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We prove large deviation estimates at the correct order for the graph
distance of two sites lying in the same cluster of an independent perco-
lation process. We improve earlier results of Gärtner and Molchanov and
Grimmett and Marstrand and answer affirmatively a conjecture of Kozlov.

1. Introduction and statement of results. In this article we study for
d ≥ 2 independent (Bernoulli) bond percolation on the d-dimensional cubic
lattice L d = �Zd; Ed�, where Ed = ��x; y�y ∑i=1;::;d �xi − yi� = 1� stands for
the set of edges between nearest neighbors in Zd. That is, all bonds are open
with probability p and closed with probability 1 − p independently of each
other. The corresponding probability measure on �0; 1�Ed is denoted by P.

A path of L d of length n �≥ 1� is a sequence �x0; x1; : : : ; xn� of nearest-
neighbor vertices. A path consisting of distinct vertices is called self-avoiding.
We say that a path is open (closed) if all bonds between successive vertices of
the path are open (closed). For x ∈ Zd we denote by Cx the cluster of x, that
is, the set of all vertices which are connected to x by a path, whose edges are
all open. Throughout this paper we shall assume that p is strictly larger than
the critical probability

pc x= sup�p: θ�p� = 0�;(1.1)

where θ�p� is the probability that the cluster of the origin has infinite cardi-
nality.

We shall write x↔y to say that two sites, x and y, are in the same cluster.
For such sites we denote by D�x; y� the minimal length of an open path con-
necting x to y. This quantity is sometimes also called the chemical distance
of x and y. On Zd we shall use the distance induced by the norm

�y� x=
∑

i=1;:::;d

�yi�:(1.2)

The main object of this paper is to prove the following large deviation
bounds.
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Theorem 1.1. Let p > pc. Then there exists a constant ρ = ρ�p; d� ∈
�1;∞� such that

lim sup
�y�→∞

1
�y� log P�0 ↔ y; D�0; y� > ρ�y�� < 0:(1.3)

Theorem 1.2. Let p > pc. Then, for any y ∈ Zd,

lim sup
l→∞

1
l

log P�0 ↔ y; D�0; y� > l� < 0:(1.4)

Applying Theorem 1.1 together with the Borel–Cantelli lemma, we obtain the
following comparison result for D and the usual distance.

Corollary 1.3. Let p > pc. Then P-almost surely

lim sup
�y�→∞

1
�y�D�0; y�1�0↔y� ≤ ρ�p; d�;(1.5)

where ρ�p; d� is the constant introduced in Theorem 1.1.

Remark. It is easy to see that the probabilities in (1.3) and (1.4) decay
at most exponentially; that is, we also have lower bounds of the same order.
In the case of (1.3) we can pick for any ρ ≥ 1 a fixed path γ with a length
�γ� ∈ �ρ�y�; ρ�y� + 2� joining 0 to y. Then P�0 ↔ y; D�0; y� > ρ�y�� is larger
than the probability that γ is an isolated open path; that is, γ is open and all
other bonds adjacent to some vertex of γ are closed. (Note that in this case γ is
the only path joining 0 to y.) This probability obviously decays exponentially
in �y� and this yields for every ρ ≥ 1 the claimed exponential lower bound for
the probability considered in (1.3). The same argument works for Theorem 1.2.

Let us give some comments concerning our results. First of all, we would
like to point out that the main difficulty of the proof of (1.3) and (1.4) is to
derive bounds of the correct (i.e., here exponential) order. In fact, polynomial
(respectively, subexponential) bounds have earlier been derived by various au-
thors; cf. [6], [7] and [8].

Theorem 1.1 improves an earlier result of Gärtner and Molchanov (see
Lemma 2.8 in [6]), where a polynomial upper bound is given for the decay
of the probability in (1.3) for the case of site percolation with sufficiently high
parameter. The improvement now is that we show that the true leading asymp-
totic behavior is in fact exponential and it holds in the whole supercritical
regime. Corollary 1.3 has an important application in trapping problems, as
discussed in [2]. In fact, this result is one of the key ingredients which enable
us to derive asymptotic lower bounds for the survival probability of a random
walk, which is killed by obstacles made of the closed bonds of a percolation
process. Although we only treat the case of bond percolation, our calculations
can obviously also be adapted to the site case. We refrained from treating both
cases here for the sake of clarity.
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Our result stated in Theorem 1.2 answers a question of Kozlov, which has
appeared in the context of the study of the Darcy equation for random porous
media [3]. Theorem 1.2 improves the subexponential large deviation upper
bound of Grimmett and Marstrand; see the last equation in [7].

2. Renormalization. In this section we develop a renormalization tech-
nique for Bernoulli percolation. This is in the same spirit as the technique
introduced in [11]; however, in our case the geometry of the renormalization
is different and therefore an additional argument [cf. (2.16) and (2.18)] is
needed in order to prove the required properties of the renormalized process.

Let us first introduce some additional notation. A box B is a subset of Zd of
the form �x ∈ Zd � ri ≤ xi ≤ si; 1 ≤ i ≤ d�, where r; s ∈ Rd. We fix an integer
N > 1. We shall see that only large values of N will be of interest; therefore,
we shall implicitly assume in each definition involving N that N is at least
so large that the definition makes sense. We now chop Zd into disjoint boxes
as follows: we set B0�N� to be the box �−N; N�d ∩ Zd and define, for i ∈ Zd,

Bi�N� x= τi�2N+1�B0�N�;(2.6)

where τb stands for the shift in Zd with b ∈ Zd. The boxes �Bi�N��i∈Zd define
a partition of Zd. We now define the renormalized lattice as the graph with
vertex set �Bi�N��i∈Zd and edge set ��Bi�N�; Bj�N��; �j − i� = 1�. We shall
identify this graph with a copy of L d, whose vertices we denote by bold letters
in order to distinguish them from the vertices of the original lattice. We shall
also need another family of boxes, namely,

B′i�N� x= τi�2N+1�B0�5N/4�:(2.7)

We now define for N ∈ N, the following set of bonds:

E �N� =
{
�ke�1�; �k+ 1�e�1��y k = 0; :::; �N1/2�

}
;(2.8)

where e�1� stands for the first unit vector in Zd. Finally, we set Ei =
τi�2N+1�E �N�.

Next we need the notion of a crossing cluster in a box (see [11]). We say
that a cluster C contained in some box B′ is a crossing cluster for B ⊆ B′, if
for all d directions there is an open path contained in C ∩ B joining the left
face to the right face of the box B.

We now assume that N ≥ 10 and introduce the events

R
�N�
i x= �∃ ! crossing cluster C in B′i�N� for B′i�N�, all open paths

contained in B′i�N� of radius larger than 1
10N are connected

to C within B′i�N� and C is crossing for each subbox B ⊆
B′i�N� of side length larger than 1

10N�,
(2.9)

S
�N�
i x= �there is at least one open bond in Ei� :(2.10)
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We now define a map φN from � to the space �′ x= �0; 1�Zd (with the σ-field
generated by the finite-dimensional cylinders) by

�φNω�x x= 1
R
�N�
x ∩S�N�x

�ω�:(2.11)

We denote the image measure of P under this map by PN. This defines a
(dependent) site percolation process on the renormalized lattice. Sometimes
we shall call the renormalized process the macroscopic process in order to
distinguish it from the original (microscopic) bond percolation process. We
shall call the sites of the macroscopic process white and black (instead of
occupied and vacant); that is, the site x ∈ Zd is white if �φNω�x = 1, otherwise
it is black.

Next we need the notion of ∗-connectedness. We say that a subset of Zd is
∗-connected if it is connected with respect to the adjacency relation

x ∗∼ y⇔ max
i=1;:::;d

�xi − yi� = 1:(2.12)

We are now able to state the main result of this section.

Proposition 2.1.

If 0 ⊆ Zd is a ∗-connected set of white sites, then there is a micro-
scopic cluster contained in

⋃
i∈0B

′
i�N�, which is crossing for each

box B′i�N�, i ∈ G.
(2.13)

Moreover, for each p > pc, there exists a function p̄: N → �0; 1� with
limN→∞ p̄�N� = 1, such that PN stochastically dominates the law of an
independent site percolation process with parameter p̄�N�, meaning that, for
any increasing event A,

PN�A� ≥ P∗p̄�N��A�;(2.14)

where P∗q denotes the law of an independent site percolation process with pa-
rameter q.

Proof. Property (2.13) is an obvious consequence of the occurrence of the
events R�N�i for all i ∈ G. To prove the second part, it is enough to check that
(2.14) holds for any local increasing event A (local means that A depends only
on finitely many sites). This will follow from the next proposition.

Proposition 2.2. We have, as N→∞,

α�N� x= sup
L≥3

sup
z∈B0�L�

ess supPN�Yz = 0 �σ�Yx; x ∈ B0�L� \ �z��� → 0;(2.15)

where Y denotes the coordinate process on �′; cf. (2.11).

Proof. Let us first explain the outline of the proof. By Theorem 3.2 in
[11] (d ≥ 3) and Theorem 5 in [10] (d = 2), we can control the (unconditioned)
probability of the event �Yz = 0�. This will be used to derive an iterative
inequality for α�N� from which it will follow that α�N� is either always larger
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than a constant or tends to 0 for N → ∞. To exclude the first possibility,
we shall introduce a mixture of PN with the measure corresponding to an
independent site percolation process and show that if we replace P in the
definition of α�N� by the mixed measure, then the iterative inequality is still
satisfied. In the case of the independent measure, it is obvious that we are in
the right regime and by a continuity argument we shall conclude this for PN,
too.

Next we fix N ≥ 10 and pick L ≥ 3. We introduce for ρ ∈ �0; 1� the following
family of measures on �′:

Q
ρ
N x= ρPN + �1− ρ�P∗q�N�;(2.16)

where q�N� x= PN�Y0 = 1� and P∗q denotes the law of an independent site
percolation process with parameter q. We set

β�ρ; L; N� x= sup
z∈B0�L�

ess supQρ
N�Yz = 0 �σ�Yx; x ∈ B0�L� \ �z���:(2.17)

We shall prove that there exist constants c1, c2 > 0, depending only on �p; d�,
such that, for all ρ ∈ �0; 1� and for all N with 1− 4 · 3dc1 exp�−c2N

1/2� > 0,

β�ρ; L; N��1− 3dβ�ρ; L; N�� ≤ c1 exp�−c2N
1/2�:(2.18)

Let us admit (2.18) for a moment and conclude the proof of the proposition.
As a consequence of (2.18) we see that either

β ≥ 1
2

3−d
(
1+

√
1− 4 · 3dc1 exp�−c2N

1/2�
)

(2.19)

or

β ≤ 1
2

3−d
(
1−

√
1− 4 · 3dc1 exp�−c2N

1/2�
)
:(2.20)

Next we claim that, for N and L fixed, β�ρ; L; N� is a continuous function of
ρ. Since the suprema in (2.17) run over a finite set and the conditional expec-
tation in (2.17) depends only on finitely many sites, the continuity boils down
to the fact that any macroscopic configuration ν ∈ �0; 1�B0�L� has strictly pos-
itive probability under PN. To see this, consider, for instance, the microscopic
configurations where each bond between sites in

⋃
x∈B0�L�Bx�N� is open, up

to those lying in
⋃

x: νx=0 Ex (which are closed).
Because of this continuity argument we now see that, for fixed N and

L, β�0; L; N� and β�1; L; N� satisfy both either (2.19) or (2.20). Now
β�0; L; N� is equal to PN�Y0 = 0� by definition, and by Theorem 3.2 in [11]
and Theorem 5 in [10] this probability tends to 0 for N → ∞. Therefore,
for N large enough, β�1; L; N� also satisfies (2.20). Since the r.h.s. of this
inequality does not depend on L,

α�N� ≤ 1
2

3−d
(
1−

√
1− 4 · 3dc1 exp�−c2N

1/2�
)
;(2.21)

which implies the claim of the proposition.
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So, let us now show (2.18). For this we pick z ∈ B0�L� and introduce the
sets

N �z� x= �x ∈ Zdy x ∗∼ z�; M 1 x= N �z� ∩B0�L�;

M 2 x= B0�L� \ �M 1 ∪ �z��:
Note that by the choice of L these sets are nonempty. The σ-field σ�Yx; x ∈
BL0 \ �z�� is atomic and the atoms are of the form ν1 ∩ ν2 with νi ∈ �0; 1�M i

.

Lemma 2.3. There exist strictly positive constants c3, c4, c6, c7, depending
only on �p; d�, such that

Q
ρ
N��Yz = 0� ∩ ν1 ∩ ν2� ≤ c3e

−c4NQ
ρ
N�ν2� + c6e

−c7N
1/2
Q
ρ
N�ν1 ∩ ν2�:(2.22)

Proof. It is enough to verify (2.22) for ρ = 0 and ρ = 1. Then by convexity
it holds for any ρ ∈ �0; 1�. We begin with the case ρ = 1. We have

Q1
N��Yz = 0� ∩ ν1 ∩ ν2� ≤ P�Rc

z ∩ ν2� + P�Scz ∩ ν1 ∩ ν2�;(2.23)

where we have dropped the N dependence of the events Rz and Sz [defined
in (2.9) and (2.10)] and with a slight abuse of notation we have identified νi

with φ−1
N �νi� [see (2.11)].

From Theorem 3.2 in [11] and Theorem 5 in [10], we know that

P�Rc
z� ≤ c3 exp�−c4N�:(2.24)

By the definition of the event S, it is obvious that, for certain strictly positive
c5, c7,

exp�−c5�N1/2�� = P�Scz� ≤ c6 exp�−c7N
1/2�:(2.25)

Using the fact that, under P, Rz is independent of ν2 and Sz is independent
of ν1 and ν2, we obtain (2.22) for ρ = 1. The case ρ = 0 is obvious [using (2.24)
and (2.25)]. 2

We now obtain by the lemma above

Q
ρ
N�Yz = 0 � ν1 ∩ ν2� ≤ c3 exp�−c4N�

1
Q
ρ
N�ν1 � ν2� + c6 exp�−c7N

1/2�:(2.26)

The next step is to derive a lower bound on Q
ρ
N�ν1 � ν2�. It is convenient to

introduce for i ∈ �0; 1� the sets

Ci�ν1� x= �x ∈M 1y ν1
x = i�:

Using �Yx = 0� ⊇ Scx, we have first, for ρ = 1 and ρ = 0,

Q
ρ
N�ν1 � ν2� = Qρ

N

[ ⋂

x∈C0�ν1�
�Yx = 0� ∩

⋂

x∈C1�ν1�
�Yx = 1� ∩ ν2

]/
Q
ρ
N�ν2�

≥
(

exp�−c5N
1/2�

)3d
Q
ρ
N

[ ⋂

x∈C1�ν1�
�Yx = 1� � ν2

](2.27)
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[note that �N �z�� = 3d−1]. By convexity [and by rewriting (2.27) with absolute
probabilities], we see that (2.27) extends to all ρ ∈ �0; 1�. We now proceed as
follows:

Q
ρ
N

[ ⋂

x∈C1�ν1�
�Yx = 1� � ν2

]
≥
(

1−
∑

x∈C1�ν1�
Q
ρ
N�Yx = 0 � ν2�

)

+

≥
(

1−
∑

x∈M 1

Q
ρ
N�Yx = 0 � ν2�

)

+

≥ �1− 3dβ�ρ; L; N��+;

(2.28)

where β�ρ; L; N� is the quantity defined in (2.17). Combining (2.26), (2.27)
and (2.28), we see that, for any ν1 and ν2,

Q
ρ
N�Yz = 0 � ν1 ∩ ν2� ≤ c3 exp�−c4N+ 3dc5N

1/2�
�1− 3dβ�ρ; L; N��+

+ c6 exp�−c7N
1/2�:(2.29)

Since the r.h.s. of the last inequality is independent of ν1, ν2 and z, β�ρ; L; N�
is itself bounded by the expression on the r.h.s. of (2.29). Note that, if 1 −
3dβ�ρ; L; N� ≤ 0, then (2.18) is trivially satisfied. Therefore, we can assume
1−3dβ�ρ; L; N� > 0. In this case, by using the bound given in (2.29), we can
easily verify (2.18) for certain positive c1 and c2. 2

3. Construction of a short path. The heart of the proof of our main
theorems is a deterministic construction of a path between two sites in the
same cluster. The construction uses the renormalization of the previous section
and involves microscopic and macroscopic arguments at the same time.

Let us first introduce some additional notation. In the whole section we
consider a fixed microscopic configuration ω ∈ �. We also fix some integer N
and look at the induced macroscopic configuration φN�ω� ∈ �′. We denote by
C ∗ the set of all ∗-connected macroscopic black clusters; that is, the elements
of C ∗ are the ∗-connected components of the set of black sites of Zd. For i ∈ Zd

we denote by C∗i the element of C ∗ containing i. We use the convention that
C∗i = \, if i is white.

For a finite subset 3 ⊆ Zd we introduce different types of boundaries,
namely,

∂ out3 x=
{
i ∈ 3c: ∃ j ∈ 3; �i; j� ∈ Ed

}
;(3.30)

∂ in3 x=
{
i ∈ 3: ∃ j ∈ 3c; �i; j� ∈ Ed

}
;(3.31)

which are called the outer (respectively the inner) boundaries of 3. We shall
use the convention that for a white site i ∈ Zd we define ∂ outC∗i = �i�.

Observe that for any finite set 3 ⊆ Zd there are only finitely many connected
components of 3c and exactly one of them has infinite cardinality. We denote
these components by 3c1; : : : ; 3

c
k and assume that 3c1 is the infinite component.

We call the components 3c2; : : : ; 3
c
k holes. If 3c is connected, then we say that
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3 has no holes. We set

3̂ x= 3 ∪ 3c2 ∪ · · · ∪ 3ck:(3.32)

We define the external outer (respectively, external inner) boundary of 3 as

∂ out
ext 3 x= ∂ out3̂;(3.33)

∂ in
ext3 x= ∂ in3̂:(3.34)

By Lemma 1.1 in [11] we have the following property, which is crucial for
the remainder of our discussion:

For any finite ∗-connected set 3, the external boundaries ∂ out
ext 3

and ∂ in
ext3 are ∗-connected.

(3.35)

The last definition we need is the notion of surrounding sets. For two subsets
U, V of Zd we say that U surrounds V if V ⊆ Û. An equivalent definition is
that any self-avoiding path of infinite length starting at some point of V hits
U. In particular, any finite set is surrounded by itself as well as by its outer
(respectively, inner) external boundary.

We now come to the main result of this section. We consider two sites x,
y ∈ Zd. Let a�x� and a�y� be the unique sites of the renormalized lattice such
that x ∈ Ba�x� and y ∈ Ba�y�. For notational convenience we have dropped
the N-dependence, since N will be fixed during the whole section. We set
n x= �a�x� − a�y�� and choose a macroscopic path A = �a0; a1; : : : ;an� with
a0 = a�x� and an = a�y�. We also define the set of ∗-connected black clusters
intersecting A; that is,

C x= �C∗a; a ∈ A� = �C∗ ∈ C ∗; C∗ ∩A 6= \�:(3.36)

Our main result now is the following proposition.

Proposition 3.1. If x and y are in the same microscopic cluster, then there
exists a microscopic self-avoiding open path γ joining x to y, such that γ is
contained in

W x=
⋃

a∈A

( ⋃

b∈C̄∗a

B′b

)
;(3.37)

where B′b is the box defined in (2.7) and C̄∗a x= C∗a ∪∂ outC∗a (note that ∂ outC∗a x=
�a� if a is white). In particular, we have

D�0; y� ≤ �W�:(3.38)

Proof. It is enough to construct a not necessarily self-avoiding path lying
in W, since we can always extract from this path a self-avoiding one. Since x
and y are in the same microscopic cluster, there is an open path σ starting
at y with the endpoint x. This path is of course not necessarily in W, but we
will show that we can modify σ in such way that the modified path has all
vertices in W.
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If x and y are both in the same box B′a (this is only possible if n ≤ 2)
and moreover the site a is white, then our claim directly follows from the
occurrence of the event Ra. Therefore, in what follows, we shall assume that
ω is not such a configuration. It is convenient to prove first the following
statement.

Lemma 3.2. Assume that there is no cluster in C which surrounds both a�x�
and a�y�. Then there exists a white vertex e ∈ A with the following properties:

e is not surrounded by any cluster in Cy(3.39)

the crossing cluster of B′e is connected to x by a path contained in W.(3.40)

Proof. If there is no cluster in C which surrounds a�x�, then e = a�x�
satisfies both of the above conditions. Indeed, in this case a�x� is white and
σ leaves the box B′e (the case where x and y are both in B′e was already
excluded), so (3.40) follows from the occurrence of Ra�x�.

We denote by � the subset of C consisting of all clusters which surround
a�x�. By the previous discussion we can assume that � is not empty. We now
introduce the following order on �: for S1, S2 ∈ � we set

S1 ≤ S2 ⇔ S1 ⊆ Ŝ2:(3.41)

It is easy to see that for this order � is a totally ordered finite set and we denote
by S its maximal element. We then have a�x� ∈ Ŝ and S is not surrounded by
any other cluster in C. Moreover, because of the assumption that no element of
C surrounds a�x� and a�y� simultaneously, we see that a�y� 6∈ Ŝ and therefore
the path A leaves Ŝ. We denote by e the “last” vertex of A [recall that A is
a directed path going from a�x� to a�y�], which belongs to ∂ out

ext S. Then e is
clearly white and not surrounded by any cluster in C.

Next we show that e satisfies (3.40). For this we consider 6, the set of sites
in the renormalized lattice which correspond to the boxesBi visited by σ . Then
6 is a ∗-connected finite set containing a�x� and a�y�. Since S surrounds a�x�
but not a�y�, we see that 6 has nonempty intersection with Ŝ and also with
Ŝc. Therefore, we also have 6 ∩ ∂ out

ext S 6= \; that is, the microscopic path σ
enters the union of the boxes Bi, i ∈ 6∩∂ out

ext S. Recall that σ is a directed path
going from y to x.

Consider now σ ∩⋃i∈∂ out
ext SBi and let u be the vertex in this set with the

largest index. Let u be the vertex in ∂ out
ext S with u ∈ Bu. Then it follows from

the occurrence of Ru and from the fact that σ is not entirely contained in B′u,
that u is a vertex of the crossing cluster of B′u. We also see, using (2.13) and
(3.35), that the crossing cluster of u is connected to the crossing cluster of e
by an open microscopic path in

⋃
i∈∂ out

ext SB
′
i and therefore in W.

So we have to show that u is connected to x by an open path contained in
W. This path is constructed as follows: we follow the path σ from u (in the
direction of increasing index) until we arrive at x or hit a box corresponding to
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a white macroscopic site. If we arrive at x before hitting such a box, then the
piece of σ connecting u to x is in W and we are finished. Otherwise the path σ
enters a white box corresponding to a hole H ⊆ Sc, since, by the definition of
u, σ will never hit after u a box corresponding to a site at the external outer
boundary of S. In the following we have to distinguish between several types
of configurations, to which we shall also refer later:

(i) If a�x� 6∈ Ĥ, then we modify σ as follows. We denote by vf and by vl
the first and last vertex of σ which is in a box of H. The piece of σ between u
and vf is by construction in the union of boxes corresponding to sites of S and
therefore in W. Now vf and vl are in boxes which correspond to sites of ∂ in

extH
and because of (2.13) and (3.35) they are connected by an open microscopic
path in

⋃
i∈∂ in

extH
B′i, which is a subset of W, since ∂ in

extH ⊆ ∂ outS. So we can
replace σ between vf and vl by an open path in W.

(ii) If a�x� ∈ Ĥ, then we define vf as before. Now our macroscopic path A
intersects ∂ in

extH. Let h be a site of Ĥ ∩ ∂ in
extH. By the same argument as before,

we can connect vf to the crossing cluster of B′h by a path in W.
(iia) If there is no cluster in C which surrounds a�x�, then we can connect h

to a�x� [note that a�x� is white in this case] by a ∗-connected white macroscopic
path by just following A and the external outer boundaries of the black clusters
which eventually intersect A between a�x� and h. This implies again the
existence of a microscopic path with the required properties.

(iib) If a�x� is surrounded by another black cluster S′ in C, then we can
construct in the same way as in the case (iia) a path in W which connects u to
the crossing cluster of that box B′v, v ∈ ∂ out

ext S′, where σ enters for the last time
a box corresponding to a site of this boundary. But now we are in the same
situation as at the beginning of our construction and we can proceed in the
same way to arrive at x or at the boundary of the next surrounding cluster of
a�x� and so on. This finishes the proof of the lemma. 2

We can now proceed with the proof of Proposition 3.1. We shall have to
distinguish between two cases:

Case I [There is no cluster in C which surrounds both a�x� and a�y�]. In
this case we can directly apply the previous lemma to see that there are two
vertices e�x�, e�y� ∈ A which are both not surrounded by any cluster of C and
the crossing clusters of B′e�x� (resp. B′e�y�) are connected to x (resp. y) by open
microscopic paths lying in W.

Next we show that e�x� and e�y� are in the same ∗-connected white cluster.
Our claim then immediately follows from (2.13). The argument is the following:
if all vertices of A between e�x� and e�y� are white, then there is nothing
to prove. Otherwise let a1 be the last white vertex of A after e�x�. Since
neither e�x� nor e�y� is surrounded by any black cluster in C, a1 belongs to
the external outer boundary of some black cluster and we can connect a1 by
a ∗-connected macroscopic path to the “last” point of A, which belongs to this
boundary. We repeat the construction for this point instead of e1, and so on,
until we arrive at the first white vertex of A before e�y� and then we are done.
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Case II [There is a cluster in C which surrounds both a�x� and a�y�]. In
this case we are only interested in the smallest [with respect to the total order
defined in (3.41)] of all these clusters, which we denote by T.

Assume first that both a�x� and a�y� belong to T. If σ is contained in
the union of boxes corresponding to sites of T, then our claim is immediate.
Otherwise we follow σ (going from y to x) until it enters a white box. This box
belongs to a (possibly infinite) connected component of Tc and we know that σ
leaves this component, since a�x� ∈ T. Thus we can modify σ in the same way
as we did in the proof of Lemma 3.2 [in case (i)] using the ∗-connectedness
of the external outer boundary of T (resp., of the external inner boundary) of
each hole of T.

Consider now the case where exactly one of the sites a�x� and a�y�, say
a�y�, belongs to T. Then a�x� is in a hole H�x� ⊆ Tc. Using exactly the same
construction as in (ii) in the proof of Lemma 3.2, we can connect x by a micro-
scopic open path in W to the crossing cluster of the box, where σ leaves H�x�
for the last time. Then the next box visited by σ lies in T and we can proceed
in the same way as in the previous case, where a�x� and a�y� were both in T.

The last case to look at is the situation where a�x� and a�y� are both in
holes of T, which we denote by H�x� and H�y�, respectively. If H�x� 6= H�y�,
then we use the same construction as before to connect x and y to sites which
are boxes corresponding to sites of T.

Consider now the case H�x� = H�y� = H. By analogy to Case I we denote
by e�x� the first vertex of A after a�x� which has the property that e�x� is
white and not surrounded by any (black) cluster contained in H. Similarly,
let e�y� be the last vertex of A before a�y� with this property. By exactly the
same reasoning as in case (ii) in the proof of Lemma 3.2, we know that there
are microscopic open paths in W which connect x to the crossing cluster of
e�x� [resp. y to the crossing cluster of e�y�]. Since A intersects T, there are
vertices v1 and v2 such that v1 is the first and v2 the last vertex of A which
belongs to ∂ inH = ∂ in

extH. Therefore, we can connect the crossing clusters of
v1 and v2 traveling along white boxes corresponding to sites in ∂ in

extH. Finally,
by analogous arguments as in Case I (considering only clusters in H), we can
connect e�x� to v1 and e�y� to v2 by macroscopic open paths and this implies
our claim. 2

4. Proof of the theorems. We can now combine the results of the previ-
ous two sections to give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let N ≥ 10 and consider the renormalized lattice
as described in Section 2. For y ∈ Zd denote by a�y� the unique site such that
y ∈ Ba�y� and set n x= �a�y��. Fix a macroscopic path A of length n joining 0
to a�y�. We denote by a0; : : : ;an the vertices of this path [where a0 = 0 and
an = a�y�].

By Proposition 3.1 we know that we have, for any ρ ≥ 1,

�0 ↔ y; D�0; y� > ρ�y�� ⊆ ��W� > ρ�y��:(4.42)
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Observe that there is a constant c = c�d� > 0 such that

�W� ≤Ndc

(
n+ 1+

∑
C∗∈C
�C∗�

)
:(4.43)

Using (2.14), we obtain

P�0 ↔ y; D�0; y� > ρ�y�� ≤ PN
[
n+ 1+

∑
C∗∈C
�C∗� > ρcN−d�y�

]
(4.44)

≤ P∗p̄�N�
[
n+ 1+

∑
C∗∈C
�C∗� > ρcN−d�y�

]
:(4.45)

To estimate the last probability, we use a construction described by Fontes
and Newman [5]. The main idea is to introduce preclusters �C̃∗i �i∈Zd . These are
independent random subsets of Zd with the property that the distribution of
C̃∗i is that of C∗0 for all i ∈ Zd. Then we know by Lemma 1.3 in [4] that the
r.h.s. of (4.44) is smaller than

P∗p̄�N�

[
1

n+ 1

n∑
i=0

(
�C̃∗ai � + 1

)
> ρcN−d

�y�
n+ 1

]
(4.46)

and in the brackets we now have a sum of i.i.d. random variables. By the
results of Menshikov [9] and Aizenman and Barsky [1], we know that, for
p̄�N� large enough, we have, for some h > 0,

E∗p̄�N��exp�h��C∗0� + 1��� <∞:(4.47)

We choose N =N�p; d� such that p̄�N� is in this regime. Now N is fixed and,
for �y� large enough, we have �y�/�n+1� ≥N. We next choose ρ = ρ�p; d� such
that E��C∗0�+1� < ρcN−d+1. By Cramér’s theorem, the probability in (4.46) has
exponential decay in n (therefore also in �y�) and this proves our claim. 2

Proof of Theorem 1.2. We start again with y ∈ Zd fixed and the macro-
scopic path A of length n = �a�y�� joining 0 to a�y�. We have again

�0 ↔ y; D�0; y� > l� ⊆ ��W� > l�(4.48)

and therefore by the same argument as before

P�0 ↔ y; D�0; y� > l� ≤ P∗p̄�N�
[ n∑
i=0

��C∗ai � + 1� > lcN−d
]

≤ �n+ 1�P∗p̄�N�
[
�C∗0� + 1 > lcN−d/�n+ 1�

]
:

(4.49)

By picking N as in (4.47) and using Chebyshev’s inequality, we obtain our
claim. 2
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