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Technical University of Wroctaw

Strong moderate deviation theorems are concerned with relative errors
in the tails caused by replacing the exact distribution function by its
limiting distribution function. A new approach for deriving such theorems
is presented using strong approximation inequalities. In this way a strong
moderate deviation theorem is obtained for statistics of the form T'(a,),
where T is a sublinear functional and «, is the empirical process. The
basic theorem is also applied on linear combinations of order statistics,
leading to a substantial improvement of previous results.

1. Introduction. Let {7} be a sequence of random variables (r.v.’s) for
which it is difficult or even impossible to evaluate its exact distribution. If it is
possible to show that T, has a limiting distribution, the asymptotic distribu-
tion may be used to approximate the exact distribution. This simple principle
has been very successful, leading to approximations which are so accurate that
Kass (1988) writes: ‘“Our finite world seems tied to asymptopia.”

The mathematical theorems underlying the preceding reasoning are usually
concerned with differences between the exact distribution function of T, and
its limiting distribution function. Two comments can be made at this point.
First, such theorems are addressed to the middle part of the distribution. In
the tails we should consider the relative error and not the absolute error in
order to give a sound mathematical basis for the application of the approxima-
tion. Second, although the classical asymptotic theory gives only information
about the absolute error, it turns out that in many cases the approximation
remains of practical value in a large part of the tail of the distribution in the
sense of relative error. Paraphrasing Kass we might say that our finite world is
more tied to asymptopia than classical theorems state. Therefore one may
expect the existence of a lot of theorems on vanishing relative error in the
tails. They are called moderate deviation theorems. (Speaking here on moder-
ate deviation theorems we include also the so called Cramér-type large devia-
tion theorems.) They enlarge the mathematical basis of the approximations,
showing that approximating the distribution function of T, at a point x, by
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its limiting distribution function at x, is appropriate for a much larger range
of points x, than provided by the classical theorems.

On the other hand, the limitations of the approximations also become clear,
since usually in the far tails of the distribution the relative error will not tend
to zero. Therefore moderate deviation theorems give a demarcation of the
applicability of the approximation of exact distributions by limiting distribu-
tions.

Moderate deviation theorems are applied to statistics, for example, in
comparing tests or estimators; see, for instance, Rubin and Sethuraman
(1965b), Johnson and Truax (1974, 1978), Kallenberg (1983a, b), Jureckov4,
Kallenberg and Veraverbeke (1988).

In the situation where T, is a sum of n independent r.v.’s, moderate
deviation theorems were initiated by Cramér (1938) and refined by Petrov
(1954, 1975), Book (1976), Rubin and Sethuraman (1965a) and Amosova
(1972). Also for a lot of other statistics, moderate deviation theorems are
obtained. We mention Malevich and Abdalimov (1979) and Vandemaele (1982)
on U-statistics, Vandemaele and Veraverbeke (1982) on L-statistics, Jureckova,
Kallenberg and Veraverbeke (1988) on M-estimators and Kallenberg (1982),
Seoh, Ralescu and Puri (1985), Wu (1986) on rank statistics. Finally we
mention the general results of Chaganty and Sethuraman (1985, 1986, 1988).

A very useful new tool in deriving the limiting distribution of T, is the
theory of strong approximations. As stated before, moderate deviation theo-
rems enlarge the range on which the exact distribution may be replaced by the
limiting distribution. In this paper the powerful tool of strong approximations
is used to establish this enlargement. In a way this means that not only the
results but also the proofs based on strong approximations of classical limit
theorems are more powerful than presumed.

Theorems on the relative error caused by replacing the exact distribution of
T, by its limiting distribution are sometimes called strong large or moderate
deviation theorems to distinguish them from first order results on log P(T, >
x,), where {T,, > x,} is a large or moderate deviation event. Moderate deviation
theorems of the latter type, using the strong approximation method, are given
in Inglot and Ledwina (1990, 1989).

The method of proof consists of three steps. First, T, is replaced by T.*; T*
has the same distribution as 7, and is close to W,, which has the limiting
distribution of T, (strong approximation). Second, the well-known Slutsky
argument is applied. Finally we use a moderate deviation theorem for W,. This
general approach is made more precise in Section 2. In Section 3 the method is
applied on statistics 7, of the form T'(«,), where T is a sublinear functional,
continuous w.r.t. the uniform norm and «, the empirical process. Specific
examples are, for example, (weighted) Kolmogorov—Smirnov statistics, (gener-
alized) Cramér-von Mises statistics and chi-square statistics. Other applica-
tions are given in Section 4, including, for example, the Cressie—Read class of
multinomial goodness-of-fit tests.

The basic theorem of Section 2 may also be applied to obtain strong
moderate deviation theorems for statistics T',, which are close to other statis-
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tics W, for which already strong moderate deviation theorems exist. (For
instance, W, may be a sum of i.i.d. r.v.’s.) In Section 5, we use this approach to
derive strong moderate deviation theorems for L-statistics. The natural
bound o(n!/®) for the x-range is obtained, thus improving previous results of
Vandemaele and Veraverbeke (1982) and Seoh, Ralescu and Puri (1985).

2. Basic theorem. The three basic steps of the method are: strong
approximation, Slutsky’s argument and a moderate deviation result for the
limiting distribution (cf. also Remark 2.1). The steps are worked out in this
section.

Let {T,} be a sequence of r.v.’s. Suppose that there exists a probability space
on which we have a sequence of r.v.’s {T,}} and a sequence of r.v.’s {W,} such
that T has the same distribution as T, and for positive constants c, ..., c,,

(2.1) P(n'2IT} = W,| > c,logn + x) < cye™ "

for all 0 < x < ¢,n'/® and n > n,,. This is the strong approximation part.
Further assume that there exist positive constants a and c; > ¢; + %ac;!
such that

(2.2) P(W, > x) = exp{—zax® + g(x)},
with ‘

(2.3) lim x,%g(x,) =0

and

(2.4) limsup {g(x, —¢,) — g(x,)} <0

if x, = », x, = o(n'/®) as n - » and ¢, = n~%c; max{log n, x2}.

Note that the distribution of W, does not depend on n and represents the
limiting distribution of T, (cf., however, also Remark 2.1). First it will be
shown that (2.2), (2.3) and (2.4) imply

if x, > », x, = 0(n'/%) as n - © and 0, <e, =n"12%c; max(log n, x2). So
(2.2), (2.3) and (2.5) describe the moderate deviation result for the limiting
distribution. To prove (2.5), consider sequences {x,}, {n,} satisfying the condi-
tions in the line below (2.5). We have

1 limi fP(Wn > X, — |nn|) li P(Wn > X, — En)
< <
=S T PW,>x,) P TR W S x)

1
= limsupexp{ax,,en - _aerzt +g(xn - En) - g(xn)} <1,

n—o 2
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since x,¢, — 0, ¢2 - 0 as n — » and (2.4) holds. Therefore
P(W,>x, — In,l) B

i
noe  P(W,>x,) !

and hence

(2.6) lim {g(x, = In,]) - &(x,)} = 0.

Replacing now x, by max(x,,x, + m,) in (2.6) yields (2.5). [Note that the
sequences {max(x,, x,, + 1,)}, {n,} satisfy the conditions required for (2.6).]
Using Slutsky’s argument we will now derive the basic result. Let, as above,

{x,} be a sequence of real numbers satisfying

lim x, = =, lim x,n" 1% = 0.

n—ow n—o
Let &, = n™Y%c; max{log n, x2}. In view of (2.1) and (2.2), we have for all
n=n,

P(T} - W,| >¢,)
P(W,>x,)

(2.7

1
<ec, exp{—c:,,(s,,nl/2 —c,logn) + Eax,f - g(x,,)},

which tends to zero, since ce,n!/? dominates the other terms as n — .
Combining

P(W,>x,+¢,) —P(TF-W,I|>¢,)
<P(T,>x,) <P(W,>x,—¢,) + P(ITF - W,I>¢,)
with (2.2), (2.3), (2.5) and (2.7) now yields
lim P(T, > x,) _
noo P(W, >x,)
and thus the following theorem has been proved.
TuroreM 2.1. Let {T,} be a sequence of r.v.’s satisfying (2.1)—(2.4), where

T* and W, are as defined above. Let {x,} be a sequence of real numbers
satisfying lim , . x, = %, lim, _, x,n~'/% = 0. Then

08 I P(T, > x,)
(2.8) now P(W, >x,)
Note that (2.2)—(2.4) hold in the important case that W, has a standard
normal distribution, since
(2.9) 1-®(x) = (2m) Y% **/2x~1(1 + o(1)) as x — o,

where ® denotes the standard normal distribution function.
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REMARK 2.1. A straightforward generalization of the basic theorem is
obtained if in (2.2)-(2.4), g is replaced by g,. In this case the distribution of
W, does not represent the limiting distribution of T,, its distribution may
depend on n. Now W, is simply close to 7, in the sense of inequality (2.1) (not
necessarily implied by a direct application of a standard strong approximation
theorem) and for W,, (2.2)-(2.4) hold with g replaced by g,. The latter
usually follows from the fact that for W,, already a strong moderate deviation
theorem is established. For instance, W, may be a (standardized) sum of i.i.d.
r.v.’s. Then (2.2)-(2.4) with g replaced by g, follow immediately from, for
example, Theorem 1 of Feller [(1971), page 549] and (2.9). Applications of this
kind of the modified basic theorem are given in Section 5.

3. Sublinear functionals, seminorms. Let T be a sublinear functional
on D[0,1] (e, T(x +y) < T(x) + T(y), T(Ax) = AT(x) for all A > 0 and
%,y € D[0, 1]), continuous w.r.t. the uniform norm. Note that every seminorm
is a sublinear functional. Consider the statistic T, = T'(a,,), where a, is the
uniform empirical process. Denote by B a Brownian bridge process. It is well
known that T, converges in distribution to T'(B). The following theorem
shows that this approximation remains valid in the tails of the distribution.

THEOREM 3.1. For each sequence {p(n)} with lim, ., p(n) = 0 we have,

uniformly in the region 0 < x < p(n)n'/¢,
(3.1) P(T, > z) = P(T(B) > x){1 + o(1))
asn — o,

Proor. Since T is a sublinear functional and continuous w.r.t. the uni-
form norm, there exists a constant ¢; > 0 such that
(3.2) IT(x) = T(y)l <cs sup lx(t) —y(2)l

O<t<l1

for all x,y € D[0, 1]. In view of the KMT-inequality [cf. Theorem 4.4.1 on p.
133 of Csorgé and Révész (1981)] there exist a probability space, sequences of
processes {a}} and Brownian bridges {B,} defined on it such that a* has the
same distribution as «, and for some positive constants c,, cg, ¢y and all n
and x,

(3.3) P(nl/2 sup laX(t) — B,(¢)l > c;logn + x) < cge %%,
0<t<1

Combination of (3.2) and (3.3) yields (2.1) with T} = T(a}) and W, = T(B,).
Application of Theorem 5.2 in Borell (1975) gives (2.2) and (2.3). Denoting
F(x) = P(T(B) < x), it follows by Ehrhard (1983) that ®~1(F(x)) is concave.
Therefore there exists a positive constant c¢,, such that

(3.4) O F(x +¢€)) <ce + P Y(F(x))

for all x > x, > 0 and & > 0. Let {x,} be a sequence of real numbers satisfying
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lim, ,x, =, lim,_,x,n"'/¢ =0, and let ¢, = n~'/%¢,; max{log n, x2} for
some constant c;; > 0. Writing z, = ®~'(F(x,)) and inserting x =x, — ¢
€ = ¢, in (3.4), we obtain

1 _F(xn_sn) 1 _(D(zn_closn)
<
1-F(x,) —  1-9(z,)

n’

(3.5)

Since x, = «, ¢, = 0 and ¢,x, — 0, (2.3) implies ¢,z, = 0 as n — . More-
over, z, — « and hence
1 - ®(z, — cyo8,)

(3.6) 1= ®(z) -1 asn— oo

On the other hand,
" 1 1-F(x,—¢,)
msup lo
nat B\ T 1= F(x,)

and therefore (3.5) and (3.6) imply (2.4). Application of Theorem 2.1, together
with the convergence in distribution of 7, to T'(B), completes the proof. O

= limsup{g(x, —¢,) — &(x,)}

n-—>ow

REMARK 3.1. By inspection of the proof of Theorem 3.1 and (2.5), it is seen
that

P(T(B) >=x, +mn,)
now  P(T(B) >x,)
for all sequences {x,}, {n,} with x, > », x, = 0(n'/®) as n > » and |n,| <

n~2c,, max{log n, x2} for some constant c,, > 0. This result is used in the
proof of Proposition 4.1.

Next we present some examples where Theorem 3.1 can be applied immedi-
ately, thus showing that in these cases the replacement of the exact distribu-
tion by the limiting distribution is valid in the sense of vanishing relative error
in a much larger range than provided by the convergence in distribution.
Tacitly it is assumed that the possible weights occurring in the examples make
the functionals not identically zero. In all of the examples it is easily seen that
T is a sublinear functional on D[0, 1] [except for (b) all the functionals are
seminorms), continuous w.r.t. the uniform norm. So the moderate deviation
result (3.1) holds in all of the examples.

(a) (Weighted Kolmogorov—Smirnov statistics)

Twks(x) = sup {w(?)lx(2)},
O0<t<1
where w is a nonnegative and bounded function.
(b) (One-sided weighted Kolmogorov—Smirnov statistics)
Towrs(x) = sup {w(t)x(?)},

O0<t<1

where w is a nonnegative and bounded function.
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(¢) (Generalized Cramér-von Mises statistics)
1/r
1 r
Toom(®) = { [Ix(Olu(e) de]
where r > 1 and w is a nonnegative, Lebesgue-measurable function, which is

integrable on (0, 1).
(d) (Chi-square statistics)

91\ 1/2
ko [x(a;) —x(a;-1)]
T(x) = — ,
i=1 a;, —a;
or more generally
k 1/r
TGx(x) = {Z w;lx(a;) _x(ai—-l)|r} >
i=1
where r > 1, w; >0,i=1,...,k,and0=ay<a; < - - <@ 1<0a,= 1.

(e) (Watson statistic)

9 172
T (x) = { Ol[x(t) —folx(v) dv] dt} ,

or more generally

1 1 . 1/r
Teow(x) = {fo w(t)lx(t) — jox(v) dvl dt} ,

where r > 1 and w is a nonnegative, Lebesgue-measurable function, which is
integrable on (0, 1).
(f) (Quadratic statistics)

© 1/2
Tq(x) = {glxi[Li(x)lz} :

or more generally

oo 1/r
Toq(x) = {Z AilLi(x)lr} )
i=1

where r>1, A, >0,i=1,2,..., {L,;} is a sequence of bounded (w.r.t. the
uniform norm) linear functionals with norms {||L;|}} and Z¢_;A;lIL;]I” < . In
view of the Bessel inequality, for T, the latter condition may be replaced by
sup; A; < o if L(x) = o 1,x(t)d,(t) dt with ¢,, b,,... an orthonormal basis
in L,(0,1). Note that T, in (d) is a special case of Tq, choosing A; = w; and
L(x) =x(a;) —x(a;_y) for i =1,...,k and A; = O for i > k. Further special
cases are Neyman’s smooth tests for uniformity, taking Tq with A, =1 for
i=1,...,k A;=0for i >k and L,(x) = [q ,x(8)mw(¢)dt with {7} the nor-
malized Legendre polynomials and Neuhaus’ (1988) quadratic goodness-of-fit
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tests, taking Tg with L;(x) = [(o,l)x(t)\/f sin(iwt) dt and A; =
{/1,K(t)cos(miat) dt}w?i? with kernel K and bandwidth a, provided that
A; >0 and sup; A; < © (which holds, e.g., for the recommended Parzen-2
kernel K and all bandwidths a € (0, 1]).

4. Further applications and generalizations. In this section we gen-
eralize the approach of the previous section to statistics, which are close to a
continuous sublinear functional.

ExampLE 4.1 (Multinomial goodness-of-fit tests). Consider

k an(ai) _an(a’i—l)
(4.1) Y np; f - nf(0),
i=1 \/’TPi
where 0 =a,<a,; < - <a,_,<@a,=1,p,=a;,—a;_,i=1,...,k, fis

a measurable function defined on (— 1, ®) such that for some 6 > 0, f € CZ% on
[-8,8] with f”(0) > 0 and such that f” exists and is bounded on [—3§, 8].
Note that (4.1) contains the Cressie-Read (1984) class, which class in turn
includes Pearson’s chi-square statistic, the likelihood ratio statistic, the
Freeman-Tukey statistic and Neyman’s modified chi-square statistic.

The statistic (4.1) is of the following form:

(4.2) Vi(a,) = {T(a,)}* + R, (a,),

where T is a sublinear functional on DI[0, 1], continuous w.r.t. the uniform
norm and |R (a,)| < c;5n"?|la,|® on the event {lla,l < c,,n'/%} for some
positive constants ¢, ¢;,. Here || - || denotes the supremum norm. [That (4.1)
is of the form (4.2) follows by Taylor expansion of f around 0 and inserting T,
of Example (d) of Section 3 for T'.]

ProposiTioN 4.1. If V,(a,) is of the form (4.2), then for each sequence

{p(n)} with lim,_,p(n) =0 we have, uniformly in the region 0 <x <

P(n)n1/6,

(4.3) P(Vn(an) > x2) =P(T(B) > x){1 +0(1)}
asn — o,
Proor. Let {x,} be a sequence of real numbers satisfying lim, _, ., x, = o,

lim, ., x,n" ¢ = 0 and let ¢, = n~'/?%c,; max{log n, x2} for some sufficiently
large constant c¢,5 > 0. We have for n > n,,

P(V(a,) >x2) P(T(a,)>x,—¢,) P(R,(a,)>x,¢,)

U @) sx) = P(I(B) >z P(T(B) > x,)
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Theorem 3.1 and Remark 3.1 now imply
. P(T(a,) >, —2,)
lim
45) n»o  P(T(B) > x,)
G P e PAB) 5 )
n»o P(T(B) >x, —¢,) no~ P(T(B)>x,)
Define a} and B, as in the proof of Theorem 3.1; then we obtain
P(R,(a,) > x,¢,)
P(T(B) > =x,)
_ P(B(@) > 2yt ok = Bl 5 036, 1B, < (1/D)ewn) |
P(T(B) > x,)
where c,q is a positive constant. Hence

1. P(Rn(an) > xngn)
ey " P(T(B) > %,)

o(1),

(4-6) _ 1/3
L P(IB> (o) e )
TP P(T(B) > ,)

since (x,&,n'/2)?/3 dominates x2 if ¢, is chosen large enough. Combination of
(4.4), (4.5) and (4.6) yields

=0,

L P(Va(a) > )
P P(T(B) >x,)

Similarly one proves
P(V(a,) > x2)
lim inf .
e P(T(B)>x,) ~

The proof of (4.3) is completed by noting that V,(«,,) converges in distribution
to T(B). O

ExampPLE 4.1 (Continued). By application of Proposition 4.1, the strong
moderate deviation result holds for the multinomial goodness-of-fit tests given
by (4.1) and hence in particular for the Cressie-Read class.

5. L-statistics. Linear combinations of order statistics (or L-statistics)
are statistics of the form

n
(51) Vn = Z cinXi:n7
i=1

where the weights ¢, ,i=1,...,n;n =1,2,..., are real numbers and where

1224

X,.,<X,,,< - <X, , are the order statistics of a sequence X,,..., X,



996 T. INGLOT, W. C. M. KALLENBERG AND T. LEDWINA

of i.i.d. r.v.’s with common d.f. F. Here we concentrate on L-statistics with
weights
(5.2) e =" J(s)ds,

(i-1/n

where J is a real-valued function on (0, 1). For L-statistics with weights close
to the weights given by (5.2), we refer to Remark 5.4.

Our first theorem on the large deviation behaviour of L-statistics concerns
untrimmed weight functions J, while our second theorem deals with weight
functions J vanishing outside some interval (a,b),0 <a <b < 1.

THEOREM 5.1. Let V, be given by (5.1) and (5.2), where J is Lipschitz of
order 1 on (0,1). Let E exp(¢|X,|"/?) < w for some ¢ > 0. Define

(5.3) u=EﬂﬂFﬂﬂ@,
where

(5.4) F~(s) = inf{x: F(x) > s}
and let

(5.5) o = f:f:J(F(x))J(F(y))

X {min( F(x), F(y)) — F(x)F(y)} dxdy>0.

Then uniformly in the region —A <x < p(n)n'/® with A >0 and
lim, ,, p(n) =0,

(5.6) " P(nYA(V, = p)/o>x) = {1-®(x)}{1+0(1)}

asn — x,

Before proving the result, we compare it with earlier results of this type in
the literature, given by Vandemaele and Veraverbeke (1982) and Seoh, Ralescu
and Puri (1985). In both papers the natural bound o(n'/®) for the x-range is
only obtained for bounded r.v.’s X;. In Theorem 5.1 the restrictive condition of
boundedness is replaced by the much weaker classical condition for sums of
iid. r.v.’s, that is, the existence of the moment generating function of |X,|"/?
at some ¢ > 0. [Note that the case of sums of i.i.d. r.v.’s is a special case of
Theorem 5.1, obtained by choosing J(s) = 1.] So, the natural bound o(n'/¢)
for the x-range is established under a natural condition. After the present
paper was submitted for publication, R. NorvaiSa informed us about a paper of
Bentkus and Zitikis, proving independently Theorem 5.1 in a different way.
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Proor or THEOREM 5.1. Following Helmers (1978, 1981) we have
W, <V, <W,, ae.

n—-—=

with
n
W,.=n"t ¥ h(U) + Kn ™" ['a3(s) dFY(s),
i=1 0
n
W,_=n"t ¥ h(U) - Kn~" [a¥(s) dFY(s),
i=1 0
where

(5.1 h(U)=pn+ f(o Ub)sJ(s) dF~1(s) — f[ (1 - s)d(s)dF~Y(s),

U, 1)

where K is a positive constant, U, U,,... independent uniform (0, 1) r.v.’s
and «, the uniform empirical process. By boundedness of «J, it follows that
|h(u)| < ¢;7 + c1glF~"(u)| for some constants c;; and c,3 and' hence the
moment generating function of |h(U)|'/? is finite at some ¢ > 0. Since
Eh(U)) = u and var h(U;) = 0? it now follows by Linnik’s theorem [cf., e.g.,
Petrov (1975), page 251] that

68 P[n{ £ (o - w/a| >3] - (1= e@)(1+ o))
i=1
uniformly in the region —A < x < p(n)n'/8. Next consider the functional

1/2

172 x(s 2
T(x)={f01x2(s)dF‘1(S)} ={[:{%} w2(s)dF-1(s)} ,

where
w(s) =h(s(1—-s)) and h(s) =1log™%(1/s) forsome & > 1.
By the Markov inequality we have for all x > 0, ¢ > 0,
P(X,| 2 x) = P(exp(t|X,|"%) > exp(tx/2))
< e =Rt X,
Since Ee'1"* < « for some ¢ > 0, it follows that
log{F(x)[1 — F(x)]}l = c19 + cgolx|"/? forall x € R,

for some constants c,g, ¢y, With ¢y > 0. Hence
1

(5.9) [ w¥(s) dF~(s) <o
0

for all & > 1. In view of (5.9), T satisfies the weighted Lipschitz condition (1.2)
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of Inglot and Ledwina (1989), that is, for some ¢ > 0
IT(x) — T(y)l <c sup {lx(¢) — y(t)l/w(?)}.

0<t<l1
Application of Proposition 3.3 of Inglot and Ledwina (1989) now yields
a

(5.10) lim (nx2) " log P(T(a,)  £,0) = —

for some a > 0 and x, = O(n™") with y > (§ — 1)/(26 — 1). Choosing § < 2
we may take y = 1 and hence x,V/n = O(n'/®). Since

n'’3(V, — p) /o - n_l/z{ f, (h(Ui) - /.L)}/O’ < n_1/2(K/a')T2(an),

i=1

(5.10) implies (2.1) if we define
T =n%(V,—p)/o, W,= n_l/z{ Y [n(U) - u]}/"-
i=1

By (5.8), we have (2.2)-(2.4) with g replaced by g, and hence (5.6) follows
from the modified version of Theorem 2.1, given in Remark 2.1, taking
T,=TF O

REMARK 5.1. The condition of the finiteness of the moment generating
function of | X ill/ 2 at some ¢ > 0 is used two times in the proof of Theorem 5.1:
First to ensure the finiteness of the moment generating function of Ih(Ui)Il/ 2
at some ¢ > 0 and second to prove (5.9) for some § < 2. For the latter in fact
we only need the condition

(5.11) Ee'®" < o for some ¢t > 0and a > ;.
This can be seen as follows. By the Markov inequality we have for all x > 0,
P(IX,| > x) < exp(—tx*) E{exp(¢|X,|*)},
and hence
log{F(x)[1 — F(x)]}l = cy; + coolx|* forall x € R

for some constants c,;, ¢y, With ¢,y > 0. Therefore (5.9) holds if 2ad > 1.
Since a > 1, (5.9) thus holds for some & < 2. So, if the moment generating
function of |k(U,)|'/? is finite at some ¢ > 0 (for instance if A is bounded),
then the condition on the moment generating function of IXill/ 2 in Theorem
5.1 may be replaced by (5.11).

In case of trimmed weight functions J we do not even need the condition on
the moment generating function as is seen in the following theorem.
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THEOREM 5.2. Let V, be given by (5.1) and (5.2), where J equals 0 outside
[a, b] and is Lipschitz of order 1 on (a,b),0 <a <b < 1. Let u and 02> 0
be as in Theorem 5.1. Assume

FYa+¢)—F'(a-¢)=0(e),
F-i(b +&) — F-Y(b - &) = O(s)

as ¢ = 0. Then uniformly in the region —A < x < p(n)n*/® with A > 0 and
lim, ., p(n) =0,

(5.13) P(n'*(V, ~u)/o>x) = {1 - ®(x)}{1+o(1)}

(5.12)

asn — o,

Proor. Inspection of Helmers’ (1978, 1981) construction shows that V,
may be written as

(514) V,=n"'Y h(U) - [ [H Oty - I(s)) dedFi(s),
i=1 0 s .

where I',(s) denotes the empirical distribution function based on iid. r.v.’s
U,,...,U, with a uniform (0, 1) distribution and % is given by (5.7). Since J
vanishes outside [a, ] and is bounded, it follows that A is bounded and hence
(5.8) holds, for example, by Theorem 1 of Feller [(1971), page 549].

In view of (5.12), there exists &, > 0 such that

F—l(a + 8) - F_l(a - 3) < 0238,
F—l(b + 8) - F—l(b - 8) < 0238

for some constant cy3 > 0 and all 0 < & < ¢,. Without loss of generality, let
g, < min{a,1 — b, (b — a)}. Let

(5.16) L, = sup [T,(s) — sl

0<s<1

(5.15)

On the event {L, < ¢} it will be shown that for some ¢y, > 0,
(5.17) [ty - I(9) dedF~(s) < 3 L2
07s

Therefore we split up the interval (0, 1) in five parts: (0,ea — L,),[a — L,,a +
L,)(@+L,b-L,)[b-L,6+L,],(b+L,1).Ifs€(,a—-L,)orse
(b + L,,1), then both s and T,(s) are outside [a, b] and hence J(s) = 0 and
J(t) = 0 for ¢ between s and T,(s). In view of (5.15) and the boundedness of
J, we have

[7 5 [ (t) - I(s) dedF(s) < 2 sup W(s)|LycasL, = capL2.
a—L, s 0<s<l1

Similarly, the integral over [b — L,,b + L,]is estimated. On(a + L,,b — L,)
both s and I',(s) are in (a, b) and therefore the Lipschitz condition may be
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applied, leading to

[T [Nty = I(s)dedPi(s) < [Peq |

a+L, s

TN — sl dtdF~1(s) < cpsL2

for some constants c,,, cpg > 0. This completes the proof of (5.17). Defining
T* = n*/%V, — w/o, W, =n"VHT?_ |[L(U) - ul}/o, the Dvoretzky-
Kiefer—Wolfowitz inequality implies

P(n*?|T} — W,| >c,logn +x)
<P(L,=>¢) + P(nl/an > {oezit(cylogn + x)}1/2) < cye %"

for some positive constants c,,...,c,, all 0 <x <c,n'/® and n > n,, thus
establishing (2.1). The modified version of Theorem 2.1, given in Remark 2.1,
now yields the result. O

REMARK 5.2. A related result on trimmed L-statistics is given in Callaert,
Vandemaele and Veraverbeke (1982). Due to a different approach their condi-
tions are not quite comparable with the conditions of Theorem 5.2.°

REMARK 5.3. Note that in Theorem 5.1 and 5.2, it is not required that the
distribution function of X; is continuous. The results even hold in the discrete
case.

REMARK 5.4. Theorems 5.1 and 5.2 continue to hold if c;, is not exactly of
the form (5.2) but close to it. For instance, let

(518) Vn* = Z dinXi:n
i=1
with
(5.19) max ndin—nfi/n J(s)ds|=0(n"?) asn - .
l<i<n G-1/n

[Condition (5.19) is written in this form to compare it with condition (*) in

Vandemaele and Veraverbeke (1982). Their c;, = nd;,, implying that condi-

tion (5.19) is weaker than their condition (*).] Assume that the conditions of

Theorem 5.1 hold. Define

T(s) =d(s) + ndy, —n[7" J(1)d, L Y
G-1)/n n n

Then

Vi= X [ d(s)dsX,.,
i=1"G-1/n
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and
sup lJ,(s) —J(s)l =0(n"?) asn — o.

0<s<1

In view of Helmers’ (1978, 1981) construction V¥ may be written as [cf. (5.14)]

f W(8){Tu(s) — s}dF~(s)

—j;)l[rn(S){Jn(t) - Jn(s)}dtdF_l(S)a
where
1 -1
=f0Jn(s)F (s)ds

and T,(s) is the empirical distribution function based on a sample of size n
from the uniform (0, 1) distribution. Hence [cf. (5.1), (5.2) and (5.9)]

(V=) = (V, — )l

[7(5) = T(HE(s) = s} dF ()

[ [T = Ty0) ~ (J(s) =~ Ju(s)) dedF(s)

< cyn™? sup {T,(s) — sl llog{s(1 — 5)}I’}
0<s<1
for some constant cyy > 0 and all § > 1. Defining T* = n'/%(V* — u,)/o0,
W, = n'/AV, — n)/o, application of Proposition 3.3 of Inglot and Ledwina
(1989) now yields (2.1). By Theorem 5.1 we have (2.2)-(2.4) with g replaced by
&, and hence the modified version of Theorem 2.1, given in Remark 2.1,
implies

P(rA(VE = ) /o> %) = (1 - ®(2)}{1+0(1)) asn - =,

uniformly in the region —A < x < p(n)n'/® with A > 0 and lim,, _,,, p(n) = 0
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