Open Access
April 1998 On density estimation from ergodic processes
Terrence M. Adams, Andrew B. Nobel
Ann. Probab. 26(2): 794-804 (April 1998). DOI: 10.1214/aop/1022855650

Abstract

We consider the problem of $L_p$-consistent density estimation from the initial segments of strongly dependent processes. It is shown that no procedure can consistently estimate the one-dimensional marginal density of every stationary ergodic process for which such a density exists. A similar result is established for the problem of estimating the support of the marginal distribution of an ergodic process.

Citation

Download Citation

Terrence M. Adams. Andrew B. Nobel. "On density estimation from ergodic processes." Ann. Probab. 26 (2) 794 - 804, April 1998. https://doi.org/10.1214/aop/1022855650

Information

Published: April 1998
First available in Project Euclid: 31 May 2002

zbMATH: 0932.62042
MathSciNet: MR1626511
Digital Object Identifier: 10.1214/aop/1022855650

Subjects:
Primary: 60G10 , 60G17 , 62G07

Keywords: counter-example , cutting and stacking , Density estimation , Ergodic processes

Rights: Copyright © 1998 Institute of Mathematical Statistics

Vol.26 • No. 2 • April 1998
Back to Top