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RANDOM PROCESSES OF THE FORM
X,.1=a,X, +b, (modp)

n

By MARrTIN HILDEBRAND!
University of Michigan

This paper considers random processes of the form X, ., =a,X, + b,
(mod p), where X, = 0 and the sequences a,, and b, are independent with
a, identically distributed for » = 0,1,2,... and b, identically distributed
for n =0,1,2,.... Chung, Diaconis and Graham studied such processes
where a, = 2 always; this paper considers more general distributions for
a, and b,. The question is how long does it take these processes to get
close to the uniform distribution? If a,, is a distribution on Z* which does
not vary with p and b, is a distribution on Z which also does not vary with
p, an upper bound on this time is O((log p)?) with appropriate restrictions
on p unless a, = 1 always, b, = 0 always or a, and b, can each take on
only one value. This paper uses a recursive relation involving the discrete
Fourier transform to find the bound. Under more restrictive conditions for
a, and b,, this paper finds that a generalization of the technique of Chung,
Diaconis and Graham shows that O(log p loglog p) steps suffice.

1. Introduction. Computers often generate pseudorandom number se-
quences by using recurrences such as

X,,1=0aX,+b (modp),

where p, a and b are integers. Although deterministic, the sequence X, =
0, X;, X,, ... has some properties of a random number sequence. [8] contains a
further discussion of these sequences. To increase ‘“‘randomness,” one may
combine several generators. Thus we wish to investigate properties of the
process

Xn+1 = aan + bn (mOdp)’

where X, = 0 and a, and b, are independent random variables. Throughout
this paper, we assume that a,, n =0,1,2,..., are i.i.d. and that b,, n =
0,1,2,..., are ii.d. Under many circumstances, elementary techniques, such
as those found in [7], show that these processes converge to the uniform
distribution. We ask for bounds, as a function of p, on the time it takes to get
close to the uniform distribution.

An investigation of the properties of this process where a, = 2 always
appears in [2]. Such deterministic doubling makes the process converge to the
uniform distribution much faster than where a, = 1 always. Chapter 3 of [5]
investigates cases where a, always is a fixed integer a > 1; the techniques and
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results parallel those of [2]. That chapter also considers some cases where a
varies with p. Chassaing [1] shows that a particular process, where a, = m
and b, =0,1,...,m — 1, uniformly is an optimal process on the integers
mod p where there are m uniform choices at each step. Chassaing leaves open
questions about processes with nonuniform choices as well as determining the
actual rate of convergence for the random processes we are studying here.

One may wish to bound the rate of convergence of some processes where b,
has one value or a, has different values such as 3 or 2. This paper presents a
technique which enables one to get reasonable bounds. The key part of it is the
use of a recursive formula for the discrete Fourier transform P, (%) to bound
max,, , P, (k)| in terms of a constant times max, , o|P,(%)I.

For each of the cases considered in this paper, a, and b, have distributions
which do not depend on p. (Some cases where a, or b, have distributions
which do depend on p are discussed in [5]. These processes sometimes have
very different behavior.) a,, has finite support on Z*, and b, has finite support
on Z. All constants in this paper may depend on the distributions for ¢, and
b,.. The result is the following theorem.

TuEOREM 1. With certain restrictions (described below) on p, O((log p)?)
steps suffice to make ||P, — Ull = 0 unless a, = 1 always, b, = 0 always, or
both a, and b, can take on only one value.

The restrictions on p in Theorem 1 depend on the following conditions:

.(a,p)=1if P(a,=a)>0.

. (b, p) = 1 for some b such that P(4, = b) > 0.

. (@, — @y, p) = 1for some G, and d, such that P(a, = @,), P(a, = d,) > 0.

. Let f(x) = L,.zP(b, = b)e?* If b, has more than one possible value,
| f(x)] = 1 at a finite number of points e;/c with 0 <e; < c for all e; and ¢
is a positive integer chosen to be as small as possible so that the e,’s are
integers. (There may be no such e; for some distributions for b,. In this
case let ¢ = 1.) The condition on p is that (p,c¢) = 1. (If b, has only one
possible value, view this condition as false for all p.)

i e

The restrictions on p in Theorem 1 are that p must satisfy the first three
conditions if b, can take on only one value, and otherwise p must either
satisfy conditions 1, 2 and 3 or satisfy conditions 1 and 4.

The restrictions on p above enable the theorem to be proved. Furthermore,
due to problems such as parity, some restrictions are necessary for the process
to converge to the uniform distribution. For example, if p is even, b, =1
always and a,, = 2 or 1 with probability 1/2 each, then odd numbers appear in
the stationary distribution with probability 2 /3. '

Furthermore, we prove the following theorem.

THEOREM 2. Ifb, has more tﬁan one possible value and it is not the case
that a, = 1 always, then, if ¢ defined in condition 4 is 1 and p is restricted to
satisfy condition 1, then O(log p loglog p) steps suffice to make ||P, — Ul = 0.
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2. Background. This section gives some background found in [2], [3]

and [5].
Let P,(j):=Prob{X, =j}, 0 <j <p — 1. Define the variation distance

between P, and U by
1
1B, = Ull= 5 X|P.(j) = 1/p].
J

It is easy to show [|P, — Ull = max, _z,,7|P,(A) — U(A)|.
Let ¢ = q(p) = e?™'/P, Define the Fourier transform f: Z/pZ — C by

f(ky="¥ a™*f(j).

JEZ/pZ
The following lemma will be the starting point for finding our bounds.

UPPER BOUND LEMMA.

1 2
1P - U = (1) - V()
APDILORLE)
1 2
< 2P ZIPG) - V)|
J
- 4 TIEG)F
4,50 '

To prove this, we have used the Cauchy-Schwarz inequality, the Plancherel
theorem, U(k) = 0 if & # 0, and P(0) = U(0) = 1.

A more general upper bound lemma is described and used in [3]-[5].

To use the upper bound lemma here, we need to bound | P,(k)| for & # 0; we
do so by using the recursive formula for P,(k).

3. Recursive formula for the Fourier transform. Let P,(j) =
P(X, =j). Let q == q(p) = e*™*/P. The following lemma relates P,,, to P,.

LemMa 3.1.  If P satisfies condition 1, then
P,.(k) = ¥ ¥ P(a, =a)P(b, =b)P,(ak)q"

a>1beZ
- (EIP(a,, = a)pn(ak))(bgzp(lf" B b)qbk)'

Proor. Suppose X,.;=j, a,=a and b, =b. Then j=aX, +b and
X, =(1/a)j — b). Note that 1/a exists in Z/pZ since (a, p) = 1. Thus

P,.1(j) = ¥ X P(a,=a)P(b, =b)P,((1/a)(j - b)).

a>1beZ N
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Thus
Pn+1(k) = E Pn+1(j)qjk

Jj€Z/pZ

Y Y XY P(a,=a)P(b,=b)P,((1/a)(j - b))g’*

a>1beZ jeZ/pZ

=Y Y Y P(a,=a)P(b,=b)P,((1/a)j)qV+*

a>1beZ jeZ/pZ

=Y Y Y P(a,=a)P(b,=0b)P,(j)qID*
a>1nelZ jeZ/pZ

=Y Y Y P(a,=a)P(b,=0b)P,(j)g/*"qbt
a>1beZ jeZ/pZ

= X X P(a,=a)P(b, =b)q"P,(ak). =
a>1beZ

Lemma 3.1 also provides an expression relating P, , to P,:

COROLLARY.

pn+2(k) = E E E Z P(an = dl)P(bn = 5I)Qi)IkP(a’n = 6’2)

61216521 4,eZ byeZ
XP(b, = by)q®*P, (G,d,k).

4. The strategy. We shall relate the upper bound lemma to the use of the
discrete Fourier transform. Our strategy will involve partitioning the integers
mod p into sets and bounding the length of the discrete Fourier transform in
each set. Once this becomes small enough, we use the upper bound lemma to
bound the distance from uniform.

Partition Z/pZ into {0}, S,,, S,u +1,-++»Sm,—1» S, and T'. Let

S ={0}u r[nj S;.

i=m,

In other words, let S be the complement of T in Z/pZ. Let d be a constant
less than 1 and a be a positive integer.
Examine Table 1. If

1B, om(B)| < (¢ + 2(k, m)(1 = ¢)) M,
where

\,\ M, = max|P ()|,
k%0

k#0, r is a constant integer and x(k,m) is the entry in the column
containing %k at time n + mr, then we can conclude the following.
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TABLE 1
Outside S S, “Spy-1 [ —

n 1 1 1 1
n+1r 0 1 1 1
n+ 2r 0 d 1 1
n+ 3r 0 d? 1 1
n+(a+ Dr 0 de 1 1
n+ (a+ 2)r 0 de+l d

n+(a+ 3)r 0 det? d? 1
n+ (2a + Dr 0 d2e de 1
n+ (2a + 2)r 0 d?e+1 detl d

LEmmA 4.1. If my, — m, is no larger than a constant times log p and n is
larger than a constant times (log p)?, then |P, — U|l > 0 as p — .

Proor. If s is larger than a large enough constant times log p, then if
k#0,

|8, u(B)] < (¢ + (1= ¢)d) M,
Let ¢" = (¢’ + (1 — ¢')d); ¢” is a constant less than 1.

Let ¢ be an integer such that (¢”)’ < 1/p; ¢ can be made smaller than an
appropriate multiple of log p. Then

|B,,(k)| < (1/p)M, = 1/p,
and
IR, — Ul* < +p(1/p)* = 1/(4p) = 0

as p = . O

5. Proof when p satisfies conditions 1, 2 and 8. Theorem 1 is true in
cases where p satisfies the first three conditions. Let d and é be the values @,
and @, in condition 2 with é > d. In the expansion for P, ,,(k) in the
Corollary of Lemma 3.1, there are terms

P(a, =d)P(a, = &)(P(b, = b))*(¢**q*%* + q®*q*®*) B, (dék).
Choose a nonzero value of b such that P(b, = b) > 0. Note that (g*qbdk +
qP*q%) = qPhqbIR(1 + g% D). Let h(k) =1 + g*¢~D*|; (k) is close to 2
when £ is close to Ip /(b(e — d)) for some integer [. Since (p, b(é — d) =1,
h(k) is not 2 unless [ is a multiple of (¢ — d). In that case, # = 0 (mod p).

. Write &k as Ip /(b(e-d)) + 8,"where [ is an integer chosen so that || is as
small as possible. Let S be the integers mod p such that

18] < ——‘_—'p;—,
2b(é — d)a?,,
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with @, == max,. py, _q)>0) @- There exists a constant ¢’ < 1 such that if
|2, +z(k)| > ¢'M,, then £ must be in S.
Partition S — {0} into sets S; as follows. Let

s, = {k: keZ/pZ, |5l e [zi—1,2i)} nS.

Note that |8] > 1/(b(é — d)). Thus s, the number of nonempty sets, is no
more than a constant multiple of log p. Let m, be the smallest ¢ such that S,
is nonempty and m, be the largest such i. If £ € S;, note that d,d,% & {0} U
S;uS,_;u---u8S, if Pla,=4d,),Pla,=3dy) >0and 1+ d,d,.

Let d, be the sum of the absolute values of the coefficients of the B (k)
terms in the expression for P, ,(k) in terms of P,(- ). Since P(a, = 1) < 1,
then d, < 1. Let d be such that d, <d < 1. Let a be such that d" <d - do.
Note that a does not depend on p.

One can show the following.

LEmMma 5.1. For k # 0,
1B, am(R) < (¢ +x(k, m)(1 ~ ¢)) M,

where x(k,m) is the entry in the column containing k at time n + mr in
Table 1.

Proor. We proceed by verifying a column from top to bottom and consider-
ing the columns from left to right. Note that M, is nonincreasing as n
increases. Thus the lemma is true for & outside S, which corresponds to the
first column. The lemma is true for any entry, including all in the first row,
with value 1.

Let us verify the lemma for another entry. Note that each row is nonde-
- creasing as you go from left to right. Suppose %2 € S,. Suppose we have verified
the lemma for all entries in columns to the left and all entries in the column
for S; in rows above the row for time n + (m + 1)r. Suppose also that the
entry just above the entry we are examining is d /=% and the entry just to the
upper left of the entry we are considering is d’. Then

|1)n+(m+1)r(k)I <d0| +mr(k)I

+(1-d max |P k)|
( O)koesmu S US,,, Ulk: k£ S) nemr(k)

<ScEM, + (1= )M, (dod* + (1 —d,)d")
<cM,+(1-c)M,d*+1,
So we make this entry d”~**! (as in Table 1) and satisfy the lemma. O

Thus the theorem holds true in this case.

6. Proof when p satisfies conditions 1 and 4. This case is similar to
the previous case. We develop sets S; as before, and we use Table 1 except that
we let r = 1 instead of letting r = 2.
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Define f(x) and c as in condition 4.

Let S={k € Z/pZ: (k/p) = (é/c) + & with |8] < 1/(2a,,,.c)} where ¢ is
an integer chosen so that || is as small as possible. Note that 6 + 0 if & + 0
(mod p) since (¢, p) = 1. Divide S into sets {0} and S;:={k € S: pldl e
[2¢71,21)} N S. There are no more than a constant times log p nonempty sets.
Let m, be the smallest i such that S; is nonempty and m, be the largest such
i.1fa>1, P(a, —a)>0andkES then ak € {0} U S,, LU US;

Note that by the continuity of f(x) and by Lemma 3 1, lf k& S then
IPn+1(k)| < ¢'M,, for some constant ¢’ < 1.

Let d, = P(a =1). Let d be such that d, < d < 1. Note that
P(a, = 1) < 1. Let a be such that d® < d — dy.

By using an argument similar to that of Lemma 5.1, we can show the
following.

LEMMA 6.1. For k + 0,
1By m(R) < (¢ +x(k,m)(1 =) M,

where x(k, m) is the entry in the column containing k at time n + mr in
Table 1.

This lemma completes the proof of Theorem 1. O

7. Proof of Theorem 2. Theorem 2 is a generalization of results found
in [2] and in [5], Chapter 3. Those results deal with cases where a, can take on
only one possible value a. There we can use the “a-ary’”’ expansion of a
fraction to get our bound. In this example, we cannot use the a-ary expansion,
but we still use many of the techniques of [2] and [5], Chapter 3.

Suppose b,, is such that ¢ in condition 4 is 1 and that p is restricted by
condition 1.

Note that the values for b, b, by, ... are independent of the values chosen
for ay,a,,a,,.... So we can consider a specific choice of values for a,, for
example ap=2,a,=38,a,=2,a3=2,a,=3,....Given this sequence for

,let b, n=0,1,2,..., be independent random variables with the same

no
dlstrlbutlon as before
X,;1=0,a,_1 " aby+a, - ab; + - +a,b,_ +b, (modp).

n

Thus, given k € Z/pZ,
|I}én+l(k)|2 = g(ana’n—l e a’lk/p)g.(a’n T a2k/p)
g(a,k/p)g(k/p),

~where R, is the probability d1str1but10n of X, given the specific values of a,,
i=0,. — 1, g(x) == | f(x)|? and f(x) is as defined in condition 4; f(x) i 1s
just the dlscrete Fourier transform of b,

We shall show the following.

(*)
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LEmma 7.1. If there are more than c, log p loglog p values for a; # 1 for

=1,...,n, where c, is a constant which depends only on the probability
distributions for a, and b,, then

IR, = Ull <e(p),

where e(p) > 0 asp > .
Theorem 2 will follow from this lemma and the following propositions.

ProposITION 7.1. There is a constant c, which depends only on ¢, and
P(a, = 1) such that if n > c,log p loglog p, then the probability there are no
more than c, log p loglog p values of a; + 11is less than e,(p), where e,(p) — 0
asp — .

ProposITION 7.2. If n > c,log p loglog p, then
IP, = Ull < eyp) + e5(p).

Proor oF LEMMA 7.1. Let x €[0,1). Although we cannot use the a-ary
expansion, we can make an expansion based on the specific values for
[ T

A1A2 cet An.

Start with x. Multiply it by a,. Let A; be the integer part of the result.
Continue on with the fractional part of the result. Multiply it by @, _,. Let A,
be the integer part of the result, and continue on with the fractional part.
Continue through a;.

Certain values A; may have been produced by multiplication by 1. (In these
cases A; will always be 0.) Remove A; from the expansion in this case.

Let a =MmaX(,. pe,—a)>0) @ Consider g(x) when x is in [1/d%,,,
1-Q1 /a?mx)] There |g(x)| < b, where b is a constant less than 1. Define

b, ifxe[l/a%,,,1~ (1/a%y)],
1, otherwise;

h(x) = {

g(x) < h({x}), where {x} denotes the fractional part of x.

Let ¢ = [log, pl. Choose m = rt so that r is an integer depending on ¢. (We
shall define r more explicitly later.)

In the expansion A;A, --- A, (with terms corresponding to a; =1 re-
moved), there may be under m terms left. We shall define n and m so that the
probability of picking such a; is low. So let us examine the case where there
are at least m terms left.

Are there conditions which assure us that {a, ‘- a;k/p} €[1/d%,,,
1 - (3/a%, )P If a; = 1, we shall not look for such conditions. Otherwise look
at A,_;,; (which Was not removed). If A, _;,; is neither 0 nor as large as
pOSS1ble {la, - a;k/p} €1/a%,, 1~ (l/amax)] Furthermore, unless
A, i s the last term not removed, it is followed by another term A, with
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I>n—j+1 Unless both A, _;,;, and A; are both 0 or both as large as
possible, then {a, --- a;k/p} € [l/amax, 1- (l/amax)]

Define “blocks” B,,; "each of length ¢ on A;A, --- A, (with the terms
corresponding to a; = 1 removed). If A; is as large as poss1ble Ge., A; =
@,_;+1 — 1), replace it with a ,, — 1:

r

(%) < [To4EB,
i=1
where A(B) is the number of “generalized alternations” in the block B. A
generalized alternation is either an alternation (i.e., where A, # A, ,, where
A, and A, are adjacent values in the block) or a case where all values in the
block are identical and not 0 or a,mlx — 1. Thus

IR, - UlI*< 7 Z l‘Ib‘“Bkl
4 ,50i=1

Note that, for any value of k/p, a block of this length must have at least
one generalized alternation no matter what values we pick for a; unless £ = 0
(mod p). Recall condition 1. Note also that all the blocks B,; are distinct for a
given i. The set of blocks {B,;} may in fact be different from the set of blocks
{B,,). This poses a difference from the arguments of [2] and [5], Chapter 3.

Define C;;, I = 1,2,...,(a% — (p — 1) — 2) as follows. Let C;; be a ¢-tuple
with entries in {0,1,...,a,,, — 1} such that C;; is not B,; for a nonzero
ke Z/pZ, C,, is not C,; if I' <!, and C;; is not all 0’s and is not all
(@ 0 — 1)’s. (Where there is an arbitrary choice for defining C;;, any choice
suffices.) Thus, since b > 0,

1 @ (p-D-2) r
IR, -UP <> ¥ Loty % 1640,
4 E+0i=1 4 =1 i=1

Note that for a given i the set of all B,, and C,, includes all ¢-tuples not
identically equal to 0 or @, — 1.

To proceed, we use ‘interchanging,” developed in [2].

If @ < ¢ and b < d are nonnegative real numbers, then bc + ad < cd + ab.
By applying this repeatedly, one can show the following.

LemMmMA 7.2.
S r S
Z l_[ Cry = Z l_[ = ) aj,
Jj= 1i=1 j= = Jj=1
where ; is a permutation of 1,...,s, and a; > 0.

Proor. To see this, consider the product whose first term is the smallest
,value. Now find the product whose second term is the smallest value. If the
products are the same, perform no interchange. Otherwise, the two products
look like
ace and bdf,

where a < b and d < c.
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If e<f, then ae < bf and ace + bdf < ade + bcf. Interchange just the
terms d and c (here the second term) and increase the sum.

If f<e, then df < ce and ace + bdf < adf + bce. Interchange everything
after @ and b (here only first term). After both kinds of interchange, the sum
is larger and the smallest elements for the first two terms are in the same
product.

Repeat the argument until the product has all terms which are the smallest.
Note that the sum does not decrease at any point.

Recursively repeat the procedure by considering only the portion of the sum
which does not include the product of the smallest value multiplied by itself r
times. If there is only one term left, it is the product of the largest term
multiplied by itself r times. O

We can use Lemma 7.2 to conclude that

1
IR, -UlIP<— Y b4®,
4 \ength B=t
A(B)>0
Let M(j) denote the number of blocks B of length ¢ with A(B) =j. Then

M(]) < a’ma.x(t ; 1)(amax - 1)j + le(amax - 2)

< 2| ) @ = 1Y
t Jj
Szamax(j)(amax_ 1) ’

where §,; is the Kronecker delta function.
Thus

1 ¢ .
IR, - Ul><— Y M(j)b"
4 =
J
2a ¢

L (4]0 @ = 1Y

4 o

= g—';i‘i((l + ((Amax — 1)07))" = 1)

< a%(exp(t(am ~1)b7) - 1).

<

For

log(#(a@max — 1))
—log b

IR, — Ul® < (a,./2 exp(b?) — 1). As d — =, the right-hand side goes to 0.

Thus Lemma 7.1 is proved, and Theorem 2 follows from Lemma 7.1 and

Propositions 7.1 and 7.2. O

+d,
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8. Questions for further study. This work still leaves open a number of
questions. What is the ““correct’” answer? Are there examples where O((log p)?)
steps are necessary? Could there be different orders for the correct answers for
different p? For example, [2] shows that O(log p) steps suffice for almost all p
but that O(log p loglog p) steps are necessary for certain p if a, = 2 and
b, = 1,0, —1 uniformly. Computer results suggest that a similar thing hap-
pens for a, = 2,1 uniformly and b, = 1. Recent work [6] expanding upon the
arguments in this paper shows such results.

Some random processes on finite groups exhibit a cutoff phenomenon,
where the distance from uniform is close to 1 before a transition point and
close to 0 afterwards. Formally, if n is the size of the group, then if, for all
€ > 0, there is a function f(n) such that

” P _oyfiny — U” -1,
I Piaseryenyy = U = 0,

then the process has a cutoff phenomenon. For examples of this phenomenon,
see [3] and [5]. It is still open whether there is a cutoff phenomenon for the
processes studied in this paper and, if so, which processes exhibit it.
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