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PHASE-TYPE REPRESENTATIONS IN RANDOM WALK
AND QUEUEING PROBLEMS

BY SOREN ASMUSSEN

Aalborg University

The distributions of random walk quantities like ascending ladder
heights and the maximum are shown to be phase-type provided that the
generic random walk increment X has difference structure X =U - T
with U phase-type, or the one-sided assumption of X, being phase-type is
imposed. As a corollary, it follows that the stationary waiting time in a
GI/PH/1 queue with phase-type service times is again phase-type. The
phase-type representations are characterized in terms of the intensity
matrix Q of a certain Markov jump process associated with the random
walk. From an algorithmic point of view, the fundamental step is the
iterative solution of a fix-point problem Q = ¥(Q), and using a coupling
argument it is shown that the iteration typically converges geometrically
fast. Also, a variant of the classical approach based upon Rouché’s theorem
and root-finding in the complex plane is derived, and the relation between
the approaches is shown to be that Q has the Rouché roots as its set of
eigenvalues.

1. Introduction. Consider a random walk S, = X; + -+ +X, with in-
crement distribution F(x) = P(X, <x) and let 7_=inf{n > 1: S, < 0} and
r,=inf{n > 1: S, > 0} be the ladder epochs. A fundamental problem in a
number of applied probability areas like sequential analysis ([28]), queueing
theory ([11], [10], [21] and [2]) and risk theory ([1], [4] and [2]) is then to
compute quantities like the ladder height distributions G_(x) =
P(S, < x) and G, (x) = P(S, <x), the distribution of the maximum M =
max,_o; . S, (assuming u = EX < 0) and (assuming p > 0) the distribu-
tion H of the stationary excess overshoot, defined as the weak limit as u — «
of S,.,, — u where 7(u) = inf{n > 1: S,, > u}. In fact, in view of formulas like

(1.1) P(M <x) = (1-1G.,l i G**(x),
n=0

) H 1-6.(®)

2 & -6 D

these problems are closely related.
Transform-free explicit expressions can be found in the literature only in a
few special cases like one of the tails of F' being exponential or hyperexponen-
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tial (a convex combination of exponential distributions). In more general cases,
at most the transforms are usually given and are traditionally determined, for
example as follows. One first looks for a Wiener—Hopf factorization

(1.3) 1-rF(s]=H_(r,s)H,.(r,s),

where |r| < 1, ﬁ[s] is the moment generating function (m.g.f.)
(1.4) Pls]= [ e™F(dx),

which is defined at least when R(s) =0, and H_(r,s) and H_(r,s) are
functions that are bounded and analytical in the positive (resp., the negative)
complex half-plane for fixed r. In the continuous case, this is typically possible
if one tail of F has a rational function m.g.f. and H_(r,s) and H (r,s) are
then expressed in terms of the roots p,(r), ..., p,(r) of the equation 1 = rFlp],
which are counted and located by an application of Rouché’s theorem. The
desired quantities G_(s) and G,(s) are then obtained by normalization of
lim,,, H (r,s) and lim, ,;, H, (r, s). For examples of this approach, see [29],
[16], Chapter 13, [9], [10], [21], [11] and [30]. Note, however, that the argument
and the setting admit a number of variants; thus some of these references do
not mention ladder heights at all, others determine the number of roots by
means of contour integration and in much queueing literature one looks
directly for the waiting time distribution without exploiting its Pollaczek—
Khintchine representation (1.1).

A number of objections may, however, be raised (and have caused Wiener—
Hopf methods to lose popularity in queueing theory):

1. Complex plane methods are always hard to interpret probabilistically and,
in the present case, even more so since in the equation 1 = rF[p] it is
crucial that F[p] denotes the analytical continuation of the integral in (1.4)
[which is thus in general not well defined when s = p,(r)].

2. Complex variables also may cause problems from the computational point
of view since complex arithmetic, in general, requires special software
(typically not available, say, in the standard programming languages on
microcomputers).

3. One would like expressions for the ladder height distributions themselves
rather than the transforms. Even in examples where the form of G_ or G,
can be recognized immediately by a probabilistic argument (like phase-type
distributions, see [2], page 216), it requires a cumbersome fractional expan-
sion of the transform to find the parameters.

4. At least in some variants of the approach, there are problems with the limit
r11. The difficulty is that though G_(s) and G,(s) can typically be
expressed in terms of the roots p; = lim ., p,(r) of the equation 1 = F[p],
then Rouché’s theorem only applies when |r| < 1 and there is no guarantee
that the p, are distinct, which is crucial for the method. In our opinion, this
problem has never been completely understood and is frequently simply
neglected.
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The purpose of the present paper is to present a different approach which
circumvents some of these difficulties. The idea is to restrict the discussion to
phase-type distributions (Neuts [19], or [2], Chapter IIL6). This class of
distributions is slightly less general than those having a rational m.g.f., but
nevertheless comprises all standard examples of such distributions, is dense
and has become the standard setup in modern applied probability. Within this
setting, we obtain a solution of the random walk problems which is
transform-free, avoids complex numbers (the computations are instead based
on matrix manipulations) and has the appealing feature that many of the basic
unknown distributions turn out to be again of phase-type.

Compared to the extensive queueing literature on matrix-geometric meth-
ods (see Neuts [19] and [20] for surveys and comprehensive bibliographies), the
common features are the phase-type assumptions and the role of nonlinear
matrix equations (fix-point problems) of the form Q = ¥(Q) (surveyed in
Ramaswami [22]). What differs is that we deal directly with continuous distri-
butions (the maximum /waiting time) instead of taking a detour via discrete
ones (queue lengths). In particular, our main result for the GI/PH/1 queue
(phase-type service times) states that the waiting time distribution is again
phase-type. This result is much simpler than those of the matrix-geometric
literature (Neuts [19]; Lucantoni and Ramaswami [17], [24] and [25]) and, in
fact, it has come as a surprise leading to subsequent papers like [23], [27] and
[6] on phase-type solutions of waiting time problems. Note, however, that in
view of the simplicity of proof we do not consider this result to be deep (in fact,
our study of the corresponding nonlinear matrix iteration scheme is techni-
cally much more difficult; see Section 3), and that, from a purely computa-
tional point of view, Sengupta’s [26] solution of the GI/PH /1 queue is closely
related.

The paper is organized as follows. The main results are stated in Section 2
and proved to the extent that this provides a reasonably simple intuitive
explanation. The idea is to define an imbedding of the random walk in the
continuous component {Y;} of a certain bivariate Markov process {(J;, Y,)};. o
with a discrete first component {J,} closely related to the phase representation.
Observing {<J,} only when {Y}} is at its maximum then leads to a new Markov
-process {m,}, ., whose intensity matrix Q (say) turns out to be the basic
unknown quantity determining the solution of the random walk problems. The
fundamental equation Q = ¥(Q) is derived and we show how the ladder height
distributions and the maximum can be expressed in terms of Q. In Section 3,
we study the equation Q = ¥(Q) in more detail by means of a coupling
argument which is nonstandard in this setting. Section 4 contains a discussion
of the relation of the present approach to the classical Rouché root algorithm.
In this setting, our point of view is then that the Rouché roots p, ..., p; are
important, not per se, but simply because the —p, are the eigenvalues of Q and
Q can be determined once they are known (this observation also leads to a
variant of the classical approach by passing from the p; not to G_ and é+, but
rather via Q to transform-free expressions for G_ and G.). Finally, some
extensions of the results and some concluding discussion are given in Sec-
tion 5.
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For the sake of completeness, we mention finally that the set of problems of
the present paper has been attacked by at least one additional completely
different approach, where formulas for ladder height functionals are given in
terms of numerical integration of the characteristic function of F; see, for
example [8], [28] and [31].

2. Main results. We assume for the main part of the paper (see, however,
Section 5) that F is a difference distribution, X = U — T with U, T' indepen-
dent with distribution functions B (resp., A) (in queueing theory, A is the
interarrival distribution and B is the service time distribution). We further
assume that the distribution B of U is of phase-type with representation, say,
(m,T,d). This means that T is the restriction to {1,...,d} of the intensity
matrix

010} [|two|tu t 2%
to | T Lo | la1  ta2 taq
tao | tar  lae taa

of a Markov jump process on {0, ..., d} with 0 as absorbing state, and that U
is distributed as the time to absorption in 0 given the initial distribution
(written as a row vector in the following). In particular, the vector ¢, of exit
rates is ¢, = —Te, where e is the column vector of ones, and

(21)  B(x) = [0°°B(dx) —meTe,  b(x) = B'(x) = xe™¢,,

(2.2) B[s] = /:es"B(dx)
T\ ! .
(2.3) =1—w(1+;) e=m(-sI-T) ',
(2.4) g = [x"B(dx) = (-1)"nlzT "e.
0

See [19] or [2], Chapter III.6 for more detail. Since d is fixed in the following,
we omit the qualification in the specification (,T) of a phase-type distribu-
tion. Note that by analytic continuation we can interpret B[s] as defined and
given by (2.3) [but not (2.2)] at least for s & sp(T) (a similar remark applies to
F[s] = A[—s]B[s] when R(s) > 0). This fact plays a role in the traditional
analytical approach [with the exponential set sp(T) usually characterized as the
set of poles for B[s]] and will be needed in Section 4. We write uz = u% and
use similar notation at other places so that, for example,

(2.5) p=pp=pp—ps=—mT'e—p,.

We now define what we call a (7, T) phase process, a concept which will play
a fundamental role in the following. This is a Markov process with state space
{1,..., d} and jump rates given by the intensity matrix T + t,m =T + ¢, ® .
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We say that jumps according to the T component are of the first type and
those governed by t,m are of the second type. The initial condition is a jump of
the second type at (or rather just before) ¢ = 0 so that J,, has distribution .
Thus, jumps of the second type form a phase-type renewal process and we
shall identify the interarrival times with the U, (alternatively, one may, as in
[19], visualize jumps of the second type as visits to the instantaneous state 0).
In particular, from standard Markov process theory it follows that the renewal
measure Ug(dx) is given by an atom at zero and the density

(2.6) ug(x) = mexp((T + tym)x)t,

on (0, ©) [we do not claim priority for (2.6), but the formula seems certainly not
as well known as it deserves to be].

The phase process {/,} can be extended to an imbedding of the random walk
in a bivariate continuous time process {(J,,Y})},,, in the way indicated on
Figure 1. Here {Y,} starts at zero (Y,_= 0) but has an instantaneous down-
ward jump of size T, (Y, = —T),), a further downward jump of size T, at time
U,, the next downward jump of size T at time U, + U, and so on, and in
between jumps {Y}} increases linearly at a unit rate. The random walk is then
obtained by observing {Y,} just before jumps, that is, S, = Yy, . .. .y, _. The
values are marked with the symbols v and A on Figure 1, the A representing
ladder points (on the figure, there are two ladder points following zero and
thus M =S, ;). We let {m,} be the process obtained by observing {J,} only
when {Y,} is at its maximum, that is,

m, = Jyie where 8(T) = ['I(Y,2Y,,0<s<t)ds.
0

Note that Y, » —~ a.s. when u <0 and then {m,} is nonconservative
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(terminating). The following result is basic for the paper:

ProposiTioN 2.1. {m,} is a Markov jump process on {1,...,d} and the
intensity matrix Q (say) solves the nonlinear matrix equation
(2.7) Q=y(Q) where W(S)=T +t,7A[S].

Furthermore, Q is conservative, Qe = 0, precisely when u > 0, whereas other-
wise Qe < 0 with at least one component strictly negative.

Proor. It is probabilistically obvious that {m,} is Markov with piecewise
constant paths. In particular, {m,} is uniquely determined by the intensity
matrix Q. To compute Q, note that if {m } jumps from i to j # i at time s
(say), then {J,} must jump out of state i at time 8~ '(s). If the jump is of the
first type, it must be to j and, hence, the contribution to g;; from jumps of the
first type is ¢,;. Suppose, on the other hand, that the jump is of the second
type, say {J,} is reset to state £. Such jumps occur at rate ¢;,7,, and if x is the
size of the corresponding jump of {Y,}, the excursion of {Y,} below the level just
before the jump gives rise to a new process {/,} distributed as {m,} and with
m, = k, such that m, = m, (see Figure 1); that is, m  is distributed according
to the kth row of e®*. Hence jumps of the second type contribute the amount

d ©
Y tiom /0 (e¥%)4,;A(dx)
k=1

to g, ;. An easy modification shows that this is correct also when j = i, proving
(2.7). The last statement follows by standard random walk results. O

Here is our first main result:

THEOREM 2.1. Consider a random walk with X = U — T, with U phase-type
with representation (mw,T) and A(x) = P(T < x) arbitrary. Then:

(a) The ascending ladder height distribution G, is phase-type with repre-
sentation (mw,,T) where m is related to the matrix Q of Proposition 2.1 by
means of

(2.8) Q=T+ ¢ym,.
Also, 7, satisfies
(2.9) 7,=7A[T + tym,].

Further, w,e = 1 if and only if p = EX > 0 whereas m,e < 1 when p <0.
(b) If u < 0, then the maximum M has distribution given by an atom of size
1 — 7 e at zero and a (defective) phase-type distribution with representation

(m,,Q) on (0, ).

Proor. That G, is phase-type is noted in [2], pages 216-217. This is also
seen directly from Figure 1: If w = inf{t > 0: Y, = 0}, then obviously the
statement holds true with m, being the distribution of J, = my. That is,
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since m, has distribution 7, we have
(2.10) m.=n [ e®A(dx) = 7A[Q],
0

proving (2.9). Equation (2.8) now follows from (2.7). The rest of (a) is easy.

For (b), we note that M is simply the lifetime of the post-T', segment of the
Markov process {m}. The result follows by noting that the initial distribution
(which is defective) is 7, and that the intensity matrix is Q. O

From (2.8), we get:

COROLLARY 2.1. Given Q, m, can be computed as w,=v(Q — T)/vt,
where v is any column vector (say e or ) with vty # 0.

Thus, combining (2.8), (2.9) and Corollary 2.1, it is seen that the main
computational problem is to compute either Q or .. In our opinion, the most
natural approach is to solve (2.9) iteratively for ,, and we have: .

'THEOREM 2.2. Let 7® > 0 be some given vector and define w({*P =
7AlQ + t,m™], n=0,1,.... Then w{ — w,, n > o, provided: (a) p 20
and 7 is a subprobability vector (i.e., Ve < 1); or (b)) u < 0 and wPh <1
where b = (—yI — T)"'t, with vy the unique solution greater than 0 of the
equation Al—s]Bls] = 1. In particular, the solution of (2.9) is unique in the
class of nonnegative vectors satisfying the given constraints.

The proof is more technical than those of the present section and is deferred
to Section 3 (error bounds are given there also; some discussion of computa-
tional aspects is in Section 5). An alternative computational procedure based
on the Rouché roots is developed in Section 4.

COROLLARY 2.2. Consider the GI/PH /1 queue with interarrival distribu-
tion A and service times U which are of phase-type with representation (m,T),
assume p = EU/ET < 1, and let 7, Q be as above. Then:

(a) The distribution of the steady-state actual waiting time W is given by an
atom of size 1 — e at zero and a (defective) phase-type distribution with
representation (7, Q) on (0, ®).

(b) The distribution of the steady-state virtual waiting time V is given by an
atom of size 1 —p at zero and a (defective) phase-type distribution with
representation (pv,@Q) on (0,x). Here v is the stationary distribution of the
phase process {J,}; that is, v(T + tym) = v, ve = L.

(¢) The distribution of the steady-state sojourn time W* is phase-type with
representation (1, Q) on (0, ).

Proor. Part (a) is immediate from W=, M. In (b), P(V=0)=1—p is
standard. Also ([2], page 189), the conditional distribution of V given V > 0 is
that of T* + W where T* is independent of W and has the limiting station-
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ary excess distribution B, corresponding to B. Here inspection of the phase
process {J,} shows immediately that B, is phase-type with representation
(v, T). Thus, we may visualize T* + W as the lifetime of a particle which
initially (the T* phase) starts according to v, moves according to T and exits
according to ¢, to be restarted (the W phase) according to 7, and then goes on
moving in this way until the final exit. This describes, however, just a
phase-type distribution with representation (»,T + ¢ym,) = (v, Q). Part (c)
follows in a similar manner from W* = U + W where U has the service time
distribution and is independent of W. O

2.1. Descending ladder heights. PH/G/1. We shall need the Wiener—Hopf
factorization identity ([2], Chapter VII.4; see also [3] for a slightly simpler
proof).

Lemma 21. @1-F=(01-G.)1-G,).
(b) Let U,= L3G*" be the renewal measure associated with G Then G_
is the restriction of U, *Fto(—»,0).

CoroLLARY 2.3. Under the assumptions of Theorem 2.1 and with w,,Q as
defined there, the descending ladder height distribution is given by the density

(2.11) g (x) = [ meQtoy A(du), x<O0.
If o = EX > 0, then furthermore
M
2.12 1-lG_||l= ———.
(2.12) 6= ——5=;

PROOF. A similar argument as in the remarks leading to (2.6) shows that
U, is given by an atom at zero and the density 7, e®t,, y > 0. Arguing as in
the proof of Corollary 2.2 it follows that U, * B is given by the density
meVty, y > 0. Let C be the distribution of —T so that F = B C. Then,
according to Lemma 2.1(b), the density of G_ is obtained by convolution
of the density of U, * B with C which immediately leads to (2.11). Finally
([2], page 169, and Wald’s identity)

1 EX m
1-1G_ll = = = i O
Er, ES -7, T e

T+

CoRrOLLARY 2.4. Consider the PH/G /1 queue with service time distribution
B* and interarrival time distribution A*, say, and assume that A* is phase-type
with representation (mw,T) and that p = wg+/u+ < 1. Then the solution m_ to

(2.13) 7_=7B*[T + tym_]

exists, is unique and can be computed by iteration starting from any subproba-
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bility vector . Let further Q =T + t,m_ and let D,y be given by
daD oo
—x—(x) =f meQ =Nt B*(du), x>0,
(2.14) _
.U«A*
=Dl = W
Then the distribution of the steady-state waiting time W is the normalized
renewal measure

(2.15) (1-v) Y D*.
n=0
Furthermore, the idle period I is phase-type with representation (mw_, D).

ProoF. In the setting of Theorems 2.1 and 2.2, let A = B* and B = A*.
Then W is distributed as —min{S,}, and from this the first part of the
corollary follows by sign reversion of (2.11), noting that D is the distribution
of —S, and invoking Corollary 2.3 and the Pollaczek-Khintchine formula
1.D. The result on I follows from a well known ladder height representation
of the idle period (e.g., [2], page 182).

One may note the similarity of (2.14) and (2.15) to the standard solution of
the M/G/1 queue. Here A* is just exponential, with rate B say, so that the
renewal density me®t, reduces to 8 and D to the stationary excess distribu-
tion for B* multiplied by p. The distribution of I is useful, for example, for
deriving moments of W; see [2], pages 185-186 (the approach is due to
Marshall in the queueing setting but essentially the same comes out by
relating the moments of X, M, S, and S, ). This was carried out indepen-
dently in the first version of this paper and in Neuts [20], but we omit the
details here since the formulas can be found in [20].

3. Nonlinear matrix iteration. The proof of results like Theorem 2.2
on the iteration scheme

(3.1) 7¢tD = 7A[T + tyw™], n=0,1,...,

is frequently carried out by arguments involving fix-points and contractions.
So far this has, however, not proven to be useful in the matrix-geometric
setting where the standard approach instead is by monotonicity (starting from
7 = 0); see Neuts [19], [20] and Ramaswami [22]. We shall use a third
approach, namely, coupling, which has not yet been implemented in this
setting before but turns out to produce results which are stronger than those
of the matrix-geometric literature by allowing a general (nonzero) 7* and also
containing error estimates (see Corollaries 3.1, 3.2 and 3.3).

Recall that a (7, T) phase process is a Markov process with jump rates given
by T + t,m and started according to the distribution 7 of /. If instead J, has
distribution », we talk about a v-delayed (w7, T) process. As on Figure 1, w
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denotes the time of the first up-crossing of level zero of {Y,}, and we let & be
the time until the next jump of the second type (see Figure 2). The key step in
our approach is the following:

LEmmMa 3.1. It is possible to enlarge the probability space on which {J,,Y,}
and {m,} are defined, such that for any n = 1,2, ..., there are defined two
additional processes {m{™} and {m(tf}} which are independent of T, and have
the following properties:

(@ (m{} is a (7, T) phase process and if D, is the set on which m{® is
defined, then

(3:2) {mg )}t<8 = {mT1+t}z<5 onD, N {r,.<n}.
(b) {m)} is a w-delayed (w(V,T) phase process and
(33) {mtlv}t<T1+5 = {mt}t<T1+8 on {r.,<n +1}.

The proof is by induction and is carried out in the following three parts:

Construction of {m"}. Define 6, = ||| = PD,. Obviously,

(3.4) {r.< 1} ={r,=1} = (T, < Uy},
(8.5) 70 = wA[T + t,mQ] = 7A[T],
(3.6) 0, > mA[T]e = P(T, < U,) = 6, (say),

noting in (3.6) that wA[T] is precisely the distribution of mp, restricted to the
set (3.4). Thus on (3.4), we can let m{" = my ,,, when ¢ < 8= U, — T, and
continue {m{"} after & in some arbltrary manner according to requirements for
a (7, T) phase process. On an additional set of probability 6, — 6,, we then
need to start {m"} according to 7 — wA[T].
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Construction of {m{}} from {m{}. This is the key step, and the argument
is illustrated on Figure 2. Here * and o in the graph of {Y;} indicate the
corresponding states of {J,} in the same manner as in Figure 1, and o, 05, .
are random times defined recursively by o, = U; and by letting 03,1 be the
time of the next downward jump of {Y,} following the first up-crossing after o,
of level y, =Y, _. We then obviously have

(3'7) {(Ja'k+t’ Y"'k+t - yk)}t<0'k+1—a'k =9 {(Jt’ Yt)}t<6‘

Thus, we may construct versions {m{™D},{m{*?},... of {m{)}, such that
{m{™ k’} is associated with the Lh.s. of (3.7) in the same way as {m{"} is
associated with {(J,, Y,)} (thus, on the figure, {m{*?} is associated with
T,, Us, Ty, U, . .. in the same way as {m{)} with T;, U;, Ty, U,, ...). Up to the
first jump of the second type (i.e., for ¢ < o), we just let m{?) = m, = J,. Up to
the second jump of the second type, we substitute the values of m{" 1> then
the values m{*'? are used, and so on (on Figure 2, segments of processes
matching by constructlon are connected with double arrows; other segments
are dotted, so that the states are not marked). It can then readily be checked
that {m‘,ﬁ,)} has the required jump rates. That (3.3) holds follows from the
induction assumption since on {7, < n + 1} any of the excursions determining
{m{)} up to time T, + & can at most correspond to n random walk steps, and
hence by (3.2) they are coupled to {m,} in the desired manner.

Construction of {m{** b} from {m{)}. We just let m{**D =m%) ., ¢t <39,
and continue in the required way after é in some arbltrary manner. To see
that this provides the required properties, we only need to check that
m§*V = m{), has the correct distribution; that is, w("* 1. But the distribu-

tion of m(T"},, is

(3-8) fo " exp((T + tgm(”)t) A(de) = mA[T + tam ] = 7+, o

CoROLLARY 3.1. |7 — 7 |l < P(r,> n) [here || - | means the supremum
(total variation) norm].

Proor. This follows immediately from (3.2) since my, and M, (™ have
distributions wA[T + ty7] = 7, (resp., 7). O

When p > 0, Corollary 3.1 completes the proof of Theorem 2.2 since then
7,<® a.s. so that P(r,> n) converges to zero. Also convergence rates and
explicit error bounds are obtained with conditions and constants which are
familiar from large deviations theory (e.g., [7] or [2], Chapter XII.2):

COROLLARY 3.2. Suppose u > 0 and that Fls] = A[—s]ﬁ[s] has a mini-
mum at n < 0. Then |7 — 7 |l < C6"*! where C™! is the minimal compo-
nent of the vector (—nI — T)"'t, and & = Fln].
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Proor. It follows from a version of Wald’s fundamental identity ([2], page
267) that FeS+/67+= 1. Obviously, the conditional distribution of S, given
= k is phase-type (7, (%), T) for some proper distribution =, (k); hence

E[e"S+|r,= k] = m, (k) (—nI —T) 't, > C1
so that E6™"+< C, which gives the desired bound on P(r,> n). O

As a comparison, one may note the asymptotic formula P(r,>n) =
C5™/n®? n — =, shown by Iglehart [14] (here C is a constant). One might
conjecture from Corollary 3.2 that the mapping defined by (3.1) is a contrac-
tion, but we have no proof of this. Inspection of the graph of F[s] shows that if
u is close to zero, then so is y and hence § is close to one; that is, the speed of
convergence deteriorates as u — 0 (heavy traffic). If u = 0, Corollary 3.2 does
not provide any information on convergence rates, and we have personal
experience from a related setting that the iteration may converge exceedingly
slowly. Note finally also that even without the existence of exponential mo-
ments of A required when p > 0, we can still get convergence rates. For
example, if A has a finite pth moment, it follows from Corollary 3.1 and
results of Gut ([12] and [13)) that || — 7|l = O(n"P).

We now turn to the case u < 0. The problem which arises in the proof given
above for u > 0 is infinite excursions, that is, taking into account what
happens if {(J,, Y,)} never returns to the level just before a jump of the second
type. In fact, the results cannot be the same for the two cases since, for
example, the equation (2.13) can be seen to have at least two solutions in the
class of subprobability measures when u < 0, namely, =, which has 7,e < 1
and an additional vector 7, with #,e = 1 (take 7®e = 1; note that then
m™e =1 for all n and use a compactness argument). Using a familiar
transformation from random walk theory (the ‘“associated random walk’ of
Feller [11], Chapter XII or the ‘“Lundberg conjugate’ of [2], Chapter XII), we
shall, however, quite easily reduce the proof for u < 0 to what has already
been proved for 1 > 0. Let y, h be as in Theorem 2.2(b), let A be the diagonal
matrix with the elements of A on the diagonal and let A, B be the distribu-
tions with densities e "*/A[—y] and e”*/B[y] w.r.t. A (resp., B). We shall
need the following result from [5]:

~

LEmma 3.2. B is phase-type with representation (7, T where T =
A~'TA + yI and # = wA/Blyl. The corresponding exit rate vector is fy =
A o-
PrOOF OF THEOREM 2.2 WHEN p < 0. Let 7? be given, define #®, 72, ...
by (38.1) and let #(* = 7{™A. Then, using Lemma 3.2,
D = TI'A[T + t01r(+”)]

‘13[7] 'A[—Y]K[T + tov"‘) + 71
(3.9)
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which shows that the 7{") are again given by the recursion (3.1), only with A
replaced by A, Tby T and so on. Thus, #{ — #, whenever 7{e < 1, where
7, is the initial vector in the phase-type representation of G,. This means
that 7 — #,A~! whenever 7(Yh < 1, and it only remains "to show that
T =T +A'1. This can be done, for example, by applying Wald’s fundamental
identity for Markov additive processes to {(/,, Y,)}. We omit the details which
follow [4], Section 4, closely. O

Applying Corollary 3.2 to the #{* and performing some translation, we get:

COROLLARY 3.3. Suppose u < 0. Then F[s] = A[—5)B[s] has a minimum
at a unique 7 > 0, and |7 — 7 |l < 06"“, where C = C,C, with C{*' the
minimal component of the vector ( 71 — T, C, = max; h,;/min; h; and

8 = Fln).

4. Starting from the Rouché roots. We first provide a probabilistic
interpretation of the Rouché roots:

THEOREM 4.1. Let s be some complex number with %(s) > 0, —s & sp(T).
Then —s is an eigenvalue of Q if and only if 1= Fls] = A[-s]Bls], with
Bls], F[s] being interpreted in the sense of the analytical continuation
of the m.g.f. In that case, the corresponding eigenvector may be taken as
(—sI - D%,

ProoF. According to (2.3), 1 = F[s] means

(4.1) =m(—sI—T) 't,A[-s].
Suppose first Qi = —sh. Then e®¥"h = e **h and hence
(4.2) — sh = Qh = (T + t,mA[Q])h = Th + (whA[~s])t,.

Since —s & sp(T), this implies that mhA[- s] # 0, and hence we may assume
that » has been normalized such that whA[—s]= 1. Then (4.2) yields h =
%‘ sI — T~ '%,. Thus the normalization is equivalent to (4.1), and hence

[s]=1.

Suppose next F(s) = 1. Since R(s) > 0 and G_ is concentrated on (—, 0),
we have |G_(s)| < 1, and hence by the Wiener—Hopf factorization 1dent1ty
[Lemma 2.1(a)] G (s) = 1, which according to Theorem 2.1(a) means that
7,(—sI — T)"'t, = 1. Hence with A = (=sI — T)"'¢, we get

Qh = (T + tym, )b = T(—sI = T) 'tg + g = —s(—sI=T) 'ty = —sh. O

Theorem 4.1 further substantiates that the problem of double roots men-
tioned in the introduction may be a delicate one: There is no a priori indication
whether Q may or may not have multiple eigenvalues. It is clear from 2.3
that F[s] will typically not be defined when s € sp(T), and thus it might be
conjectured that by imposing some regularity conditions it may be possible to
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omit the condition s & sp(T) in Theorem 4.1. It is our feeling that the
complete resolution of this problem has to do with uniqueness and minimality
of phase-type representations (which is not settled at present). This is based
upon the discussion of [2], Chapter IX.6, where the restrictions on the model
are chosen precisely with the purpose of avoiding Rouché roots which are
eigenvalues of T. A further substantiation is given by the following example:

ExampLE 4.1. Suppose A > 8 > 0 and
(A A-B (B
(3 ) ()

_ ( —A+Bm (1) A-B+ Bm(l))
Bm.(2) -B+Bm,.(2) |

so that

This corresponds to a nonminimal representation of an exponential B with
rate B, and we shall see that indeed Q has the eigenvalue —A € sp(T) =
{(—A, —BLIfu<0,then0 <6 =[G, =m,1)+7,(2) <1, and it is a stan-
dard fact ([2], page 203) that 8 solves F[B(6 — 1)] = 1. Obviously, (6 — 1) &
sp(T); thus p; = B(6 — 1) € sp(Q) and the other eigenvalue of Q is p, =
tr(Q —p; = —A. If £ >0, then 6 =[G, l=7 D +7,.2) =1, p, =
0 € sp(Q) corresponding to the eigenvector e, and the other eigenvalue is
pe = tr(Q — p; = —A.

COROLLARY 4.1. Suppose u < 0, that the equation F(s) = 1 has d distinct
roots py,...,p, in the domain R(s) > 0 and define h; = (—p,I — T)"'¢,,
Q = CD !, where C is the matrix with columns h,,...,h,; and D is the
matrix with columns —pihq, ..., —pghy. Then G, is phase-type with repre-
sentation (w,,T) with 7w, = w(Q — T)/mt,. Further, letting v; be the left
eigenvector of Q corresponding to —p; and normalized by v;h; = 1, Q has
diagonal form

d
(4.3) Q=—Zhi®vi=—2hivi

i=1 i=1

and G_ is given by the density

d ®
(44)  g_(x) = L e[ ePA(du), x <0, wherec;, = m hv;t,.
i=1 -x

Proor. Appealing to Theorem 4.1, the matrix Q has the d distinct eigen-
values —p,,..., —p, with corresponding eigenvectors A, ..., h ;. This imme-
diately implies that Q has the form CD™!, and thus the result on G, is
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immediate from Theorem 2.1(a). For G _, combining (4.3) and (2.11) we get

®© o d
g_(x) = [ m.eQwA(du) = [ 7, ¥ e VRt Adu),
—x —x =1

which is the same as (4.4). O
In a similar way we get:

COROLLARY 4.2. Suppose p > 0, that the equation F(s)=1 has d — 1
distinct roots ps,...,py in the domain R(s) > 0 and define p, =0, h, =e,
h;=(-p,I="D7%, i >2, and Q = CD™!, where C is the matrix with
columns hy,...,h; and D is the matrix with columns —phy, ..., —pghg.
Then all results of Corollary 4.1 on G_, G, hold true.

5. Concluding discussion. In much of the literature (e.g., [16] or [11)]),
the basic setup is not a difference structure X = U — T with the relevant
conditions imposed on, say, U, but rather one assumes a specific form of one
tail of X. That is, one writes

(5.1) F = pF,| + qF,,

where p + ¢ = 1, F, F, are concentrated on (0, ) [resp. (—,0)] and F, is
assumed to belong to some given class. However, from the point of view of the
present paper this setup can easily be reduced to difference structure. We state
and prove some of the main results in that setting and omit the translation of
more specialized topics like convergence rates.

CoroLLARY 5.1. Consider a random walk with increment distribution of
the form (5.1) and F, phase-type with representation (i, T). Then:

(a) The ascending ladder height distribution G, is phase-type with repre-
sentation (m,,T) where ., is the solution of

A -1

(5.2) m.=mp(I —-qF2[—T—tO1T+]) .

(b) If n < 0, then the maximum M has distribution given by an atom of size
1 — 7 e at zero and a (defective) phase-type distribution with representation
(m,,Q) on (0,») where Q =T + t,m,.

(c) The descending ladder height distribution G_ is given by

(53)  G_(x) =qFy(x) + | m.e¥toqFy(x —u)du, x<0.

(d) The equation (5.2) can be solved by iteration, starting from any 7
satisfying P <1 when >0 and wPh <1 when w <0. Here h =
(=yI —T)"', with y the unique solution greater than 0 of the equation
F[s] = 1. In particular, the solution of (5.2) is unique in the class of nonnega-
tive vectors satisfying the given constraints.
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Proor. Consider a random walk with increments distributed as U — T
where U is the first positive increment of the given random walk and —T is
the sum of all preceding negative increments. Obviously, U, T are indepen-
dent, U follows the given the phase-type distribution F, and T has distribu-
tion A (say) given by A[s] = ®pq"F,[—s]*. Further, this random walk has
the same ladder height distribution as the given one, and thus parts (a) and (b)
are immediate from Theorem 2.1 by noting that A[Q]= (I — sz[ Q)L
Part (c) follows by inserting (5.1) in Lemma 2.1(b), and part (d) is just a
translation of Theorem 2.2. O

Obviously, the setup is sometimes discrete (i.e., the random walk is concen-
trated on a lattice) and the typical assumption of the literature is then that one
tail has a finite support. With some notational changes, the methods of the
present paper can be applied to the more general case where one tail is instead
discrete phase-type (the lifetime of a Markov chain in discrete time), but we
shall not give the details here.

From a computational point of view, the main problem in the iterative
solution of Q = (Q) is obviously to compute A[Q]. The standard series
expansion of the matrix-exponential function leads to the formula

© (n)

(5.4) Alq - ¥ &

!
_O n.

Q",

where u{ is the nth moment of A. This formula may be convenient in some
cases, for example when A is discrete. It requires all moments of A to be finite
and, to be computationally useful, that the u$” do not increase too rapidly so
that (5.4) can be truncated to a reasonable number of terms.

The currently most widely adopted method for computing matrix exponen-
tials is, however, uniformization. Implemented in the present context, this
means that we choose an 7 such that n is an upper bound on the absolute
value of the entries of Q. Then

n

(5.5) A[Q]=[°°f, 1+2 e_""( ) B(dx) = Zc (1+E :
0 n=0 n n=0 n
where
crmTegre = T gog )

The two series in (5.5) converge without conditions and are convenient when-
ever simple expressions for the A™)[—n] are available (to this end, it may be
useful to note that the A“™[—n] can be expressed in terms of moments in the
exponential family generated by B). For the iteration scheme in Theorems 4.1
and 4.2 one can use 7 = max, _; _,(—t¢;;) for all Q™.
If A itself is of phase-type or, more generally, has a rational m.g.f. Als] =

q(s)/r(s) with q,r polynomials, one further alternative is available which
seems largely unnoticed. This consists in computing r(Q)~! which exists
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whenever Q is a subintensity like all Q™ [this is so because the set sp(r(Q)) =
r(sp(Q)) cannot contain zero since all eigenvalues of Q have a nonpositive real
part], and noting that A[Q] = ¢(Qr(Q)~ 1.

For some further aspects of the computation of matrix-valued m.g.f.’s, see
[26] and also [17] in connection with (5.5) (a standard general reference on
matrix exponentials is [18]). Even if the present author finds nonlinear matrix
iteration more appealing in most cases, it should be noted that we do not insist
that the method is universally superior. For example, the Rouché root algo-
rithms provided by Corollaries 4.1 and 4.2 do not appear unappealing when
there is a priori knowledge that the roots are distinct and real (like for d = 2
or B hyperexponential, [2], pages 219 and 221-222) and also when u = O or
is close to 0, and where, as mentioned earlier, the matrix iteration may
converge exceedingly slowly (examples where u = 0 occur, for example, in the
computation of corrected diffusion approximations [28]). Note, however, that
when two or more p; are close, then computations based on diagonal forms
like (4.3) and (4.4) tend to be numerically unstable.
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