✷

By Propositions 6.2 and 6.4, all the subsequential limits in distribution G of
the sequence Gn, which are centered, have the same second moment. Hence,
if they are Gaussian, they coincide and convergence follows.

The next proposition shows that if an infinitely divisible distribution has tail
probabilities of smaller order than those of a Poisson random variable, then
it must be normal, a result due to Horn (1972), who gave an analytic proof
and placed unnecessary restrictions on the function H in (6.23). The proof we
give here, entirely probabilistic except for use of unicity in the Lévy–Khinchin
formula, seems to be the simplest for the particular statement that interests
us. Csörgő and Mason (1991) obtain general and quite precise integrability
results, with yet different proofs, and give many references to the extensive
literature on integrability of infinitely divisible distributions.

Proposition 6.5 [Horn (1972)]. If X is infinitely divisible, c ∈ �0	∞� and
H�t�, t > 0, is a positive function such that, both

�6�23� lim sup
t→∞

H�t�
t log t

= ∞ and Pr	�X� ≥ t� ≤ c exp�−H�t�� for all t>0	

then X is normal (or degenerate).

Proof. We first prove the proposition assuming X is symmetric. Then, by
Lévy–Khinchin for symmetric variables,

� �X� =N�0	 σ2� ∗ Poisµ	

where σ2 is a nonnegative number and µ is a symmetric Lévy measure [see,
e.g., Araujo and Giné (1980), Chapter 2, for this and for several properties
of general Poisson measures to be used below. In the proof of unicity of the
Lévy–Khinchin formula, page 56, Exercise 4, the order of the integral and the
exponential in the hint’s second line should be reversed]. If µ = αδ0, then
Poisµ = δ0 and � �X� = N�0	 σ2�. If µ �= αδ0 there is an interval �a	 b�,
0 < a < b <∞, such that µ�a	 b� = λ ∈ �0	∞�. Let

µ1 �= µ��a	 b�	 µ2 �= µ��−b	−a�	 µ3 �= µ− µ1 − µ2
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and let Xi, i = 1	2	3, be independent random variables such that

� �Xi� = Poisµi	 i = 1	2 and � �X3� =N�0	 σ2� ∗ Poisµ3�

Then X3 is symmetric, X1 ≥ 0, X2 ≤ 0 and � �X2� = � �−X1�; in fact, we
can take

X1 =
N1∑
i=0

ξi and X2 = −
N2∑
i=0

ηi

with Ni, i = 1	2, independent Poisson random variables with parameter λ,
ξi	 ηi i.i.d. with law λ−1µ��a	 b� for i ≥ 1, independent of N1 and N2, and
ξ0 = η0 = 0. Therefore,

Pr	�X� ≥ t� = Pr	�X1 +X2 +X3� ≥ t� ≥ Pr	X1 +X2 ≥ t	 X3 ≥ 0�

≥ 1
2

Pr	X1 +X2 ≥ t� ≥ 1
2

Pr	X1 ≥ t	 X2 = 0�

= 1
2

Pr	X1 ≥ t� Pr	N2 = 0�

= e−λ

2
Pr

{N1∑
i=0

ξi ≥ t
}

≥ e−λ

2
Pr	aN1 ≥ t��

Now, assuming t/a ∈ N, we have that for all c > 1/a there is t0 <∞ such that

Pr	aN1 ≥ t� ≥ Pr	N1 = t/a� = e−λ λ
t/a

�t/a�!
>∼ exp�−ct log t�	 t ≥ t0	

by Stirling’s formula. Therefore, there exists a constant c1 such that

Pr	�X� ≥ t� ≥ exp�−c1t log t�
for all t large enough, contradicting (6.23).

IfX is infinitely divisible but not necessarily symmetric, the Lévy–Khinchin
formula for its distribution is

� �X� = δa ∗N�0	 σ2� ∗ cδPoisµ

for some a	σ ∈ R and Lévy measure µ, and if X′ is an independent copy of
X, then

� �X−X′� =N�0	2σ2� ∗ Pois�µ+ µ̄�	
where µ̄�A� = µ�−A� for all Borel sets A. In particular, the exponent of the
characteristic function of X−X′ is −σ2t2 + ∫∞

−∞�cos tx− 1�d�µ+ µ̄��x�. If X
satisfies (6.23), so does X −X′ because Pr	�X −X′� ≥ 2t� ≤ 2 Pr	�X� ≥ t�.
Then, X − X′ being symmetric and infinitely divisible, the first part of the
proof shows that X −X′ is in fact normal, say with variance τ2. Therefore,
the exponent of its characteristic function satifies

−σ2t2 +
∫ ∞

−∞
�cos tx− 1�d�µ+ µ̄��x� = −τ

2t2

2
	 t ∈ R�
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Since the integral is not positive for any t, it follows that η2 �= τ2 − 2σ2 is
nonnegative. Hence,

Pois�µ+ µ̄� =N�0	 η2�	
which contradicts the unicity of the Lévy–Khinchin formula unless µ + µ̄ =
2cδ0 for some c ≥ 0; that is, unless µ = cδ0, implying that X is normal and
proving the proposition. ✷

We will apply this proposition with H�t� =Kt2.
For our final step, we consider symmetric random variables X such that

Pr	�X� > t� � �log t�α
t2

for large t, and with α ≥ −1. Such variables are in the domain of attraction of
the normal law, have infinite variance and their corresponding norming con-
stants are, up to a multiplicative constant that we can ignore for the moment,

bn = √
n�log n��α+1�/2 if α > −1 and bn =

√
n log log n if α = −1	

as is easily checked. Actually, we modify the law of X a little bit in order to
produce a less cumbersome proof (although these modifications will not alter
the essence of the proof). To wit, we take a differentiable quantile function Q
with Q�1/2� = 0 and derivative

�6�24� Q′�t� = � 1
2 log�t/�1 − t���α/2
t3/2�1 − t�3/2

	 0 < t < 1	

for α ≥ −1. It is not difficult to see that such Q is the quantile function of
a symmetric distribution as specified above, with normalizing constants bn
proportional to

√
n�log n��α+1�/2 if α > −1 and to

√
n log log n if α = −1.

Lemma 6.6. Let Gn, n ∈ N, be the random variables defined by (6.9)
with quantile function Q as given by (6.24) for some α ≥ −1, and bn =√
n�log n��α+1�/2 for α > −1, bn = √

n log log n for α = −1, n ∈ N. Then, all the
subsequential limits in law of the sequence 	Gn� are infinitely divisible.

Proof. The proof of this lemma will take a few sublemmas. We begin
by setting up the appropriate stage. Using the equivalence (6.6) between the
Brownian bridge and the Ornstein–Uhlenbeck process and with the change of
variables u = 1

2 log�t/�1 − t��, we have

�6�25� Gn =
√
n

bn

∫ log�n−1�/2

− log�n−1�/2
��V�u�� − E�V�u��� eu

1 + e2u
dQ

(
e2u

1 + e2u

)
du�

With a further change of variables

�6�26� dQ̃n

(
s+ 1

2
log�n+ 1�

)
�= es

1 + e2s
dQ

(
e2s

1 + e2s

)
= 2�s�α/2 ds	
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and, using the stationarity of V, (6.25) becomes

�6�25′� Gn =
√
n

bn

∫ log�n−1�

0
��V�s�� − E�V�s���dQ̃n�s��

In a way similar to Mandl [(1968), page 95], we fix δ > 0 and define stopping
times

�6�27�

τ0 = inf	u ≥ 0� V�u� = 0�	
τ1 = inf	u ≥ τ0� V�u� = δ�	 � � � 	
τ2n = inf	u ≥ τ2n−1� V�u� = 0�	

τ2n+1 = inf	u ≥ τ2n� V�u� = δ�	 n = 1	2	 � � � �

Since the Ornstein–Uhlenbeck process V can also be represented as V�t� =
W�e2t�/et, −∞ < t < ∞, with W a Brownian motion, these are actually stop-
ping times for Brownian motion. In particular, by the strong Markov property,
τ0, τk − τk−1, k ∈ N, are independent, and so are the integrals∫ τ0

0
f�V�t��dQ̃n�t�	

∫ τ2

τ0

f�V�t��dQ̃n�t�

=
∫ τ2

τ0

f

(
W�exp�2t�� −W�exp�2τ0��

exp�2t�
)
dQ̃n�t�	

∫ τ2�k+1�

τ2k

f�V�t��dQ̃n�t�	 k ∈ N	

since W�exp�2τ2k�� = exp�τ2k�V�τ2k� = 0. Moreover, V�t� being stationary,
τ2�k+1� − τ2k, k ∈ N, are i.i.d. We will show below that

�6�28� m1 �= Eτ0 <∞ and m2 �= E�τ2 − τ0� = E�τ2k − τ2�k−1�� <∞�
Then, defining

�6�29� kn �= max	k ∈ N� m1 + km2 ≤ log�n− 1��	
we have

�6�30� Gn =
√
n

bn

(∫ τ2

0
+
kn−1∑
k=1

∫ τ2�k+1�

τ2k

+
∫ log�n−1�

τ2kn

)
��V�t�� − E�V�t���dQ̃n�t�

�= �I�n + �II�n + �III�n	
where �II�n is a sum of independent not necessarily identically distributed
random variables. Hence, by the converse part of the general central limit
theorem in R [e.g., Araujo and Giné (1980), page 61], in order to prove that
the subsequential limit laws of 	Gn� are infinitely divisible it is sufficient to
show that

�6�31� �In� → 0 in pr.	 �IIIn� → 0 in pr.
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and that the triangular array of row-wise independent random variables
√
n

bn

∫ τ2�k+1�

τ2k

��V�t�� − E�V�t���dQ̃n�t�	 0 < k < kn	 n ∈ N	

is infinitesimal; that is,

�6�32� max
1≤k<kn

Pr
{√

n

bn

∣∣∣∣
∫ τ2�k+1�

τ2k

��V�t�� − E�V�t���dQ̃n�t�
∣∣∣∣ > ε

}
→ 0

as n→ ∞ for all ε > 0.

Claim 6.6.1. The stopping times τk, k = 0	1	 � � � 	 have finite moments of
all orders.

Proof. The distributions of τ0 and τ2k − τ2k−1 are easy to obtain, using
that the distribution of sup0≤s≤uW�s� is that of

√
u�g�, g standard normal

[e.g., Billingsley (1968), page 72]. Here is how to obtain the latter: we recall
also that W�u0v� −W�u0� has the same law as

√
u0W�v− 1�, and get

Pr	τ2k − τ2k−1 > t�
= Pr	τ2 − τ1 > t�
= E Pr

{
inf

0<s≤t
W�exp�2�s+ τ1��� > 0�W�exp�2τ1�� = δ exp�τ1�

}
= Pr

{
inf

0<s≤t
W�exp�2�s+ τ��� −W�exp�2τ�� > −δ exp�τ�

}
= Pr

{
inf

0<s≤t
W�exp�2s� − 1� > −δ

}
= Pr

{
sup

0<s≤t
�−W�exp�2s� − 1�� < δ

}

= Pr
{�g� < δ/

√
exp�2t� − 1

}
�

Similarly,

Pr	τ0 > t� = 2 Pr
{

sup
1<s≤e2t

W�s� < 0	 W�1� < 0
}

= 2 Pr
{
W�1� + sup

1<s≤e2t
�W�s� −W�1�� < 0	 W�1� < 0

}

= 2
π

tan−1 1√
exp�2t� − 1

�

Therefore,

Pr	τ0 > t� � 2
πet

	 Pr	τ2k − τ2k−1 > t� � 2δ
et
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as t → ∞. On the other hand, τ2k−1 − τ2k−2, which is equal in distribution to
τ1 − τ0, has to do with the exit time of Brownian motion from the one-sided
barrier δ

√
t. Concretely,

Pr	τ1 − τ0 > t� = E Pr
{

sup
0<s≤t

V�s+ τ0� < δ�V�τ0� = 0
}
	

and for τ0 fixed, this equals

Pr
{
W�e2se2τ�

eτ
< δes for all s ≤ t

∣∣∣∣W�e2τ�
eτ

= 0
}

= Pr	W�e2s� < δes for all s ≤ t�W�1� = 0��
This probability is shown in Uchiyama [(1980), Theorem 1.1] to be of the order
of c/eλt for some c < ∞ and 0 < λ < 1 as t → ∞, thus concluding the proof of
Claim 6.6.1. ✷

Claim 6.6.2. We have that limn→∞�I�n = 0 in probability.

Proof. First we show that the centering is not relevant for the evaluation
of �I�n. For a > 0 and n large enough so that log�n−1� � log n is much larger
than 2a, in the case α > −1 we have
√
n

bn

∫ a
0

E�V�t��dQ̃n�t� = 2
√

2/π
�log n��α+1�/2

∫ �log�n−1��/2

�log�n−1��/2−a
tα/2 dt

= 1
1 + α/2

2
√

2/π
�log n��α+1�/2

×
[(

1
2

log�n− 1�
)1+α/2

−
(

1
2

log�n− 1� − a
)1+α/2]

≤ 3a
√

2/π
�log n��α+1�/2

(
1
2

log�n− 1�
)α/2

≤ K

�log n�1/2
→ 0	

where K is a constant that depends on a and α but not on n. The same
computation for α = −1 gives

√
n

bn

∫ a
0

E�V�t��dQ̃n�t� ≤ K

��log n��log log n��1/2
�

Now, given ε > 0 and M> 0, then, for all n large enough,

Pr	�I�n > ε�

≤ Pr	τ2 >M� + Pr
{

sup
0<x≤M

∣∣∣∣
√
n

bn

∫ x
0

��V�t�� − E�V�t���dQ̃n�t�
∣∣∣∣ > ε

}

≤ Pr	τ2 >M� + Pr
{√

n

bn

∫ M
0

��V�t�� + E�V�t���dQ̃n�t� >
ε

2

}
�
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Since the first summand at the right tends to zero as M → ∞, it suffices to
prove that the second tends to 0 as n → ∞ for all M < ∞ and all ε > 0, and
this follows from the previous computation and Markov’s inequality. ✷

Claim 6.6.3. We have that limn→∞�III�n = 0 in probability.

Proof. By Claim 6.6.1 and the definition of kn (6.29), the central limit
theorem in R implies that the sequence 	�τ2kn−log�n−1��/√kn�∞

n=2 is stochas-
tically bounded. Therefore, it follows from

Pr	�IIIn� > ε� ≤ Pr
{∣∣∣∣τ2kn − log�n− 1�√

kn

∣∣∣∣ >M
}

+ Pr
{

sup
−M≤x≤M

√
n

bn

∣∣∣∣
∫ x√kn+log�n−1�

log�n−1�
��V� − E�V��dQ̃n

∣∣∣∣ > ε
}

that it suffices only to prove that the second summand at the right tends to
0 as n → ∞ for all ε > 0 and M < ∞. The previous proof still works here for
α = −1, but it doesn’t for α > −1 because

√
kn is of the order of �log n�1/2; thus,

we resort to the theory of Gaussian processes and metric entropy bounds. We
set, for n ≥ 2 and −M ≤ x ≤M,

Ln�x� =
√
n

bn

∫ x√kn+log�n−1�

log�n−1�
��V� − E�V��dQ̃n

=
√
n

bn

∫ x√kn+log�n−1�/2

log�n−1�/2
��V�t�� − E�V�t���tα/2 dt�

So, if for −M ≤ x < y ≤ M we denote by � · � the L1 norm for the measure
tα/2 dt on the interval �x√kn + 1

2 log�n− 1�	 y√kn + 1
2 log�n− 1��, we have

Ln�y� −Ln�x� = 1
�log n��α+1�/2 ��V� − E�V��

[we are only considering α > −1, hence bn = n1/2�log n��α+1�/2]. We apply the
Gaussian concentration inequality to estimate the size of Ln�y� − Ln�x�. To
this effect we must compute σ2�"f	V#� for �f�∞ ≤ 1. For such f, 0 < a < b
and α ≥ 0 we have

�6�33�

E

(∫ b
a
V�t�f�t�tα/2 dt

)2

=
∫ b
a

∫ b
a

exp�−�s− u��f�s�f�u�sα/2uα/2 dsdu

≤ 2
∫ b
a

∫ s
a

exp�−s�sα/2 exp�u�uα/2 duds

≤ 2bα
∫ b
a

exp�−s��exp�s� − exp�a��ds

< 2bα�b− a�	
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and, likewise, if −1 ≤ α < 0,

�6�33′� E

(∫ b
a
V�t�f�t�tα/2 dt

)2

≤ 2aα
∫ b
a
e−s�es − ea�ds < 2aα�b− a��

Taking into account that kn � �log�n−1�−m1�/m2, these two estimates give,
for n large enough,

σ2�"f	V#� ≤ E

(∫ y√kn+log�n−1�/2

x
√
kn+log�n−1�/2

V�t�f�t�tα/2 dt
)2

≤ C�y− x��log n�α+1/2	

for some C <∞ independent of n, x and y. Then, the Gaussian concentration
inequality gives

�6�34�
Pr	�Ln�y� −Ln�x�� > t� ≤ 2 exp

(
− t2�log n�α+1

c�log n�α+1/2�x− y�
)

= 2 exp
(

−t
2�log n�1/2

c�y− x�
)

for some c ∈ �0	∞� independent of n and t > 0. This implies, by a simple
computation that we omit, that there exists D > 0 such that

E exp
(
D�Ln�y� −Ln�x��2�log n�1/2

�x− y�
)

≤ 3	

with D independent of n. Then, if ψ is the Young modulus ψ�x� = �exp�x2� −
1�/2 and � · �ψ is the Orlicz seminorm �ξ�ψ = inf	c > 0� Eψ��ξ�/c� ≤ 1�, the
increments of the processes Ln satisfy

�Ln�y� −Ln�x��ψ ≤ �x− y�1/2
D1/2�log n�1/4

�= dn�x	y�

for all x	y ∈ �−M	M� and n ≥ 2. This inequality allows us to apply Pisier’s
modification and extension of Dudley’s entropy theorem [Pisier (1983), Theo-
rem 1.1] to get

E sup
−M<x≤M

�Ln�x�� ≤K
∫ �

0

√
log�2N��−M	M�	 dn	 ε� + 1�dε	

where N�t	 d	 ε� is the ε-covering number of the pseudometric space �T	d�
and � is the dn-diameter of �−M	M�. In our case,

N��−M	M�	 dn	 ε� <∼
2M

D�log n�1/2ε2
∨ 1 and � = �2M�1/2

D1/2�log n�1/4
	

which, plugged into the previous inequality gives that there exists K < ∞
such that

E sup
−M≤x≤M

�Ln�x�� ≤ K

�log n�1/4
→ 0�

This shows �IIIn� → 0 in probability. ✷
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Claim 6.6.4. The limit (6.32) holds.

Proof. Since the variables τ2k − τ2k−2 are i.i.d. and, setting

mk �=m1 + km2	

the sequence 	�τ2k−mk�/
√
k�∞

k=1 is stochastically bounded by Claim 6.6.1 and
the central limit theorem, it follows that for all η > 0 there is M < ∞ such
that, both

�6�35� max
k≤kn

Pr	τ2k − τ2k−2 >M� < η and max
k≤kn

Pr
{∣∣∣∣τ2k −mk√

k

∣∣∣∣ >M
}
< η�

As a consequence, the proof of (6.32), reduces to showing that

�6�36� max
1≤k<kn

E sup
−M≤x≤M

0≤y≤M

√
n

bn

∣∣∣∣
∫ mk+x

√
k+y

mk+x
√
k

��V� − E�V��dQ̃n

∣∣∣∣ → 0

as n→ ∞. In analogy with the previous case, we can define

�6�37� Ln	k�x	y� =
√
n

bn

∫ mn	k+x
√
k+y

mn	k+x
√
k

��V�t�� − E�V�t����t�α/2 dt	

where mn	k �=mk − 1
2 log�n− 1� [hence, �mn	k� ≤ 1

2 log�n− 1�].
We assume first that α ≥ 0. In this case, in analogy with the proof of the

previous claim, we first apply the Gaussian concentration inequality to the
increments of this process, Ln	k�x� − Ln	k�x′�, with x = �x	y�, x′ = �x′	 y′�,
and then the entropy bound. Just as in the proof of inequality (6.34), it is easy
to see that, for all k ≤ kn and n ≥ n0 independent of k, �Ln	k�x�−Ln	k�x′�� has
tail probabilities dominated by 2 exp�t2�log n�1/2/�c�x − x′���, for some c > 0
independent of k, n, x and x′, where �x − x′� �= �x−x′� ∨ �y−y′�. Hence, there
exists D ∈ �0	∞�, independent of n and k, such that

E exp
(
D�Ln	k�x� −Ln	k�x′��2�log n�1/2

�x − x′�
)

≤ 3	

for all k ≤ kn and n ≥ n0. If we then set

d2
n�x	x′�� = �x − x′�

D�log n�1/2
	

since a rectangle of sides parallel to the axes, repectively of sizes M and 2M,
contains about 2M2/δ2 squares of side δ, the ε-covering number of �−M	M�×
�0	M� for dn is

N�ε� � 2M2

D2ε4 log n
�

Then, the entropy bound used in the proof of the previous claim now gives
that the expected values in (6.36) are all bounded by a fixed constant times
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�log n�−1/4, and therefore their maximum tends to zero, proving the claim for
α ≥ 0.

We now consider the case −1 < α < 0. Let δ > 0 be such that

γ1 �= α+ 1
α+ 2

− δ > 0�

Then, we observe that if �mn	k + x√
k� ≤ �log n�γ1 , 0 ≤ y ≤ M, and n is large

enough so that M ≤ �log n�γ1 , we have
√
n

bn

∫ mn	k+x
√
k+y

mn	k+x
√
k

E�V�t���t�α/2 dt ≤
√

2
π

1
�log n��α+1�/2

∫ �log n�γ1 +M

−�log n�γ1 −M
�t�α/2 dt

≤ 8
α+ 2

√
2
π

�log n���α+2�/2�γ1− α+1
2

= 8
α+ 2

√
2
π

�log n�−δ�α+2�/2 → 0

as n→ ∞ uniformly in x and y. Hence,

E sup
�mn	k+x

√
k�≤�log n�γ1

0≤y≤M

√
n

bn

∣∣∣∣
∫ mn	k+x

√
k+y

mn	k+x
√
k

��V�t�� − E�V�t����t�α/2 dt
∣∣∣∣

≤ 8
α+ 2

√
2
π

�log n�−δ�α+2�/2

+ E sup
�mn	k+x

√
k�≤�log n�γ1

0≤y≤M

√
n

bn

∣∣∣∣
∫ mn	k+x

√
k+y

mn	k+x
√
k

�V�t���t�α/2 dt
∣∣∣∣

≤ 16
α+ 2

√
2
π

�log n�−δ�α+2�/2 → 0�

Then, in order to conclude the proof of this Claim for −1 < α < 0, it suffices
to show

�6�38� lim
n→∞ 2E sup

1
2 �log n�γ1 ≤u≤2 log n

0≤y≤M

√
n

bn

∣∣∣∣
∫ u+y

u
��V�t�� − E�V�t����t�α/2 dt

∣∣∣∣ = 0�

Since

lim
n→∞ sup

u∈R

√
n

bn

∫ u+M

u
E�V�t���t�α/2 dt ≤ lim

n→∞

√
2/π

�log n��α+1�/2

∫ M/2
−M/2

�t�α/2 dt = 0	

we may add the centering to the integral in (6.38), use positivity of �V� to
replace the variable y byM in the upper limit of integration and then subtract
the centering, to conclude that the limit (6.38) is equivalent to

�6�39� lim
n→∞ 2E sup

1
2 �log n�γ1 ≤u≤2 log n

√
n

bn

∣∣∣∣
∫ u+M

u
��V�t�� − E�V�t����t�α/2 dt

∣∣∣∣ = 0�
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Redefining

Ln�u� =
√
n

bn

∫ u+M

u
��V�t�� − E�V�t����t�α/2 dt	

and bounding �Ln�v� −Ln�u�� ≤ �Ln�u�� + �Ln�v�� from above by �v− u� >M,
and by �√n/bn���

∫ v
u ��V�t��−E�V�t����t�α/2 dt�+� ∫ v+Mu+M ��V�t��−E�V�t����t�α/2 dt��

for �v − u� ≤ M, the Gaussian concentration inequality, together with the
estimate in (6.33′), gives

Pr	�Ln�v� −Ln�u�� > ε� ≤ 4 exp
(

− ε2�log n�α+1

c��v− u� ∧M��log n�αγ1

)

= 4 exp
(

− ε2�log n�γ2

c��v− u� ∧M�
)
	

where c is a finite positive constant independent of n, u and v, and γ2 �=
α+ 1 − αγ1 = �2�α+ 1�/α+ 2� + αδ > 0. As an immediate consequence, there
exists D > 0 independent of n, u and v, such that

E exp
(
D�log n�γ2

�v− u� ∧M
)

≤ 6	

which, by Pisier’s entropy bound [Pisier (1983)], gives

E sup
1
2 �log n�γ1 ≤u≤2 log n

�Ln�u�� ≤K
∫ �

0

√
log�5N�ε� + 1�dε

for some universal constant K < ∞, where N�ε� is the ε-covering num-
ber of the interval �2−1�log n�γ1	2 log n� for the distance dn�u	 v� = ��v −
u� ∧ M�1/2/�D�log n�γ2�1/2, and � is the dn-diameter of this interval. Since
� = M1/2/�D1/2�log n�γ2/2� and N�ε� is dominated by a constant times
log n/�ε2�log n�γ2� for ε < � , we obtain

E sup
1
2 �log n�γ1 ≤u≤2 log n

�Ln�u�� ≤ C
(

log log n
�log n�γ2

)1/2

for some constant C independent of n. This proves the limit (6.39), and there-
fore the claim for −1 < α < 0.

The case α = 1 can be treated in complete analogy with the case −1 <
α < 2. Now, since bn = √

n log log n, the threshold �log n�γ1 can be replaced by
�log log n�γ for some (any) γ ∈ �0	1�, as for such γ,

√
n

bn

∫ mn	k+x
√
k+y

mn	k+x
√
k

E�V�t���t�−1/2 dt

≤
√

2
π

1
�log log n�1/2

∫ �log log n�γ+M

−�log log n�γ−M
�t�−1/2 dt→ 0�
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Then, Gaussian concentration followed by Pisier’s entropy bound now give

E sup
1
2 �log log n�γ≤u≤2 log n

�Ln�u�� ≤ C

�log log n�γ/2 → 0

for a constant C independent of n. We skip the details as they are similar to
those for −1 < α < 0.

This completes the proof of Lemma 6.6. ✷

Remark 6.1. We should mention that symmetry is not essential at all in
the previous proof. We only had it there in order to produce a nice change
to the Ornstein–Uhlenbeck process; also, the values of Q′ in (6.24) are only
relevant for t close to 0 or to 1 but its values on the midrange t ∈ �a	1−a� for
any fixed 0 < a < 1 are not important. Verification of these facts is elementary
and is omitted.

Summarizing, we give the following theorem.

Theorem 6.7. Let Q be a differentiable quantile function whose derivative
Q′ is bounded on any interval �a	1 − a�, 0 < a < 1, and such that

�6�40� lim
t→0

t3/2Q′�t�
� 1

2 log t�α/2 = lim
t→0

t3/2Q′�1 − t�
� 1

2 log t�α/2 = 1

for some α ∈ �−1	∞�. Let F be the corresponding cumulative distribution
function, let

�5�9� γn =
√

2n
π

∫ Q�1−1/n�

Q�1/n�

√
F�t��1 −F�t��dt

and let

�6�41�
bn =

√
8 · 2−α

α+ 1

√
n�log n��α+1�/2 for α > −1	

bn =
√

8 · 2−α

α+ 1

√
n log log n for α = −1�

Let Xi, i ∈ N, be i.i.d. with commmon c.d.f. F, let Fn be the corresponding
empirical c.d.f. and let

�4�14� Zn = n
∫ ∞

−∞
�Fn�t� −F�t��dt	 n ∈ N�

Then,

�6�42� Zn − γn
bn

→d

√
1 + 2 log 2

π
− 13

3π
g	

where g is a standard normal random variable, with convergence of the ab-
solute moments of any order 0 < p < 2. Moreover γn can be replaced by EZn
in (6.42).
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Proof. By Remark 6.1, we may as well assume that Q′ has the form
(6.24). A simple computation using the form cn of the normalizing constants
bn in Proposition A.1 shows that Xi ∈ DA2�bn� with standard normal limit
for

∑n
i=1�Xi − EXi�/bn, bn as in (6.41). Now, as mentioned above, Lemma 4.1

and the weighted approximation of the uniform empirical process by Brownian
bridges (Corollary 6.1) imply that the sequences in (6.5) are weak convergence
equivalent; that is, the sequence at the left side of (6.42) is weak convergence
equivalent to the sequence 	Gn� in (6.9). The sequence 	Gn� is stochastically
bounded and the pth absolute powers of its terms are uniformly integrable
for any p > 0 by Proposition 6.2. All of its subsequential limits in law have
Gaussian-like tail probabilities by Proposition 6.2 and are infinitely divisible
by Lemma 6.6; therefore, by Proposition 6.5, they are normal. But then, by
Proposition 6.4, they all coincide with the variable at the right of (6.42). Con-
vergence of moments in (6.42) follows from the uniform integrability result in
Theorem 4.2 and the limit (6.12) (Corollary 6.3). It also follows from Corollary
6.3 that γn can be replaced by EZn in (6.42). ✷

Obviously, the integral
∫∞
−∞ �V�t����t�α/2 ∧ 1�dt exists for α < −2. The Gaus-

sian part of Theorems 5.1 and 6.7 give central limit theorems for the Brownian
bridge, or, what is the same, for the Ornstein–Uhlenbeck process. The state-
ments for this last process have a particularly nice form and are somewhat
surprising. Thus, we single them out in the following theorem.

Theorem 6.8. Let V�t�, t ∈ R, be a stationary Ornstein–Uhlenbeck process
and let α ∈ �−2	∞�. Then:

(a) If α > −1,

�6�43�

1√
8·2−α
α+1 s

�α+1�/2

∫ s/2
−s/2

��V�t�� − E�V�t����t�α/2 dt

→d

√
1 + 2 log 2

π
− 13

3π
g�

(b) For α = 1,

�6�44�

1√
8·2−α
α+1 �log s�1/2

∫ s/2
−s/2

��V�t�� − E�V�t����t�−1/2 dt

→d

√
1 + 2 log 2

π
− 13

3π
g�

(c) The integrals∫ ∞

−∞
��V�t�� − E�V�t����t�α/2 dt for − 2 < α < −1

as well as ∫ ∞

−∞
��V�t�� − E�V�t�����t�−1 ∧ 1�dt
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exist in the sense of convergence of all moments as the limits of integration
expand to +∞ and to −∞.

For α = 0 this result follows from Theorem 9, page 94, in Mandl (1968).

APPENDIX

We have used several times in this article two explicit formulas for the
norming constants in the domain of attraction of the normal law, based on
quantiles, and due to CCHM (1986b). Their proof of the equivalence of these
two formulas is analytic (Propositions A.1 and A.2), but then, consistent with
their approach to the central limit theorem, they show that these formulas
work by means of the weighted approximation of the uniform empirical process
by Brownian bridges. Because these formulas are so useful, we believe it is
worthwhile that they be incorporated into the classical approach to the central
limit theorem and, for this reason, here we give a direct proof of the fact that
these expressions do satisfy the classical defining relation for the norming
constants, namely, nb−2

n Var�XI�X�≤bn� → 1 (or nb−2
n U�bn� → 1 if EX2 = ∞).

Proposition A.1 [CCHM (1986b)]. Let X	Xi, i ∈ N, be i.i.d. random vari-
ables in DA2�bn� and let Q be their quantile function. Set

cn �= √
n

(∫ 1−1/n

1/n
Q2�t�dt−

(∫ 1−1/n

1/n
Q�t�dt

)2)1/2

and

dn �=
(∫ 1−1/n

1/n

∫ 1−1/n

1/n
�s ∧ t− st�dQ�s�dQ�t�

)1/2

�

Then

�A�1� lim
n→∞

cn
bn

= lim
n→∞

dn
bn

= 1

or, equivalently,

�A�1′� 1
cn

n∑
i=1

�Xi − EX� →d g and
1
dn

n∑
i=1

�Xi − EX� →d g	

where g is a standard normal random variable.

Note that, since X =d Q�θ�, θ uniform on �0	1�, we have
∫ 1−1/n

1/n Q�t�dt →
EX and

∫ 1−1/n
1/n Q2�t�dt→ EX2. Hence, if EX2 = ∞ then

cn � √
n

(∫ 1−1/n

1/n
Q2�t�dt

)1/2

	

which is the expression in (4.21).
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Proof. It can be easily seen that

�A�2�
d2
n = c2

n +
(
Q2

(
1
n

)
+Q2

(
1 − 1

n

))
− 1
n

(
Q

(
1
n

)
+Q

(
1 − 1

n

))2

+ 2
(
Q

(
1
n

)
+Q

(
1 − 1

n

)) ∫ 1−1/n

1/n
Q�t�dt

[see, e.g., Shorack and Wellner (1986), page 43]. Now, (A.2) and (4.6) imply
that

lim
n→∞

d2
n − c2

n

b2
n

= 0

and, therefore, it suffices to prove the first limit in (A.1). The result is trivial
if EX2 < ∞, since then limn→∞ n−1/2cn = Var�X�. Hence, we can assume
EX2 = ∞ and then replace cn by

√
n�∫ 1−1/n

1/n Q2�t�dt�1/2, which we will also
denote by cn for ease of notation. Set yn = �Q�1/n�� ∨ �Q�1 − 1/n�� and zn =
�Q�1/n��∧�Q�1−1/n��. Since EX2 = ∞, we have yn → ∞. We will also assume
zn → ∞. Otherwise,Q�1/n� orQ�1−1/n� is bounded and a slight modification
of the reasoning below provides the same result. SetU�t� = EX2I−t<X≤t, t > 0
(note that this definition of U differs slightly from that in Section 4, but, by
slow variation, both share the same asymptotic properties). We recall from the
theory of domains of attraction [Feller (1971) or Araujo and Giné (1980)] that
U is slowly varying,

�A�3� lim
x→∞

x2 Pr	�X� ≥ x�
U�x� = 0

and (A.1′) [or (A.1)] holds if and only if

lim
n→∞

n

cn
2
U�cn� = 1�

Observe that (4.5) and the facts that X =d Q�θ�, θ uniform on �0	1�, imply
U�t� = ∫F�t�

F�−t�Q
2�y�dy. Now

�A�4�

n

cn
2
U�cn� =

∫F�cn�
F�−cn�Q

2�y�dy∫ 1−1/n
1/n Q2�y�dy

= 1 +
∫ 1/n
F�−cn�Q

2�y�dy∫ 1−1/n
1/n Q2�y�dy

+
∫F�cn�

1−1/n Q
2�y�dy∫ 1−1/n

1/n Q2�y�dy
�= 1 + ε1	 n + ε2	 n�

Therefore, it suffices to prove that limn→∞ εi	n = 0, i = 1	2. We prove first
that

�A�5� EX2IQ�1/n�<X<Q�1−1/n�
U�yn�

→ 1
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as n→ ∞. To see this, suppose �Q�1/n�� ≥ �Q�1−1/n��. Then using (4.4), (4.5)
and the fact that X =d Q, we obtain

�A�6�

∣∣∣∣EX
2IQ�1/n�<X<Q�1−1/n�

U�yn�
− 1

∣∣∣∣ =
∫
Q2�y�IQ�1−1/n�≤Q�y�≤−Q�1/n� dy

U�yn�

=
∫
Q2�y�IQ�1−1/n�<Q�y�≤−Q�1/n� dy

U�yn�

+ Q2�1 − 1/n� Pr	X = Q�1 − 1/n��
U�yn�

≤ y2
n

nU�yn�
+ z2

n Pr	�X� ≥ zn�
U�yn�

≤ y2
n Pr	�X� ≥ yn�

U�yn�
+ z2

n Pr	�X� ≥ zn�
U�yn�

and the same inequality holds if �Q�1/n�� < �Q�1 − 1/n��. Now (A.3) and (A.6)
prove (A.5). As a consequence,

�A�7�
c2
n

y2
n

=
n
∫ 1−1/n

1/n Q2�y�dy
y2
n

≥
n
∫
Q�1/n�<Q<Q�1−1/n�Q

2�y�dy
y2
n

≥
∫
Q�1/n�<Q<Q�1−1/n�Q

2�y�dy
y2
n Pr	�X� ≥ yn�

= EX2IQ�1/n�<X<Q�1−1/n�
y2
n Pr	�X� ≥ yn�

→ ∞

by (A.3) and (A.5). Therefore,F�cn� ≥ 1−1/n for n large enough, which implies
ε2	 n ≥ 0. Then

�A�8�

0 ≤ ε2	 n =
n
∫F�cn�

1−1/n Q
2�y�dy

c2
n

≤ n

cn

∫ F�cn�

1−1/n
Q�y�dy

≤ n

cn

∫
Q�y�IQ�1−1/n�<Q≤cn dy+ n

cn

∫ 1

1/n
Q�y�IQ�y�=Q�1−1/n� dy

= n

cn

∫
Q�y�IQ�1−1/n�<Q≤cn dy+ Q�1 − 1/n�

cn
�

Note that the last inequality in the first line already shows that ε2	 n ≤ 1 and,
likewise ε1	 n ≤ 1. This proves

�A�9� n

c2
n

U�cn� ≤ 3

for n large enough, a fact that will be used later. In order to estimate the
bound given by (A.8) observe that∫ a

0
Pr	X > t�dt =

∫
�0	 a�

ydF�y� + aPr	X > a�
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and therefore

�A�10�

n

cn

∫
Q�y�IQ�1−1/n�<Q≤cn dy

= n

cn

∫ cn
Q�1−1/n�

Pr	X > t�dt− nPr	X > cn�

+ n

cn
Q�1 − 1/n� Pr	X > Q�1 − 1/n���

Then, (A.3), (A.9) and slow variation of U show that for all x > 0,

0 = lim
n→∞

nx2 Pr	X > cnx�
�n/c2

n�U�cnx� ≥ 1
3

lim sup
n→∞

nx2 Pr	X > cnx��

that is,

�A�11� nPr	X > cnx� → 0

for all x > 0. Moreover, since nPr	X > Q�1 − 1/n�� ≤ 1, dominated conver-
gence gives

�A�12� n

cn

∫ cn
Q�1−1/n�

Pr	X > t�dt =
∫ 1

Q�1−1/n�/cn
nPr	X > xcn�dx→ 0

as n→ ∞. Now (A.7), (A.10), (A.11) and (A.12) prove that the upper bound in
(A.8) tends to 0; that is, ε2	 n → 0. Similarly, ε1	 n → 0, which completes the
proof. ✷
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Csörgő, M. and Horváth, L. (1988b). Central limit theorems for Lp-norms of density estimators.

Probab. Theory Related Fields 80 269–291.
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