Abstract
Consider the family of perturbed stochastic differential equations on $\mathbb{R}^d$, $X^\varepsilon_t = X^\varepsilon_0 + \sqrt{\varepsilon} \int^t_0\sigma(X^\varepsilon_s)\circ dW_s + \int^t_0 b(X^\varepsilon_s) ds,$ $\varepsilon > 0$, defined on the canonical space associated with the standard $k$-dimensional Wiener process $W$. We assume that $\{X^\varepsilon_0, \varepsilon > 0\}$ is a family of random vectors not necessarily adapted and that the stochastic integral is a generalized Stratonovich integral. In this paper we prove large deviations estimates for the laws of $\{X^\varepsilon_., \varepsilon > 0\}$, under some hypotheses on the family of initial conditions $\{X^\varepsilon_0, \varepsilon > 0\}$.
Citation
A. Millet. D. Nualart. M. Sanz. "Large Deviations for a Class of Anticipating Stochastic Differential Equations." Ann. Probab. 20 (4) 1902 - 1931, October, 1992. https://doi.org/10.1214/aop/1176989535
Information