Open Access
October, 1992 Large Deviations for a Class of Anticipating Stochastic Differential Equations
A. Millet, D. Nualart, M. Sanz
Ann. Probab. 20(4): 1902-1931 (October, 1992). DOI: 10.1214/aop/1176989535

Abstract

Consider the family of perturbed stochastic differential equations on $\mathbb{R}^d$, $X^\varepsilon_t = X^\varepsilon_0 + \sqrt{\varepsilon} \int^t_0\sigma(X^\varepsilon_s)\circ dW_s + \int^t_0 b(X^\varepsilon_s) ds,$ $\varepsilon > 0$, defined on the canonical space associated with the standard $k$-dimensional Wiener process $W$. We assume that $\{X^\varepsilon_0, \varepsilon > 0\}$ is a family of random vectors not necessarily adapted and that the stochastic integral is a generalized Stratonovich integral. In this paper we prove large deviations estimates for the laws of $\{X^\varepsilon_., \varepsilon > 0\}$, under some hypotheses on the family of initial conditions $\{X^\varepsilon_0, \varepsilon > 0\}$.

Citation

Download Citation

A. Millet. D. Nualart. M. Sanz. "Large Deviations for a Class of Anticipating Stochastic Differential Equations." Ann. Probab. 20 (4) 1902 - 1931, October, 1992. https://doi.org/10.1214/aop/1176989535

Information

Published: October, 1992
First available in Project Euclid: 19 April 2007

zbMATH: 0769.60053
MathSciNet: MR1188048
Digital Object Identifier: 10.1214/aop/1176989535

Subjects:
Primary: 60H10
Secondary: 60F10

Keywords: anticipating stochastic differential equations , large deviations , Stochastic flows

Rights: Copyright © 1992 Institute of Mathematical Statistics

Vol.20 • No. 4 • October, 1992
Back to Top