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A combinatorial definition of multiple stochastic integrals is given in
the setting of random measures. It is shown that some properties of such
stochastic integrals, formerly known to hold in special cases, are instances
of combinatorial identities on the lattice of partitions of a set. The notion of
stochastic sequences of binomial type is introduced as a generalization
of special polynomial sequences occuring in stochastic integration, such
as Hermite, Poisson–Charlier and Kravchuk polynomials. It is shown that
identities for such polynomial sets have a common origin.

1. Introduction. Few subjects in modern probability have undergone as
many disparate presentations and have been rediscovered in as many different
guises as the theory of stochastic integrals. Wiener’s homogeneous chaos [38],
Wiener and Wintner’s discrete chaos [39], the Fock spaces of quantum field
theory [2], Itô’s stochastic integrals [13, 14], integration over semimartingales
[24, 28, 7, 4], Segal’s tensor algebras over Hilbert spaces [34], Kakutani’s
maximal Gaussian subspaces [15, 16], are only some of the theories that have
evolved in the last fifty years around one fundamental idea [23, 20, 21, 22, 25,
12, 18].

The variety of notations, ranging from Cameron and Martin’s products of
Hermite polynomials [3] to Wick’s “dots” [37], has obscured the basic sim-
plicity of the underlying concept. What is more, the lack of communication
among various schools, notably between physicists aiming at the development
of nonlinear quantum field theories [36, 40] and probabilists in search of new
point processes that would not turn out to be Poisson distributions in disguise
[17, 6], have delayed and in some cases prevented a full understanding of the
possibilities of stochastic integration.

The purpose of the present work is modest. It is to present the basic idea of
stochastic integration in what we believe to be its simplest and most natural
form, stripped of all analytic superstructure and of all physical irrelevancies.
Not surprisingly, we have found that the basic infrastructure of stochastic in-
tegration is a combinatorial technique which had heretofore remained hidden,
namely, Möbius inversion over the lattice of partitions of a set [30]. Insofar
as the underlying analytic machinery goes, we rely heavily on the pioneering
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work of Engel [9], whose proof of countable additivity of product measures
allows us to proceed directly to the combinatorial and algorithmic aspects of
stochastic integration.

Systematic use of Möbius inversion not only simplifies definition of multiple
stochastic integrals and their computation, but displays the unity of the ad hoc
formulas that seemed to vary capriciously from one example to the next. In
the presentation given below, identities holding among the special functions
that had arisen in various contexts of stochastic integration are shown to
stem from one and the same set theoretic identity. Thus, Hermite, Poisson–
Charlier, Kravchuk and other sets of polynomials [5] are seen as special cases
of one and the same sequence of set functions, which we have decided to
name stochastic sequences of binomial type. Similarly, formerly mysterious
computations with Feynman diagrams [1] that went with the integration of
products of such polynomials are now seen to reduce to a single identity on
the partition lattice.

Our purpose is not only to present a unified theory of known results. It
is, rather, to clear the air for the development of further stochastic processes
and, we hazard to guess, some rigorous instances of nonlinear quantum field
theories. To keep the length of the present paper within bounds, we have left
for a later publication the systematic development of chaos theory, the study
of new special functions that arise in varying the stochastic measure, as well
as the systematization of other notions that are scattered in theories of second
quantization, and whose intimate relationship had remained hidden because
of the lack of a unifying principle.

We are indebted to D. W. Stroock, who read an earlier draft of the present
paper thoroughly and suggested substantial improvements. We also wish to
thank P.-A. Meyer, whose recent monograph [25] provided the initial spur to
writing this paper.

2. Synopsis. The basic difficulty of stochastic integration is the following.
We are given a measure φ on a set S, and we wish to extend such a measure
to the product set Sn. There is a well known and established way of carrying
out such an extension, namely, taking the product measure.

While the product measure is adequate in most instances dealing with a
scalar valued measure, it turns out to be woefully inadequate when the mea-
sure is vector-valued, or, in the case dealt with presently, random-valued. The
product measure of a nonatomic scalar measure will vanish on sets supported
by lower-dimensional linear subspaces of Sn. This is not the case, however, for
random measures.

The oldest and best known example of this phenomenon is the Gaussian
measure. If a measure σ is given on the set S, then the Gaussian measure φ is
the measure such that, for σ�A� <∞, the value φ�A� is a Gaussian (normal)
random variable of mean zero and variance equal to σ�A�.

The product measure of the Gaussian measure on the set S2 does not vanish
on the diagonal, that is, on the subset of S2 consisting of all points �s� s�. In
fact, the restriction of such a product measure to the diagonal is none other
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than the measure σ , as one may verify by an application of the law of large
numbers.

The problem therefore arises of modifying the definition of product measure
of a random measure in such a way that the resulting measure will vanish on
lower-dimensional subsets of Sn, or diagonal sets, as we call them. This is the
problem that is solved by the definition of the stochastic measure. Diagonal
sets, that is, subsets of the cube Sn consisting of points that have two or more
coordinates equal, play a game of musical chairs, which previous workers have
managed to avoid by various clever devices. A notable exception is the thesis
of Engel [9], whose pioneering work has been the starting point of the present
work.

We choose to face directly the combinatorics of the intersection structure
of the diagonal sets. This is not hard, once one realizes that the family of
diagonal sets is isomorphic to the lattice of partitions of the set �1�2� 	 	 	 � n�.
The sieving out of the overlaps among the various diagonal sets is none other
than the Möbius inversion formula on such a lattice of partitions.

After facing up to the need of sieving out overlaps among diagonal sets by
the Möbius inversion formula on the lattice of partitions, the definition of a
stochastic measure becomes all but trivial, and its properties, classical and
new, become a combinatorial game played with partitions.

One may ask for the purpose of defining a stochastic measure, or more
precisely, for a natural, or “functorial” definition. The present combinatorial
approach leads to the discovery of such a natural definition. In fact, after siev-
ing out all diagonal sets from the set Sn, all one needs to do is restrict the
product measure of φ to the remaining set, thereby obtaining the stochastic
measure. In this way, one sees that the stochastic measure is symmetric un-
der permutations of coordinates, and that furthermore it is supported on the
subset of Sn consisting of points which are n-tuples of distinct coordinates.
In other words, the stochastic measure is seen to be the natural measure on
n-subsets of the set S induced by a given random measure φ.

The bulk of the present work is concerned with the generalization to arbi-
trary stochastic measures of facts that were previously known in special cases.
The celebrated Kailath–Segall [35] formula is given a combinatorial setting
that not only substantially generalizes it, but renders it all but obvious.

Perhaps a notable new result in the present work is a formula for the
simplified computation of stochastic measures which relies on taking meets of
partitions. This universal formula contains as special cases the orthogonality
properties of Hermite, Poisson–Charlier and Kravchuk polynomials, as well
as all Feynman diagram computations of integrals of products of Hermite
polynomials. In fact, it can be viewed as a rigorous version of the method of
Feynman diagrams. What is more, the meet formula (Section 5) leads to an
extension of the method of Feynman diagrams to the discrete chaos of Wiener
and Wintner. We have not developed this line, but we give an example that
shows how such an extension might be developed.

Various special polynomial sequences that arose in stochastic integration
are here unified under the concept of a stochastic sequence of binomial type.
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Such sequences, giving a very broad generalization of the theory of polynomial
sequences of binomial type [32], are ripe objects for further investigation.

A closing word about notation. The symbol Sn usually denotes the n-
dimensional cube of side S, that is, the set of all sequences of n entries out
of S. In other contexts, the symbol Sn has been used to denote the set of all
functions from the set �n� = �1�2� 	 	 	 � n� to the set S. In the present work,
this ambiguity is avoided. The symbol Sb denotes the set of all functions from
a subset b of the integers to the set S. In particular, the symbol S�n� denotes
the set of all functions from the set �n� to the set S. One may visualize such
functions as sequences, but in the proofs it is preferable to keep in mind that
one is dealing with functions.

3. Partitions. We review some basic facts about the lattice of partitions
of a finite set b, which is denoted by ��b� [29, 30]. A partition σ of b is a
family of nonempty disjoint subsets of b, called blocks, whose union is the
set b. The set ��b� is given a partial order by setting σ ≤ π if and only if
every block of the partition σ is contained in some block of the partition π.
In fact, the partially ordered set ��b� is a lattice, in which the meet of two
partitions σ ∧ π is the partition whose blocks are all the nonempty pairwise
intersections of some block of π and some block of σ . Similarly, the join σ ∨π,
namely, the smallest partition containing both σ and π is easily characterized
set theoretically.

A segment �σ�π� of the lattice ��b� is defined as the set of all partitions ρ
such that σ ≤ ρ ≤ π. The zero partition of ��b� (namely, the minimal element
of the partially ordered set) is the partition consisting of a separate block
for each element; it is denoted by 0̂. Similarly, the one partition (namely, the
maximum element of the partially ordered set) is the partition consisting of a
single block containing all elements; it is denoted by 1̂.

We will require the Möbius inversion formula on the lattice ��b�, and we
recall some of the fundamental definitions. The incidence algebra of ��b� is
the algebra spanned by all functions f�σ�π� with values in a field K, such
that f�σ�π� = 0 unless σ ≤ π. The sum of any elements of the incidence
algebra is formally defined, and the product is defined by convolution, namely,

f ∗ g�σ�π� = ∑
σ≤ρ≤π

f�σ� ρ�g�ρ�π�	

The identity of the incidence algebra is the Kronecker delta: δ�σ�π� = 0 unless
σ = π, in which case it equals 1. The zeta function of the incidence algebra of
��b�, in symbols ζ�σ�π�, is defined to equal 1 if σ ≤ π and 0 otherwise. The
Möbius function µ�σ�π� is defined to be the inverse of the zeta function in
the incidence algebra of ��b�, namely, the inverse relative to the convolution
product.

If G is a function on the lattice of partitions and

F�π� = ∑
σ≥π

G�σ��
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then the Möbius inversion formula states that

G�π� = ∑
σ≥π

µ�π�σ�F�σ�	

We also have use for partitions λ of an integer n, which is a distinct concept
from partitions of a set, though closely related. We say λ = �λ1� 	 	 	 � λr� is a
partition of n, in symbols λ � n, if λi ≥ λi+1 and λ1+λ2+· · ·+λr = n. We also
write λ = �1r12r2 · · ·nrn� to indicate a partition of n in which ri of the λj’s are
equal to i, for i = 1� 	 	 	 � n.

The class of a segment �σ�π�, where σ and π are partitions of a set b, is
the partition �λ1� 	 	 	 � λ�π�� of �σ � such that λi is the number of blocks of σ
contained in the ith block of π. (We may assume the blocks are numbered
so that the sequence �λi� is nonincreasing.) Equivalently, it is the partition
�1r12r2 · · ·� of �σ � such that ri blocks of π contain exactly i blocks of σ . We
write r = �π� and n = �σ �. Note that

n = λ1 + · · · + λr = r1 + 2r2 + · · · + nrn
and

r = r1 + · · · + rn	
We sometimes write λ�σ�π� for the class of the segment �σ�π�, and λ�π� for
the class of the segment �0̂� π�.

It is shown [31] that the Möbius function µ�σ�π� depends only on the class
of the segment �σ�π�, and that it is given by the following formula:

�∗� µ�σ�π� = �−1�n−r�2!�r3�3!�r4 · · · ��n− 1�!�rn�
where n = �σ �, r = �π� and λ�σ�π� = �1r12r2 · · ·nrn�.

We denote by �n� the set �1�2� 	 	 	 � n�. We write µn for µ�0̂� �n��. Thus,
µn = �−1�n−1�n − 1�!. The number of partitions of class λ of the set �n� is
given by [

n

λ

]
= n!

1r1r1!2r2r2! · · ·nrnrn!
	

Let bi, i = 1� 	 	 	 � r, be the blocks of π, and let λi be the number of blocks
of σ contained in the ith block of π. Then the segment �σ�π� is isomorphic,
as a lattice, to the direct product of the lattices �0̂� �λi��, i = 1� 	 	 	 � r. The
Möbius function of a direct product lattice is the product of the Möbius function
on factors in the product. One easily checks that �∗� is consistent with this
requirement. (For a treatment of lattices, including a definition of their direct
products and Möbius functions, see [30, 31].)

4. Sets and measures. Let S be a set, and � a σ-field of subsets of S.
Elements of � will be called measurable sets.
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Let Sb denote the set of all functions from a finite subset b of positive
integers to the set S. When b = �n�, we sometimes represent such a function
from �n� to S as a sequence �s1� 	 	 	 � sn�.

If b is a subset of the positive integers and if Ai, i ∈ b, are measurable sets,
a rectangle set is the set of functions f from b to S such that f�i� ∈ Ai for
all i ∈ b. We indicate this set by the notation Xi∈b Ai. When b = �n�, we also
indicate rectangle sets by the notation

A×B× · · · ×C�
that is, the set of all functions such that f�1� ∈ A, f�2� ∈ B� 	 	 	 � f�n� ∈ C.

A subset of Sb of the form Ab = A × · · · × A (�b� times), where A is a
measurable set in �, is said to be a cubical set. A subset of Sb of the form
Xi∈b Ai, where each Ai is measurable and where the Ai are pairwise disjoint,
is said to be a triangular set.

A collection of subsets � of a set S is a (Boolean) ring if it contains the empty
set and is closed under unions and differences. It is a σ-ring if it is also closed
under countable unions. If a ring (σ-ring) is closed under complementation,
so that in particular it contains S, then it is called a (Boolean) algebra (σ-
algebra).

We denote by �b the set of all rectangle sets in Sb, by �⊗bfin the Boolean
algebra of subsets of Sb generated by all rectangle sets, and by �⊗b the Boolean
σ-algebra generated by �b. Elements of �⊗b will also be called measurable sets.

Every function f� b → S has a kernel which is the partition of b whose
blocks are defined as follows: i and j of b belong to the same block of the
kernel of f whenever f�i� = f�j�.

Given a partition π of the set b and a set � in �⊗b, we denote by �π the
set of all functions in � whose kernel is the partition π, and we denote by
��≥π� the set of all functions whose kernel is some partition σ ≥ π. A set of
the form �π is called a diagonal set. Among all diagonal sets �π , the set of
the form �0̂ consists of all one-to-one functions, and the set �1̂ consists of all
functions which take only one value.

A set of the form �1̂, is called a pure diagonal set. If � = Ab, we write
� b�A� in place of �1̂. The set �Ab�π is often written Abπ .

The group of permutations of �n� acts on S�n�. If w is a permutation of �n�
and if �s1� 	 	 	 � sn� is a point of S�n�, we set w�s1� 	 	 	 � sn� = �sw�1�� 	 	 	 � sw�n��. If
� ⊂ S�n�, we set

w�� � = �w�s1� 	 	 	 � sn�� �s1� 	 	 	 � sn� ∈ � �	
In particular, w�A1 × · · · ×An� = Aw�1� × · · · ×Aw�n�.

A subset � of �⊗b is said to be symmetric when w�� � = � for all permu-
tations w of b. The family of all symmetric sets in �⊗bfin is a Boolean subalgebra
of �⊗bfin which will be denoted by �⊗bfin� sym. Similarly, the family of all symmetric
sets in �⊗b is a Boolean σ-algebra, which will be denoted by �⊗bsym.

Let φ be a set function on some ring of sets �, taking values in a Banach
space X. We say that φ is finitely additive if φ��� = 0 and if, whenever
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A = ⋃m
i=1Ai, where the Ai are disjoint sets in �,

φ�A� =
m∑
i=1

φ�Ai�	

We say that φ is (norm) countably additive if φ��� = 0 and if, whenever
A = ⋃∞

i=1Ai, where the Ai are disjoint elements of �,

lim
m→∞φ

( m⋃
i=1

Ai

)
= φ�A��

where the limit is taken in X.
A vector-valued measure on � is a norm countably additive set function on

� taking values in a Banach space X. Finitely additive vector-valued mea-
sures are defined analogously.

Let � �� �P� be a probability space, and let � be the space of real-valued
measurable functions on � �� �P�, that is, real random variables. If f and g
are in � , we define their product fg by

�fg��ω� = f�ω�g�ω�� ω ∈  	
The expectation of a random variable f is denoted �f�.

A random measure is a vector-valued measure taking values in a Banach
space X of random variables; for example, X = L2� �� �P�. The space X, as
a subspace of � , inherits its multiplicative structure. Note, however, that fg
need not belong to X, and a fortiori, multiplication need not be continuous.
Thus, X is not a Banach algebra, but rather a Banach space equipped with a
not-everywhere-defined multiplicative structure.

If φ is a random-valued measure, we write �φ� for the real measure given
by �φ��A� = �φ�A��.

We next consider products of measures. A set function ν�A1�A2� 	 	 	 �An�,
where the n variables A1�A2� 	 	 	 �An range over �, is called a multimeasure
if it is a measure in each variable when each of the other variables is held
fixed. Given an X-valued multimeasure ν on ��n�, let �ν be the ring generated
by the rectangles

�� ∈ ��n�� ν�A1� 	 	 	 �An� ∈X�	
Then there exists a unique finitely additive measure mn on �ν such that

mn�A1 × · · · ×An� = ν�A1� 	 	 	 �An�	
The measure mn will be said to be associated to the multimeasure ν.

The ordinary notion of product of two measures η and ψ can be defined by
means of a multimeasure. Let b = �i1� 	 	 	 � ik� be a subset of �n�, with i1 <
· · · < ik and let bc = �j1� 	 	 	 � jn−k� with j1 < · · · < jn−k be the complement of
b. A multimeasure ν is defined on rectangular sets by setting

ν�A1� 	 	 	 �An� = η�Ai1 × · · · ×Aik�ψ�Aj1
× · · · ×Ajn−k�	



1264 G.-C. ROTA AND T. C. WALLSTROM

The finitely additive measure on �ν associated with ν will be denoted ηb⊗ψbc	
A similar construction may and will be used to define the product of more than
two measures.

We will assume from now on that all diagonal sets belong to �⊗�n�. We
will also assume that φ is a random measure, taking values in a Banach
space of random variables X. Finally, we assume that all finitely additive
product measures, defined in terms of an associated multimeasure as above,
have unique countably additive extensions to some ring containing �ν, where
�ν is defined above. We will say that the random measure φ is good (for
lack of a better term) when the space �S��� and the process φ satisfy these
assumptions.

The assumption that the diagonals are contained in the product σ-algebra
is satisfied when S is a complete metrizable separable space, that is, a Polish
space, with � the corresponding Borel algebra.

The proof that certain finitely additive product measures have unique
countably additive extensions is given by Engel [9]. Engel’s results can be
used to establish the existence of a product measure for measures defined
from multimeasures as above. Our examples satisfy Engel’s assumptions, and
thus deal with countably additive measures. In particular, we have benefited
from Engel’s ideas in the proof of Proposition 12.

5. Stochastic measures. We repeat the definitons of ��≥π� and �π in
slightly different language, when b = �n�. Write i ∼π j when i and j are in
the same block of π. Then

��≥π� = ��s1� s2� 	 	 	 � sn� ∈ � � si = sj if i ∼π j�
and

�π = ��s1� s2� 	 	 	 � sn� ∈ � � si = sj if and only if i ∼π j�	
We stress the facts that, in both cases, the points si and sj coincide whenever
i and j are in the same block b of π, but in the definition of �π we require
in addition that si and sj shall not coincide if i and j are in different blocks
of π.

The following trivial partition of ��≥π� is fundamental:

�∗� ��≥π� =
⋃
σ≥π

�σ (disjoint union)	

Definition 1. Let φ be a good random measure on �S���. Define, for � ∈
�⊗b, and for π a partition of the set b,

φbπ�� � =
(⊗
i∈b
φ

)
���≥π��

and

Stbπ�� � =
(⊗
i∈b
φ

)
��π�	
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Neither φbπ nor Stbπ is defined unless π is a partition of the set b. Since
��≥0̂� = � , we have

φb
0̂
=⊗

i∈b
φ	

The product measure is φb
0̂
. We will consistently use this notation for product

measures.
The following proposition is fundamental.

Proposition 1. The measures φbπ and Stbπ are related as follows:

�∗∗�
φbπ =

∑
σ≥π

Stbσ�

Stbπ =
∑
σ≥π

µ�π�σ�φbσ	

Proof. The first equation follows directly from �∗�. The second follows
from Möbius inversion. ✷

The following special case of the preceding proposition is one of our main
results.

Theorem 1. For π = 0̂ and b = �n�, we have the identity

St�n�
0̂
= ∑
σ≥0̂

µ�0̂� σ�φ�n�σ 	

The measure St�n�
0̂

will be called the stochastic measure of degree n, or, when
no confusion is possible, the stochastic measure associated to the measure φ.

An integral ∫
f�s1� 	 	 	 � sn�St�n�

0̂
�ds1 · · ·dsn�

is said to be an nth multiple stochastic integral or simply, when no confu-
sion may arise, the stochastic integral of the function f. It is evident from its
definition that St�n�

0̂
is symmetric. That is,

St�n�
0̂
�w�� �� = St�n�

0̂
�� ��

where w is a permutation of the set �n�.
As already remarked, the measure φ�n�

0̂
is a product measure. We will

now see that, more generally, the measure φ�n�π is expressible as the product
over the blocks b of π of the measures φb

1̂
.

Proposition 2. The measure φ
�n�
π is a product measure:

φ�n�π = ⊗
b∈π
φb

1̂
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Proof. Both measures are the restriction of the product measure φ�n�
0̂

to
the set of elements of S�n� whose kernel σ is greater than or equal to π. ✷

The measures φb
1̂

are concentrated on the pure diagonal sets �1̂:

φb
1̂
�� � = φb

0̂
��1̂�	

If the set b has a single element, then φb
1̂
= φ. Another immediate consequence

of the definitions is the identity Stb1̂ = φb1̂.

We have shown that St�n�π could be expressed as the Möbius sum of measures
φ
�n�
σ . We now show that St�n�π can also be computed by a simple recursion

over products of measures φb
1̂

and lower order stochastic measures. The next
theorem is a generalization of a formula first given by Kailath and Segall [35].
We shall see that it can be applied to derive recursion relations for orthogonal
polynomials.

Theorem 2. The following identity holds on �⊗�n�:

St�n�
0̂
=∑

µ�b�φ
b
1̂
⊗ Stb

c

0̂ �

where the sum ranges over all subsets b of �n� containing the element 1.

Proof. By �∗∗�,

St�n�
0̂
=∑

π

µ�0̂� π�φ�n�π 	

Given a partition π of �n�, let b be the block of π containing the element 1,
and let π ′ be the partition of bc consisting of the remaining blocks of π. Now
φ
�n�
π = φb

1̂
⊗φbcπ ′ , and µ�0̂� π� = µ�b�µ�0̂� π ′�. Therefore,∑

π

µ�0̂� π�φ�n�π =∑
b

∑
π ′∈��bc�

µ�b�µ�0̂� π ′�φb1̂ ⊗φb
c

π ′

=∑
b

µ�b�φ
b
1̂
⊗ Stb

c

0̂ 	 ✷

Proposition 1 represents Stb0̂ as a linear combination of the measures φbπ ,
where the sum extends over all partitions π. We next show that the product
of stochastic measures can also be expressed as a linear combination of the
measures φbπ , where the sum extends over all partitions in an appropriate
segment.

Theorem 3. Let τ be a partition of �n�. Then⊗
b∈τ

Stb0̂ =
∑

0̂≤π≤τ
µ�0̂� π�φ�n�π 	
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Proof. If b is a block of τ, and τ′ is the partition on bc consisting of re-
maining blocks of τ, then

∑
0̂≤π≤τ

µ�0̂� π�φbπ =
( ∑
ρ∈��b�

µ�0̂� ρ�φbρ
)⊗( ∑

0̂≤π ′≤τ′
µ�0̂� π ′�φbcπ ′

)

= Stb0̂
⊗( ∑

0̂≤π ′≤τ′
µ�0̂� π ′�φbcπ ′

)
	

The conclusion follows by induction. ✷

The product of stochastic measures may also be expressed as a sum over
measures St�n�σ . The following result is fundamental in the combinatorial in-
terpretation of orthogonal polynomials.

Theorem 4. Let π be a partition of �n�. Then⊗
b∈π

Stb0̂ =
∑

�σ � σ∧π=0̂�
St�n�σ 	

Proof. By Theorem 3,⊗
b∈π

Stb0̂ =
∑

0̂≤σ≤π
µ�0̂� σ�φ�n�σ 	

But

φ�n�σ = ∑
τ≥σ

St�n�σ 	

Therefore, ⊗
b∈π

Stb0̂ =
∑

0̂≤σ≤π
µ�0̂� σ�∑

τ≥σ
St�n�τ

= ∑
σ≥0̂

µ�0̂� σ�ζ�σ�π�∑
τ≥0̂

ζ�σ� τ�St�n�τ

= ∑
τ≥0̂

St�n�τ
∑
σ≥0̂

µ�0̂� σ�ζ�σ�π ∧ τ�

= ∑
τ≥0̂

St�n�τ
∑

0̂≤ρ≤�π∧τ�
µ�0̂� ρ�

= ∑
�τ� π∧τ=0̂�

St�n�τ 	

The final equality follows from the fact that the sum of the Möbius function
over a segment �σ�π� is zero unless σ = π, in which case it equals one. ✷
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We shall now state a property which characterizes a stochastic measure
associated with a given measure φ. We begin with a preliminary definition.

Recall that a measurable set A1 × · · · × An ∈ ��n� is triangular when the
measurable sets A1� 	 	 	 �An in � are pairwise disjoint. If � = A1 × · · · ×An
is a triangular set, then as w ranges over all permutations of �n�, the family
of n! sets Aw�1� × · · · ×Aw�n� consists of pairwise disjoint sets. Hence, the set⋃
w w�� � belongs to �⊗�n�fin . We denote this set by perm�A1×· · ·×An�. Note that

perm�A1 × · · · ×An� is not defined unless the set A1 × · · · ×An is triangular.
The family of all sets of the form perm�A1 × · · · × An� is closed under

unions and intersections (but not under complements). In other words, it is a
distributive lattice of sets.

Proposition 3. The σ-field generated by sets of the form perm�A1 × · · · ×
An�, whereA1×· · ·×An is triangular coincides with the σ-field of all symmetric

sets contained in S
�n�
0̂

.

The proof is omitted.
We are now ready to give an intrinsic characterization of the stochastic

measure St�n�
0̂

associated to a random measure φ.

Theorem 5. For a given countably additive random-valued good measure

φ on �S���, there exists one and only one measure St�n�
0̂

on symmetric sets

contained in S
�n�
0̂

, such that

St�n�
0̂
�perm�A1 × · · · ×An�� = n!φ�A1� · · ·φ�An�	

Proof. In view of the preceding proposition, such a measure is unique if
it exists. Its existence is guaranteed by the Möbius inversion formula

St�n�
0̂
=∑

π

µ�0̂� π�φ�n�π 	

Indeed, since A1×· · ·×An is triangular, �A1×· · ·×An�π = � unless π = 0̂.
Thus φ�n�π �A1 × · · · ×An� = 0 unless π = 0̂. When π = 0̂,

φ
�n�
0̂
�perm�A1� 	 	 	 �An�� = n!φ�A1� × · · · ×φ�An�	 ✷

6. Stochastic sequences of binomial type. A sequence of measures ψn
on �S���may be defined by setting ψn�A� to equal the stochastic measure St�n�

0̂
of cubical setA�n�. The stochastic measure of any set can then be approximated
by sums of products of the ψn. The ψn�A�, furthermore, are of binomial type
(v. below, Theorem 6), and special cases of these sequences are sequences of
orthogonal polynomials (Section 7).

Definition 2. Given a good random measure φ on �S��� we define the
stochastic sequence of binomial type ψn�A�, n = 1�2� 	 	 	, to be the sequence of
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random-valued set functions

ψn�A� = St�n�
0̂
�A�n��

for all A ∈ � of finite measure.

Proposition 4. If � ∈ �⊗�n�fin , then St�n�
0̂
�� � is the sum of products of the

form

ψi1�A1� · · ·ψir�Ar��
where i1 + · · · + ir = n, and the sets A1� 	 	 	 �Ar are disjoint.

Proof. Any set � ∈ �⊗�n�fin is the finite union of disjoint rectangles. It can
easily be shown that any rectangle can be expressed as the disjoint union of
rectangles whose sides are pairwise equal or disjoint. Let � = A1 × · · · ×An
be such a rectangle, considered as a function from �n� to �, and let τ be the
kernel of � . That is, if b is a block of τ, then Ai = Aj for any two elements
i and j of b ; we denote this common value by the symbol Ab. Conversely, if i
and j are not in the same block of τ, then Ai and Aj are disjoint. If σ > τ,

then �σ = �, and φ�n�σ �� � = φ�n�0̂
���≥σ�� = 0. Thus, by Theorem 3,

St�n�
0̂
�� � = ∑

π≥0̂

µ�0̂� π�φ�n�
0̂
�� �

= ∑
0̂≤π≤τ

µ�0̂� π�φ�n�
0̂
�� �

=⊗
b∈τ

Stb0̂ �� �

= ∏
b∈τ
ψ�b��Ab�	 ✷

The following theorem is fundamental and justifies our terminology.

Theorem 6. If ψn�A� is the stochastic sequence of binomial type associated
with a measure φ on a good measure space �S���σ�, and if A and B are
disjoint sets in � of finite measure, we have

ψn�A ∪B� =
n∑
k=0

(
n

k

)
ψk�A�ψn−k�B�	

Proof.

St�n�
0̂
��A ∪B��n�� = ∑

b⊂�n�
St�n�

0̂
�Ab ×Bbc�	

A typical summand on the right-hand side is

St�n�
0̂
�Ab ×Bbc� = ∑

π≥0̂

µ�0̂� π�φ�n�π �Ab ×Bb
c�	
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As in the previous proof, φ�n�π �Ab ×Bbc� = 0 if π > τ, where τ is the partition
�b� bc�. The Möbius sum thus terminates at π = τ, and by Theorem 3,

St�n�
0̂
�Ab ×Bbc� = Stb0̂�Ab�Stb

c

0̂ �Bb
c�	

But if �b� = k,

Stb0̂�Ab� = St�k�
0̂
�A�k���

and similarly for Stb
c

0̂ . There are
(
n
k

)
partitions of �n� into blocks �b� bc� with

�b� = k. ✷

In a similar way, one may prove a multinomial expansion.

Proposition 5. If A = ⋃r
i=1Ai and the Ai are pairwise disjoint, then

ψn�A� =
∑

i1+···+ir=n

(
n

i1 · · · ir

)
ψi1�A1� · · ·ψir�Ar�	

Useful as the measures ψn are, we require some further measures, namely
the diagonal measures ,n. These are defined in terms of the measures φ�n�

1̂
.

Definition 3. For every positive integer n, the nth diagonal measure ,n
of φ is the measure on �S��� given by

,n�A� = φ�n�1̂
�A�n�� = St�n�

1̂
�A�n��

We omit the verification that ,n is a measure.
Theorem 2 implies the following recursion relation for the measures ψn.

Theorem 7. If ψn�A� is the stochastic sequence of binomial type associated
with the random measure φ, then

ψn�A� =
n∑
k=1

�−1�k−1�n− 1�k−1,k�A�ψn−k�A�	

Theorem 1 implies the following expression for ψn in terms of the diagonal
measures:

Theorem 8.

ψn�A� =
∑
λ�n

(
n

r1 · · · rn

)�−1�r1+···+rn−n∏n
i=1 i

ri
,
r1
1 �A� · · ·,rnn �A��

where λ = �1r12r2 · · ·nrn�.

The proof is omitted.
Given any partition λ � n, one can define, in analogy to ψn, the measure

-nλ�A� = St�n�π �A�n���
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where π is any partition of class λ. The measure -nλ is well defined, by virtue
of the symmetry of the argument A�n�. The measures -nλ are of independent
interest, and hint at a rich theory which extends the theory of orthogonal
polynomials.

7. Examples. In the following examples, all random measures are as-
sumed to be good.

Example D (Discrete). Let S be a set, and let � be the σ-algebra generated
by all singletons �s�. Suppose that the measure φ is so defined that φ�s� equals
either 0 or 1 for every element s ∈ S, and suppose that φ�S� < ∞. Then for
every measurable function f�s1� 	 	 	 � sn� we have∫

f�s1� 	 	 	 � sn�St�n�
0̂
�ds1� 	 	 	 � dsn� =

∑
f�s1� 	 	 	 � sn��

where the sum ranges over all sequences �s1� 	 	 	 � sn� of elements of S all of
whose entries are distinct. The sequence of binomial type associated with the
discrete measure is

ψn�A� = ��A��n�
where �x�n = x�x− 1� · · · �x− n+ 1� is the falling factorial.

The diagonal measures are given by

,n�A� = �A�� n ≥ 1	

Example SP (Symmetric polynomials) [8]. Let � be the Boolean algebra of
all subsets of a set S. Let Z�S� be the polynomial ring with integer coefficients
in the set of variables S. Define a measure φ as follows: for every finite subset
A of S,

φ�A� = ∑
a∈A

a	

Set pn�A� =
∑
a∈A an, and for every partition π of �n�, set pπ�A� =

∏
b∈π p�b�.

The polynomials pn�A� are known as the power sum symmetric polynomials.
One verifies that φ�n�π �An� = pπ�A�, and ψn�A� = n!en�A�, where en is the

nth elementary symmetric polynomial:

en�A� =
∑

i1<i2<···<in
ai1ai2 · · ·ain�

where �a1� a2� 	 	 	� is some linear ordering of the elements of A.
The symmetric polynomials St�n�π �An� are known as the monomial symmet-

ric polynomials, and are denoted by mπ�A� =mπ�a1� a2� 	 	 	�.
The diagonal measures are given by

,n�A� =
∑
a∈A

an	
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Example G (Gaussian measure). Let σ be a nonatomic real measure on
�S���, and let φ be an L2 random-valued measure on �S��� such that for any
set A ∈ � with σ�A� finite, φ�A� is a Gaussian random variable with mean
zero and variance σ�A�. Furthermore, assume that if �Ai� is a set of pairwise
disjoint elements of � with σ�A� finite, then the random variables �φ�Ai��
are independent.

The stochastic sequence of binomial type associated with the Gaussian mea-
sure is the sequence

ψn�A� =H�v�
n �φ�A���

where v = σ�A�. The polynomials H�v�
n �x� are the Hermite polynomials of

variance v in the variable x. We take the preceding equation as the definition
of the Hermite polynomials; all properties of the Hermite polynomials are
consequences of this definition. For example, we have the identity ([15], [32],
page 722)

H
�v+w�
n �x+ y� = ∑

k≥0

(
n

k

)
H
�v�
k �x�H

�w�
k �y�	

We next compute the diagonal measures for the Gaussian process, using
Proposition 12 of Section 9.

Proposition 6. The diagonal measures of the Gaussian measure are given
by

,2�A� = σ�A��
,n�A� = 0� n > 2	

Proof. For every positive integer N, let �ANi� i = 1� 	 	 	 �N� be a collec-
tion of disjoint sets such that

⋃N
i=1ANi = A and σ�ANi� = σ�A�/N. Proposi-

tion 12 gives conditions under which

,n�A� = lim
N→∞

N∑
i=1

φ�ANi�n

in L2. However,

N∑
i=1

�φ�ANi��n =
1

Nn/2−1

(
1
N

N∑
i=1

�
√
Nφ�ANi��n

)
	

The Gaussian random variables
√
Nφ�ANi� are independent and each one

has variance σ�A�. The term in parentheses is finite in L2 for any n > 1.
For n > 2, therefore, the right-hand side converges to zero as m→∞. When
n = 2, it converges to σ�A� by the law of large numbers. The hypotheses of
Proposition 12 are easily verified. ✷
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Theorem 7 now gives the classical recursion formula for the Hermite poly-
nomials:

H
�v�
n �x� = xH�v�

n−1�x� − �n− 1�vH�v�
n−2�x�	

Theorem 8 implies the following known expression for H�v�
n �x� [19]:

H
�v�
n �x� =

!n/2"∑
j=0

xn−2j�−v�jc�n�j��

where

c�n�j� = n!
�n− 2j�!�2j�!! �

and !n/2" is the largest integer less than n/2.

Example P (Poisson). Let σ be a nonatomic measure on �S���. Let φ be
the random process such that, for every measurable setA, the random variable
φ�A� has a Poisson distribution with parameter σ�A�, and such that if �Ai�
is a set of pairwise disjoint sets, then �φ�Ai�� is a set of independent random
variables.

Proposition 7. The diagonal measures of the Poisson process are

,n�A� = φ�A�� n = 1�2� 	 	 	 	

Proof. Let �ANi� be as above, with σ now the (nonatomic) measure defin-
ing the Poisson process. We can thus use Proposition 12 to calculate ,n�A� as∑N
i=1φ�ANi�n. But∥∥∥∥
N∑
i=1

φ�ANi�n −φ�A�
∥∥∥∥

2

=
N∑
i=1

#φ�ANi�n −φ�ANi�#2

+∑
i$=j
��φ�ANi�n −φ�ANi���φ�ANj�n −φ�ANj���

To estimate these terms, recall that for the Poisson process,

P��φ�A� = j�� = σ�A�
je−σ�A�

j!
	

Thus,

#φ�ANi�n −φ�ANi�#2 =
∞∑
j=0

�jn − j�2
j!

(
σ�A�
N

)j
e−σ�A�/N

= 1
N2

∞∑
j=2

�jn − j�2
j!

σ�A�j
Nj−2

e−σ�A�/N

≤ C1

N2
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Similarly,

��φ�ANi1�n −φ�ANi1���φ�ANi2�n −φ�ANi2���

=
∞∑

j� k=0

�jn − j��kn − k�
j!k!

(
σ�A�
N

)j+k
e−2σ�A�/N = C2

N4
	

Thus, ∥∥∥∥
N∑
i=1

φ�ANi�n −φ�A�
∥∥∥∥

2

≤ C1

N
+ C2

N2
�

which goes to zero as N → ∞. The hypotheses of Proposition 12 are easily
verified. ✷

Let ψn�A� be the stochastic sequence of binomial type associated with the
Poisson measure φ. Then by Theorem 7,

ψn�A� =
n∑
k=1

�−1�k−1�n− 1�k−1φ�A�ψn−k�A�

= φ�A�ψn−1�A� +
n−1∑
j=1

�−1�j�n− 1�jφ�A�ψn−1−j�A�

= �φ�A� − n+ 1�ψn−1�A�	
Thus, we have shown that for the Poisson measure we have

ψn�A� = �φ�A��n	

Example PC (Poisson–Charlier). With the same assumptions as in Exam-
ple P, set

φC�A� = φ�A� − σ�A�	
One finds that the stochastic sequence associated with the Poisson–Charlier
measure is

ψn�A� = �
�α�
n �φC�A���

where α = σ�A�. The preceding equation can be taken as a definition of the
Poisson-Charlier polynomials �

�α�
n �x� [5, 27, 10]. All properties of Poisson–

Charlier polynomials can be derived from this definition.
For the Poisson–Charlier measure, we have

,1�A� = φC�A� = φ�A� − σ�A��
,n�A� = φ�A�� n > 2�

where φ is the Poisson measure.
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Example K (Kravchuk) [26, 5]. Let S be a finite set and let X1�X2� 	 	 	
be independent identically distributed Bernoulli random variables such that
�X� = p. Define

φ�A� = ∑
i∈A
Xi − p�A�	

We find that the stochastic sequence of binomial type associated with the
Kravchuk measure is

ψn�A� = k�p�n �φ�A���
where k�p�n �x� are the Kravchuk polynomials.

For the Kravchuk measure, we have

,n�A� =
∑
i∈A
�Xi − p�n� n ≥ 1	

Example CP (Compound Poisson) [11]. Let φ be a Poisson process as in
Example P, and let X1�X2� 	 	 	 be independent identically distributed positive
integer-valued random variables. We stress the assumption that P�Xi = 0� =
0. Let α be the common probability distribution of the random variables Xi,
so that αj = P�Xi = j�.

The compound Poisson process with distribution α is a measure φα defined
on �S��� as

φα�A� =X1 +X2 + · · · +Xφ�A�

for every A ∈ � such that σ�A� <∞	
Here we find that

St�n�π �A× · · · ×A� =mπ�X1�X2� 	 	 	 �Xφ�A���
and the stochastic sequence of binomial type associated with the compound
Poisson process is

ψn�A� = n!en�X1�X2� 	 	 	 �Xφ�A��	
The diagonal measures for the compound Poisson process are

,n�A� =Xn
1 +Xn

2 + · · · +Xn
φ�A�	

Example U (Umbral). This example requires some acquaintance with the
notation introduced in [33]. Let φ and σ be as in Example P, and let α1� α2� 	 	 	
be exchangeable umbrae. Define

φα�A� = α1 + α2 + · · · + αφ�A�	
Again, one finds that

ψn�A� = n! en�α1� 	 	 	 � αφ�A��	
For the umbral process, we have

,n�A� = αn1 + αn2 + · · · + αnφ�A�	
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8. Combinatorial orthogonality. A measure φ�A� defined for A ∈ �,
whose values are random variables, is said to be a completely random measure
when the following hold.

1. For every set A ∈ � such that σ�A� <∞, φ�A� is a random variable with
finite expectation.

2. If A1�A2� 	 	 	 �An are pairwise disjoint measurable sets of finite measure,
then the random variables φ�A1�� φ�A2�� 	 	 	 � φ�An� are independent.

A completely random measure φ is said to be multiplicative if for every
positive integer n and for every partition π of �n�,

�St�n�π � =
⊗
b∈π
�Stb1̂�	

All stochastic measures in the examples of the previous section are multiplica-
tive, except for the measures in Examples D and SP. The following proposition
provides a necessary and sufficient condition for φ to be multiplicative.

Proposition 8. The measure φ is multiplicative if and only if the real-
valued measures �,n� are nonatomic for all positive integers n.

Proof. For ease of computation, we assume that � is a rectangle set:
� = A1 × · · · ×An. We then have

�St�n�π ��� � = �St�n�π ��π��

=
〈 ∏
b∈π

Stb1̂

((
X
i∈b
Ai

)
1̂

)〉

=
〈 ∏
b∈π
,�b�

(⋂
i∈b
Ai

)〉

= ∏
b∈π

〈
,�b�

(⋂
i∈b
Ai

)〉

= ⊗
b∈π
�Stb1̂���π�	

But ⊗
b∈π
�Stb1̂��� � =

⊗
b∈π
�Stb1̂����≥π��	

We need only show, therefore, that⊗
b∈π
�Stb1̂����>π�� = 0�

where ��>π� is defined as ��≥π�\�π .
If σ > π, then ⊗

b∈π
�Stb1̂���σ� =

⊗
b∈π
�,�b��� ˜�σ ′ ��
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where ˜� ∈ S�r� and σ ′ > 0̂ is a partition of �r�, where r = �π�. This is zero if
and only if the diagonal measures are nonatomic for all n. ✷

Theorem 4 expresses the product of two or more stochastic measures as the
sum over stochastic measures. When φ is multiplicative, the expectation of
these stochastic measures can be expressed as the product of expectations of
diagonal measures. We state these results first for the general case, and then
specialize to results concerning ψn�A� and ,n�A�.

Proposition 9. Let φ be a multiplicative completely random measure. Let
π be a partition of �n�. Then〈⊗

b∈π
Stb0̂

〉
= ∑
�σ � σ∧π=0̂�

⊗
b∈σ
�Stb1̂�

Corollary 1 (Feynman). If �φ� = 0, and if b is a subset of �n�, then

�Stb0̂ ⊗ Stb
c

0̂ � =




∑
f∈bi�b�bc�

⊗
i∈b
�St�i�f�i��

1̂
�� if �b� = �bc��

0� otherwise�

where bi�b� bc� is the set of bijections from b to bc.

Proof. In the notation of the theorem, σ is the partition of �n� consisting
of the block �b� bc�, and π is the zero partition. If τ∧σ = π, then each block of
τ must contain no more than one element of each set. On the other hand, if a
partition τ contains any blocks with only one element, then �St�n�τ � = 0, since
St�n�τ is multiplicative and �φ� = 0. Therefore, the only contribution to �St�n�τ �
is from partitions whose blocks each contain exactly one element of each set.
If �b� $= �bc�, no such partitions exist. If �b� = �bc�, there is one such partition
for every bijection between b and bc. ✷

Corollary 2. If �b� > 1, �bc� ≥ 1 and �φ� = 0, then

�Stb0̂ ⊗φb
c

1̂
� = 0	

Proof. Again, σ = �b� bc�, but π = ��i� i ∈ b�� bc�. If �b� > 1, each τ

with σ ∧ τ = π contains a block with exactly one element, so �St�n�τ � = 0. If
σ ∧ τ = π, one block of τ will contain bc and at most one element of b, and
the other blocks will each consist of one of the remaining elements of b. If
�b� > 1, therefore, each τ will contain at least one block which contains only
one element, and therefore �St�n�τ � = 0. ✷

We now restate these results in terms of stochastic sequences of binomial
type.
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Theorem 9. Let ψn�A� be the stochastic sequence of binomial type associ-
ated with a multiplicative completely random measure φ. Let π be a partition
of the set �n�, whose blocks are of size n1� n2� 	 	 	 � nk. Then

�ψn1
�A� · · ·ψnk�A�� =

∑
�σ � σ∧π=0̂�

∏
b∈σ
�,�b���A�	

Proposition 10 (Orthogonality). Let ψn�A� be the stochastic sequence of
binomial type associated with a multiplicative completely random measure φ.
If �φ� = 0, then

�ψn�A�ψm�A�� =
{
n!�,2�A��n� if m = n�
0� if m $= n	

Proposition 11. Under the same assumptions as Proposition 10, if n > 1
and m ≥ 1, then

�ψn�A�,m�A�� = 0	

Example G (Continued). We illustrate Theorem 9 by computing the expec-
tation of a finite product of Hermite polynomials of arbitrary degrees. Recall
that

ψn�A� =H�σ�A��
n �φ�A��	

It will be convenient to use the stochastic sequence of binomial type notation
ψn�A� instead of the Hermite notation. Our objective is to compute

�ψn1
�A�ψn2

�A� · · ·ψnk�A��	
Theorem 9 can be applied in the following way. Choose any partition π of

the set �n1+n2+· · ·+nk� having blocks bi of size ni. Define n = n1+n2+· · ·+nk.
Then Theorem 9 states that

�ψn1
�A�ψn2

�A� · · ·ψnk�A�� =
∑

�σ � σ∧π=0̂�

⊗
b∈σ
�,�b���A�	

However, �,�b�� = 0 unless �b� = 2, in which case ,2 = σ . The problem therefore
boils down to listing all partitions σ , all of whose blocks have two elements
such that σ ∧ π = 0̂. If C is equal to the number of such partitions, then we
have that

�ψn1
�A�ψn2

�A� · · ·ψnk�A�� = Cσ�A�n	
For example, if n is odd, then C = 0.

The preceding computation is usually carried out using Feynman diagrams.
We hope to have finally pinpointed the source of such computations.
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Example P (Continued). We compute

�ψn�A�ψk�A���

where ψn�A� is the sequence of binomial type associated with the Poisson
measure.

Let π be a partition of the set �n + k� having a block b1 with k elements
and a block b2 with n elements. Say k ≤ n. Then Theorem 9 tells us that

�ψn�A�ψk�A�� =
∑

σ∧π=0̂

⊗
b∈σ
�,�b���A�	

Any partition σ of the set �n+k� such that σ ∧π = 0̂ has blocks containing
either one element or two elements. Every such partition can be obtained by
choosing subsets c1 and c2 of b1 and b2 such that �c1� = �c2�, and matching
the elements of c1 with the elements of c2 in an arbitrary way. In this way we
obtain

�ψn�A�ψk�A�� =
∑
i≥0

(
n

i

)(
k

i

)
i!σ�A�n+k−i�

where we have used the fact that ,1�A� = ,2�A� = φ�A� and �φ�A�� = σ�A�.

9. Diagonal measures. Under reasonable assumptions, the diagonal
measures ,n of a completely random L2 measure are given by

,n�A� = lim
N→∞

N∑
i=1

φ�AiN�n�

where the limit is taken in the L2 sense, and where, for each N, �AiN� i =
1� 	 	 	 �N� is a disjoint partition of A into sets of equal measure.

Proposition 12. Let φ be good completely random measure, taking values
in L2� �. Let σ be a nonatomic measure and let the sets �AiN� i = 1� 	 	 	 �N�
be defined as above. Let a positive integer n be given, and suppose that for each
positive integer m < n there exist positive constants cm and dm such that

��,m − �,m��2� ≤ cmσ and ��,m�� ≤ dmσ	

Then

,n�A� = lim
N→∞

N∑
i=1

φ�AiN�n�

where the limit is taken in L2.
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Proof. We have

,n�A� = ,n
( N⋃
i=1

AiN

)

=
N∑
i=1

[
φ�AiN�n − St�n�

<1̂

(
A
�n�
iN

)]
�

where

St�n�
<1̂

(
A
�n�
iN

) = ∑
0̂≤π<1̂

St�n�π
(
A
�n�
iN

)
	

Therefore,

�∗�

∥∥∥∥,n�A� −
N∑
i=1

φ
(
AiN

)n∥∥∥∥
2

=
∥∥∥∥
N∑
i=1

St�n�
<1̂

(
A
�n�
iN

)∥∥∥∥
2

=
N∑
i=1

∥∥St�n�
<1̂

(
A
�n�
iN

)∥∥2 +
N∑

i� j=1
i$=j

〈
St�n�
<1̂

(
A
�n�
iN

)
St�n�
<1̂

(
A
�n�
jN

)〉
	

We will show that the right-hand side goes to zero as N→∞.
We first show that if σ�A� < 1, then∥∥St�n�π

(
A�n�

)∥∥2 ≤Knσ�A��π��

where Kn is a constant depending only on n. To this end, set ,̃m = ,m−�,m�.
Suppose �π� = r, and say that the blocks of π have sizes m1� 	 	 	 �mr. Then

St�n�π �A�n�� = �,m1
⊗ · · · ⊗ ,mr

��A�r�
0̂
�

= ∑
b⊂�r�

9
�r�
b �A�r�0̂

��

where

9
�r�
b =⊗

j∈b
�,mj

� ⊗ ⊗
j∈bc

,̃mj
≡ -̄b ⊗ -̃bc 	

Let Cn = maxm<n�1� cm�dm�. Then

#-̄b�Ab�# ≤ C�b�n σ�A��b�	
We will show that

�∗∗� #-̃b�Ab
0̂
�# ≤

√
�b�!C�b�n σ�A��b�	

Recalling that Cn ≥ 1 and σ�A� < 1, this inequality implies that

#9�r�b �A�r�0̂
�# ≤ Crn

√
r! σ�A�r/2
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and thus that

#St�n�π �A�n��# ≤ 2�r�
√
r! Crnσ�A�r/2	

The assertion follows by setting Kn = 2n
√
n!Cnn.

To prove �∗∗�, write

A
�s�
0̂
=⋃�Bj1

× · · · ×Bjs��

where �Bj� is a countable set of measurable disjoint sets whose union is A,
and the union on the right-hand side ranges over all sets of indices such that
j1� 	 	 	 � js are all distinct. Then

#-̃�s��A�s�
0̂
�#2 = ∑

j1�			�js

∑
k1�			�ks

�,̃m1
�Bj1

� · · · ,̃ms
�Bjs�,̃m1

�Bk1
� · · · ,̃ms

�Bks��

= s! ∑
j1�			�js

�,̃2
m1
�Bj1

�� · · · �,̃2
ms
�Bjs��

≤ s!Csn
∑

j1�			�js

σ�Bj1
� · · ·σ�Bjs�

≤ s!Csnσ�A�s	

Returning to �∗�, we note that

#x1 + · · · + xn#2 ≤ n�#x1#2 + · · · + #xn#2�	

Thus,

N∑
i=1

#St�n�
<1̂
�A�n�iN�#2 ≤N�Bn − 1� ∑

0̂≤π<1̂

#St�n�π �A�n�iN�#2�

≤N�Bn − 1�2Knσ�AiN�2

= 1
N
�Bn − 1�2Knσ�A�2�

where Bn, Bell’s number, is the number of partitions of the set �n� (see [29]).
We now bound the cross terms. If A and A′ are disjoint, then

��St�n�π �A�n��St�n�π ′ �A′�n���� ≤ Cr+sn σ�A��π�σ�A′��π ′ ��

where r = �π� and s = �σ �. Decomposing both A�n� and A′�n� in terms of
triangular sets, as above, we get

�St�n�π �A�n��St�n�π ′ �A′�n���
= ∑
j1�			�jr

∑
k1�			�ks

�,m1
�Bj1

� · · ·,mr
�Bjr�,m′1�B′k1

� · · ·,m′s�B′ks��	
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Since the r+ s sets of each term are pairwise disjoint, we obtain

��St�n�π �A�n��St�n�π ′ �A′�n����
≤ Cr+sn

∑
j1�			�jr

∑
k1�			�ks

σ�Bj1
� · · ·σ�Bjr�σ�B′k1

� · · ·σ�B′ks�

≤ C2n
n σ�A��π�σ�A′��π

′ �	

Thus,

∣∣〈St�n�π �A�n�iN�St�n�π ′ �A�n�jN�
〉∣∣ ≤ 1

N4
C2n
n σ�A�4�

and
N∑

i� j=1
i$=j

��St�n�
<1̂
�A�n�iN�St�n�

<1̂
�A�n�jN��� ≤

�Bn − 1�2
N2

C2n
n σ�A�4	 ✷
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