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A GENERALIZATION OF HOLDER’S INEQUALITY AND
SOME PROBABILITY INEQUALITIES

By HELMUT FINNER

Universitdt. Trier

The main result of this article is a generalization of the generalized
Holder inequality for functions or random variables defined on lower-
dimensional subspaces of n-dimensional product spaces. It will be seen that
various other inequalities are included in this approach. For example, it
allows the calculation of upper bounds for the product measure of n-dimen-
sional sets with the help of product measures of lower-dimensional marginal
sets. Furthermore, it yields an interesting inequality for various cumulative
distribution functions depending on a parameter n € N.

1. Introduction. We first recall the generalized Holder inequality in
terms of a measure-theoretic approach. Let (Q, &7, u) be a measure space and
let L,(, &, u) be the set of p-integrable (1 <p < ) measurable functions
from (Q, &) into (R, ), where # denotes the Borel o-field over R. Let
m>2, p;>1 with £ ,p7'=1 and let f; eLpJ(Q,.Q/,p.), ji=1,...,m.
Then it is well known [see, e.g., Kufner, John and Fuéik (1977), page 67] that
IT7,If;l € L(Q, &7, u) and

m m 1/p;
(1.1) [J]:Illf,-ldu < ,-11 (/lfjv’f dﬁ) ,

with equality iff either there exists at least one j with [If;/”” du = 0 or there
exist constants A; > 0, j = 1,..., m, such that

AP = - = AP (],
(1.1) is called the generalized Holder inequality. If 0 < u(£)) < «, then it can
be shown with (1.1) that for 1 <p < ¢ and f€ L (Q, &, ),

. 1/p 1/q
(1.2) w(@) (i1 du) < (o) firr )
with equality iff || = const [u].

In terms of a probability measure P and expectations of random variables
X;, j=1,..., m, one may write (1.1) as

m m
ETTIX;| < [T (BIX,FP)"7, -
j=1 j=1
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1894 H. FINNER

and for 1 < p < q < « it follows from (1.2) that
(EIXPYY? < (EIX17)Y7.

In this article we are concerned with a generalization of (1.1) for measure and
probability spaces (2, o7, u) being the product of spaces (Q;, &, u,), i =
1,...,n, and measurable functions f;, j =1,...,m, defined on lower-dimen-
sional subspaces of (), &7, P). It will be seen in Section 2 that as the f; are
defined on subspaces of the original space ({2, &7, u) there is an improvement
[if w(Q) < =] and generalization of the classic generalized Hdolder inequality
(1.1). Furthermore, this new inequality includes two other interesting variants
of Hoélder’s inequality, the Gagliardo inequality [Gagliardo (1958)] and the
Loomis-Whitney inequality [Loomis and Whitney (1949)]. Although these
inequalities were only proved for Lebesgue measure, they hold true for arbi-
trary product measures. The generalized Loomis-Whitney inequality for
(probability) measures especially allows some interesting applications in Sec-
tion 3. For example, for various distribution functions F, depending on n € N,
the inequality F,(2)/" > F,, (2)/"*D, z € R, will hold true. This type of
inequality has been proved by other methods in Finner (1990) for the distribu-
tion function F, of the range of n iid random variables with arbitrary
distribution function F.

2. A generalization of Holder’s inequality. To establish notation, let
I,={1,...,n}, n €N, and let (Q;, &, u;), i €1,, be measure spaces. For
d+Scl, let (Qg, g, ug) be the product space of (Q;, o, u;) for i € S
with Qg = X, sQ;, Fg= ®; & and ps = @, su;.

THEOREM 2.1. Letm e N, M ={1,...,m},@+8,cl,, p;=>1 forj €M,
M,={jeM: S;3i} fori €1, such that T,y p;* =1 forall i €I,. Let
(Q;, o, 1), i €1,, be measure spaces and f; € L,(Qg, s, us), jE€M.
Then T1;c mlfil € L(Qy, o , 1) and

(2.1) fﬂ Ifldu; < 'gl(flfjlpj dlLSj)l/pj.

JEM

To characterize equality in (2.1), assume without loss of generality and for the
sake of simplicity that M, +# M forallr,s € I, with r # s and [|f;I"/ d/.LSJ >0
for all j € M. Then equality holds in (2.1) if and only if

for all jEM and i €S, there exist functions f;; €
L,(Q;, A;, u;) and constants Aj; > 0 such that:

@ If;l = l—[iesjlfjil [[.LSJ] forallj € M,
) AP = APl dforalli €1,,r,s € M,,r +s.

(2.2)

Proor. The proof is by induction over n. For n = 1, (2.1) reduces to the
classic generalized Hélder inequality (1.1). Now let (2.1) hold true for n — 1
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with n > 2. Let i € I, and set J;, = I, \ {i}. Then it follows from Fubini’s
theorem and (1.1) that

[ T1idu,

Q jeM

= [ [ TTildw;du,,

0, jeM

“f, I T i,

1/p;
<[ TI Wil (f If!”fduz) du,,

Q, jeEM \M; ° jeM

dlLJ

1/p;
- ([
jEM S;={i}
1/p;
<[ T If ( P dm) du,
/ﬂJljeM\Mi jJEM 8+ ) J g

=A (say).

Applylng the induction hypothesis to the functions g; = f;, j € M \ M; and
= (Jo IfiI" du)V/?s, j € M; with S; # {i} now yields

1/p;
A< T (/ﬂ_wpfd,ti) I1 (/ F dus,

JEM;: S;=(i) JjeEMN\M,

1/p;

1/p;
X f Il du, d#sj\(i))

JEM;: S #(1)( Qs NS

= I1 ( [, 16 dus,

JEM

which completes the proof of (2.1).

The sufficiency of (2.2) for equality in (2.1) is obvious. Assume now equality
in (2.1) and [If;I” du s, >0 for all j € M. Then the necessity of (2.2) will be
shown by induction. For n = 1, (2.2) reduces to the corresponding condition
for equality in (1.1). For n > 1 it suffices to show part (a) of (2.2) since then
the necessity of (2.2)(b) follows by Fubini’s theorem and the equality condition
for (1.1). The induction hypothesis implies that for every i € I, the functions
g, appearing in the proof of (2.1) must satisfy (2.2). Thus all functions f; with
J € M \ M, depending on at most n — 1 components «x,, r # i, satisfy (2.2). If
Uier(M\N M) =M, the proof is complete. Otherwise, there exists at least
one jy€M with S;=1,. In this case let L, = {j: S%I}and L
{j: S; =1,}. Note that the conditions M, # M, for r#s and ZJGMP, 1
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imply L, # @ and U <, I,,. Since (2.2)(a) is satlsﬁed for all f; with
J € Ly, there exist f;; € L (JQZ, A;, p;) such that If;| = TT; < s |fjl [mg ] for all
j €L, Set h l'[JeLlifﬂI and ¢ =0-X;.,.p;i D" ‘1" Noting that
ZjeLlnM p, =q7 1! for all i1, it may easily be seen that h; €
L(Q;, A, u;) for all iel,. Furthermore equality in (2.1) ;mphes
(/HJELIIf' dug, MW= JeL(flf i dps, )V/Pi, Since IT; < ¢ If;l = T1;cp Ryl it
follows by applymg (1.1) that

J T dws, = [ Tl TT 51,
JEM

JEL,
1/q 1/p;
< h|?d ( 1P d ) ,
[y e I (f e
1/p;
- T (firP aus)
JEM

with equality iff there exist constants B; > 0, j € L,, such that
B, T112)"% = |f}l [n;] forall j € Ls,.

zEI

Setting f;; = lehilq”’f for j € L, and i € I,, the proof is complete. O
REMARK 2.1. Note that ¥, yp; '> 1iff S; # I, for at least one j € M.

Furthermore, assuming 0 < u;(Q; 5 <o, i€ I (2. 1) 1s an 1mprovement of

(1.1) in the following sense. Let ¢; > p, with ZJquJ =1L, Zjcpp =1,

i€l,,andlet f; €L (QS,MS,;LS)Wlth [Ifqudp,s > 0, j € M. Then the
class1c Holder 1nequa.11ty (11) is glven by

1/q;
J TLifdur, = T (i )

On the other hand, (2.1) is given by

l/j
fjgllﬁldu,n < j];[w(flfjlpj d/u’Sj) P )

Now (1.2) yields
1/p, _ o 1/q,
(flf P d/ws) < TTws(0s)"™ 7" T1 (f'fj'qj d“Sj) :
JjEM JEM JjeM
Néting that

1/pj=1/ 1/q;
ng“S(QS) e qj=jg#1n\sj(91"\sj) qj,
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it is easy to see that

TTws(0) 7 T1 (1% dus, | /q’=jgl (S du,n)l/q’.

JEM JEM

Thus

(] "< gy foan)

with equality iff |f;| = const; [ s; ]for all j € M with p; < q;. This shows that
(2.1) improves (1. 1) in the case of finite measures.

We now consider some special versions of (2.1). It will be seen that these
inequalities are again generalizations of known inequalities considered in the
literature.

COROLLARY 2.1. Given the assumptions of Theorem 2.1, let S; denote all
subsets of I, of the size k <n and let p; =t = (z:i), Jj=1...,m= (Z)

Furthermore, let (Q,, o, n;) =(Q, L, ), i €1,, Q, =X",Q0, A, =
® (A, winy = O 1 and f; € LA ), L 4yy zy)> J € M. Then

1/t
23) J X1y < TT (11 i)
In the particular case of k = n — 1,

fl‘[|f(x1, Xyt s ) [ AR 3)

n
n-1
< l—[l(ﬂf(xl, c X 1,xjﬂ,...,xn)|
j=
. 1/(n-1)
d,u(n_l)(xl,...,xj_l,xj+1,...,xn))

REMARk 2.2. If in Corollary 2.1 u is the Lebesgue measure A; over
(R}, #Y), inequality (2.3) is known as Gagliardo’s inequality [Gagliardo (1958);
see, e.g., Adams (1975), pages 101-103]. This inequality is the basis for the
proof of the ‘“Sobolev imbedding theorem”; see Adams (1975), page 97,
Theorem 5.4. It should be noted that the proof of Gagliardo’s inequality given
there is somewhat more complicated than the proof of the more general
inequality (2.1). On the other hand, (2.1) may be considered as a generalization
of Gagliardo’s inequality.

COROLLARY 2.2. Under the assumptions of Theorem 2.1, let A € &7, , such
that the projections A; of A onto the components with indices i € S; satisfy
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A e s,. Then
(24) pi(A) < [ [T %, dus, = TT ws(4 )7

To characterize equality in (2.4), assume wzthout loss of generality that
M, # M, for all r,s €I, with r #s and ,uS(A )>0 for all j € M. Then
equalzty holds in (2.4) zf and only if there ‘exist sets A, € &7, such that
A=A X -+ XA, [u;]. Furthermore, using the assumptzons of Corollary
2.1, "

(25) Hn(A) = [ T1L, duy < Taa(4)",

with t = (:‘1) and fork=n —1,

28wl A) = [ T1L, dugr < n bl A7)V

If A is such that the projections A; satisfy A --+ = A, = B (say), which is

the case, for example, if A is permutatzon invariant, or if A, C B for all
i=1,...,n, then

(2.7) Ba( A" < poy(B)YY,

REMARK 2.3. If u = A, then the volume inequality (2.6) is known as the
Loomis-Whitney inequality [Loomis and Whitney (1949)]. This inequality is
closely related to an isoperimetric inequality; see, for example, Burago and
Zalgaller (1980), pages 94 and 95, or Hadwiger (1957), pages 162-164. The
proof of Gagliardo’s inequality is similar to the original proof of the
Loomis-Whitney inequality but is not cited in Gagliardo’s article.

3. Some probability inequalities. This section discusses some applica-
tions of the various inequalities of the last section in terms of probability
measures and random variables. Using the assumptions of Theorem 2.1 let
ms, = Pg = @, s,Pi» J € M, be probability measures and let X; e
L, (Q sy MS , Pg, ) be real-valued random variables. Since P(Q;) = 1, (2.1) may

be ertten as

1/p,
(3.1) [ T11x,1dP; < pus (jlx,lp, dPSJ)

JEM

or equivalently,

ETT X< IT (EIX;P) ™.

JEM JEM
- Remember that ¥, yp; 1>1 1ﬁ‘ S; # I, for at least one j € M. Further-
more, (3.1) remalns true if the conditions ¥, jem,P; ' =1,1 €1, are weakened
to ;e m,p; ~ < 1. The most interesting apphcatlons seem to appear if the X;
are indicator varlables Then we have the same situation as in Corollary 2.2.
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With (2.4)—(2.7) it is possible to calculate upper bounds for the probability of
n-dimensional sets A with the help of probabilities of lower-dimensional sets
A;. Here we consider an interesting application of (2.7). Let (Q;, &, P,) =
(Q,o,P),ieN,andlet Acoff = ®"'o/ such that the projections A;
satisfy A; € of; = ® o/ Assume A, = --- =A,,, = B(say)orlet A,CB
forall i =1,...,n + 1. Then (2.7) may be written as :

(3.2) P (A" <P (B

This approach now yields a special type of inequality for various cumulative
distribution functions. Let X;, i € N, be iid random variables with values in
Q,=Q andlet T,: (Q", @ ) - (R, #), n € N, be real-valued Borel-mea-
surable statistics. Let D € & and define A = {T,,, € D}. If the projections
A; =A{T,., € D); satisfy

(3.3) A, c{T,eD} forall j=1,...,n+1,
then it follows that
(3.4) P(T,,, € D)"Y < P(T, € D)"".

If D=(—-x,z]and F(z) = P(T, € D) for z € R, n € N, the last inequality is
equivalent to

(3.5) F,(2)V""V < F(2)"".
If D =(z,o) and F(z) = 1 — F(2) = P(T, € D), then (3.4) is equivalent to

(3.6) F, (2)V""V < F(2)"".

The condition {7, < z}; € {T, < 2} is fulfilled if the statistics T, satisfy the
monotonicity property

(3.7) T,,(x) =T, (x’) forall x € Q"1

where x/ denotes the projection of x onto the components x;, i #j of x. In
this case (3.5) is an improvement of the elementary inequality F,,_ (z) < F,(2).
Similarly, T, (x) < T,(x/) for all x € Q"*! yields the condition {T, ; > z};
c{T, > z}. In Finner (1990), inequality (3.5) is shown for the distribution
function of the range of n iid real-valued random variables with arbitrary
distribution function F. The proof given there is based on a convex function
inequality and a special representation for the distribution function of the
range for discrete random variables. Finally, this article is born from the idea
of generalizing the result for the range distribution to other distribution
functions depending on a parameter n € N and satisfying a condition like
{T,,, <2} c{T, <2} for j= 1,...,n + 1. Since the range statistic T, =
T(xy,...,x,) =max,_, ., _,lx, — x;| satisfies (3.3) for D = (—o, 2], it follows
directly that (3.5) holds true for its distribution function. But the concept
given here yields inequality (3.5) [or (3.6)] for various other distribution
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functions. First consider the statistic
n
Tn= leil’ nEN,
i—1

for which the condition (3.7) obviously holds. This includes the special cases
that F, is the distribution function of:

(a) the binomial distribution with parameter p €10,1[ and n € N,

(b) the Poisson distribution with parameter u = An with A > 0 and n € N,

(c) the chi-square distribution with degrees of freedom n,

(d) the gamma distribution with parameter ¢ > 0, y = n8 with g > 0 and
n € N and Lebesgue density p, ,(x) = a”e”**x*~'/T'(y), x > 0,

(e) the sum of n uniformly distributed random variables on [a, b], @ > 0,

(f) the sum of n independently identically distributed p-values which is
sometimes used as a test statistic.

Furthermore, there are various statistics depending on the order statistics of
the X, such that the distribution functions of these statistics satisfy (3.5). Let
Xiyn < " <Xuyn 1 €N, be the order statistics of X;,..., X,,. Consider,
for example, the statistics:

@ T,=X,_pn k€{0,1,...,n -1},

O T, =X _s,n = Xpyn1<r<n-s<n,

(@ T, = maxlsi<jsn(Xi - Xj)'
In each case (3.5) holds true. Setting s = 0 and r = 1 in (b) yields the range of
the X,,i €1,.

Some examples where the condition {T, ., > z};  {T, > 2} is satisfied and
thus (3.5) holds are given by:

@ T, = minlsi<jsn|Xi - le’

6 T, =Xy kefl,...,n}

A more general form of (3.2), (3.5) and (3.6) respectively may be derived from
(24). Let reN, n;€1,, j €M such that ©;_yn; = rn. Using the corre-
sponding assumptions then yields inequalities of the type

P(T,cA) < [1P(T, €4)”,
JEM ’

F(2) < [1F,(2)"
JEM !

and

) F(z) < T1 F ()"
. JEM

A characterization of equality in the various inequalities of this section may
easily be derived from the condition given in Corollary 2.2 and is omitted here.
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