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ON THE LAW OF THE ITERATED LOGARITHM'

By HENRY TEICHER
Rutgers University

A triumvirate of sufficient conditions is given for unbotinded, inde-
pendent random variables to obey the Law of the Iterated Logarithm (LIL).
As special cases, new results for weighted i.i.d. random variables and the
Hartman-Wintner theorem are obtained. Necessity of finite variance for
the two-sided LIL is shown to carry over for a large class of weighted i.i.d.
random variables and the Marcinkiewicz-Zygmund example is generalized,
simplified and clarified.

1. Introduction. A classical result of Kolmogorov [11]asserts that for bounded
independent random variables {X,, n > 1} with |X,| = o(s,/(log, s,%)}) where
EX, =0, EX,? =3, 5,>= >t 02— oo, the Law of the Iterated Logarithm
holds for {X,}, that is,

P{limsup __Z:LL = 1} =1
" (2 log, s, '

Marcinkiewicz and Zygmund [12] noted that if {X,} are independent with

P {Xn _ iexp{zn/log n}} 3,
(log n)*

then the Law of the Iterated Logarithm (LIL) fails provided the positive param-
eter 2 is not too small. Inthe important case of independent, identically distrib-
uted (i.i.d.) random variables, Hartman and Wintner [10] proved that existence
of a second moment suffices for the LIL and this has been shown to be necessary
by Strassen [14] in the sense that

P{limsupw = oo} =1
(n log, n)t
when the variance of X, is infinite.

Despite numerous investigations [ 3], [4], [5], [6], [7], [8], [13], [15] the general
case of unbounded independent random variables has proved extremely elusive.
Here, the main finding, Theorem 1 and Corollary 1 thereof, furnishes sufficient
conditions that are no more stringent than finite variance in the i.i.d. case.
Theorem 2 extends Strassen’s necessity to weighted i.i.d. random variables while
Theorem 3 yields the Hartman-Wintner theorem, its generalization[2] to weighted
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ON THE LAW OF THE ITERATED LOGARITHM 715

i.i.d. random variables plus new results in the latter case. Moreover, the
Marcinkiewicz-Zygmund phenomenon is generalized, simplified and clarified.

The conclusions in the weighted i.i.d. case {¢,Y,,n > 1: 7Y, i.i.d. random
variables with mean 0 and variance ¢, £ oo; ¢, nonzero constants with s, =
2.7 0, — oo} may be summarized as follows: Set 7, = ng,*/s,2

(i) If (*) 0, = o(s,*/log, s,*) and (**) 7, = O((log, 5,%)?), some B < 1 the
LIL holds if ¢,* < co (Theorem 3). Under (*) and y,/log, s,> 1, conditions (32)
and (33) ensure the LIL (Theorem 4). When (*) obtains, ¢,* < oo is necessary
for a two-sided LIL, i.e., for both {¢,Y,} and {—0,Y,} to obey the LIL
(Theorem 2).

(ii) Ify, grows faster than Clog,s,?, something beyond a finite second moment
is necessary for the two-sided LIL.

(iii) If y, = cn, for some c in (0, 1) then s5,> = 52/(1 — ¢)*~! and conversely.
In this case the LIL fails whenever Y is bounded (Theorem 5). A necessary
condition for the two-sided LIL is that Eexp{ci~'Y?} < o0, 6 > 8.

(iv) For Marcinkiewicz-Zygmund growth, i.e. ¢,> = (log n)~* exp {24n/log n},
(*) is violated, 7, ~ 22n/logn ~ logs,” and the LIL again fails for bounded
random variables provided 2 is sufficiently large. Here, in contrast to case (iii),
itis the constant 2¢ in the LIL that goes astray rather than the order of magnitude
(Theorem 5). A necessary condition for the two-sided LIL is Eexp{(2207)}|Y|} <
o0, > 8. Since the Hartman condition (27) is satisfied, the LIL holds when
Y is normally distributed. Thus, Marcinkiewicz-Zygmund growth ‘“‘separates”
the normal distribution from that of any bounded random variable and in par-
ticular from coin-tossing, i.e., P{Y, = +1} = 4.

It may be noted under (iii) and (iv) that the two-sided LIL fails if either Y
is too regular (i.e. bounded) or insufficiently regular (Y in case (iv) or Y*in case
(iii) lacking an analytic characteristic function).

2. Mainstream. Let {X,, n > 1} denote independent random variables with
EX, =0, EX,?> = 0,2 5, = J,%, 0. — oo and distribution functions {F,,n > 1}.
In contradistinction to the Law of Large Numbers and Central Limit Theorem,
the LIL is not symmetric in {X,}, that is, the LIL for {X,} does not entail that for
{—X,}. When, however, the classical LIL obtains for both {X,} and {— X}, the
Borel-Cantelli lemma together with the elementary inequality | X,| < |27 X, +

|22 X,| signals the necessity of

1) Doy P{|X,] > 0s,(log, 5,71} < oo, 0> 2(2).
This serves as a point of departure and the first theorem stipulates two condi-
tions which conjoined with (1) for a fixed ¢ are sufficient for the iterated loga-
rithm law.
It seems worth noting at the outset that

1
@) 52 2051 Stiai> enpctogy 011 X' dF3(x) = o(1), ¢>0

”
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is equivalent to (4) of Theorem 1 which therefore is more stringent than the
classical Lindeberg condition for asymptotic normality of 5,~* 31 X,. Clearly,
(4) implies (2) while the converse implication results from the fact that for
arbitrary 6 > 0, the left side of (4) which equals

1
F (Z:i:sjgﬁs,,, + Zi:c,’>6sn) S[lzl>esj(logzs,-3)"§] x* dF:‘(x)
n

1
S0'+ P 2 S[1z|>eas,,uog2s,,z)-‘é] x?dF;(x) —
under (2).

THeoreM 1. If {X,, n = 1} are independent random variables with EX, = 0,
EX.' =02 5= )} 02— oo, satisfying for some § > 0

(3) 27 P{IX,| > ds,(log, 5,7)} < oo
1
4) 53 Z?:l S[lzl>es,~(logzs,-3)‘§] x? dFj(x) = 0(1) ’ all €>0
1
(5) Z::: S[esn(log2a,,‘z)-i<|xl§68n(logzs"3)§] x? an(x) < 0, all ¢ > 0 ’

sn2(10g2 Snz)
then the Law of the Iterated Logarithm holds for {X,}, that is,
. r X,

6 P{llmsun_,w_z:_l__f____—_—l}—_-l.
© P 5@ logy 577

Since all three requirements involve only |X,|, they imply the LIL for {— X}
as well. The two series appearing in (5) and (3) may be reduced to one via

CoroLLARY 1. If {X,} are independent random variables with EX, = 0, EX,? =
0} s} = 2t 0 — oo, satisfying (4) and

- 1 «
(7) Zn:l W S[|”|>“n”°82'n2)"h |X| dF,,(x) < oo, all ¢ > 0
n 2 n

for some a in (0, 2] then the LIL (6) holds for {X,} and {— X,} .

Proor. Clearly the series of (7) exceeds the series obtained from (7) by re-
stricting the range of integration to (es,(log, 5,27, ds,(log, 5,%)*] and this, in turn,
dominates the series of (5) multiplied by §%-2. Also for ¢ < 8, (7) dominates

B (i 1og, sy Vot W AF(3) 2 8% T2 PIX,| 2 ds,(logs5.)
for all ¢ > 0 so that (3) likewise obtains. []

Proor oF THEOREM. Condition (4) implies
Pa(6) = M8y 5,70 D0 Sty ptomye-n X dF;(x) = 0(1), &> 0

and hence permits the choice of integers n,,, > n, such that ¢, (k~?) < k=? for
nzn, k=1 Definee’' =k? n <n<n,, k=1 Thene, |0 and for
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n, < n N,

1 1
(4), E‘i Z?=l S[zbeﬁaﬁ/loggs,‘?] x! dF:i(x) = P Z?=l S[xbenzaﬂlloggsj?] x dFJ'(x)
n

< 0ulen) S 01,06 < K = 0(1)

as n — oo provided ¢, = ¢,’. Proceeding in a similar spirit with the tail of the
series of (5) there is a sequence ¢,” = o(1) such that

Z:’=l (snz 10g2 sng)_l S[ensn(logzanz)"§<|z|553n(logzs”3)i] x2 dFu(x)

n o -
= 2% Zn’;t;; S S Xakt< oo
when ¢, = ¢,”.

Consequently, ¢, = max (¢,’, ¢,””) = o(1) and both (4) and (5) hold with ¢ re-
placed by ¢; and ¢, respectively.
Define truncation constants {,, n = 1} by
—_— eﬂ s'n.
"7 (log, 5,
and, denoting by I, the indicator function of the set 4, let

Xn, = Xn I[IX,,,ISb,,] ’ Xn", = X"I[IX,,,I>38,,(10838,,")§] ? Xn" = Xn - Xn, - Xn"'
s”/ — Z;s in R S,n" — Z‘{l X" , Sn’" — Z;; Xj”’ A

J

Then recalling that EX, = 0,
0, — 0%, = EX My 500 + EX Ly, 50m < 2EXn2I[|X,,I>bn] ,

whence (4)’ ensures that Var (S,’) ~ Var (27 X;) and Kolmogorov’s theorem
[11] yields

g fim sup Si= (X — EX)) _ |
®) im sup 5.2 log, 5,7}

with probability one.
Moreover, Kronecker’s lemma and the strengthened (or ¢,) version of (5)
guarantee that

1
9 -
®) s, (log, 5,2}
converges almost certainly to zero.

Finally, (3) implies that S,"”” = O(1) with probability one and furthermore

IESn,,,I é Z?=l S[Im|>5cj(lo;23j2)i] le dF](x)

Z?=1 (Xi" - EX:'")

(10) = 2= S[as,-uoggs,-ﬁ)%<|z|5s,,uog2s,ﬁ)-i] | x| dF;(x)
+ 251 Stai> op 08y 0,11 [X] dF5(x)
= o(s,(log, 5,%))

by virtue of adaptations permitting (3) to be applied to the first sum iﬁ the middle
of (10) and (4) to the second. The theorem is an immediate consequence of (8),
(9), (10) and the remark just prior to (10).[]
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Corollary 1 appears to be most powerful for a arbitrarily close to but less
than two. Curiously, the case a = 2, ascribed to Petrov [13] by [3] does not
contain the Hartman-Wintner theorem whereas the choices 1 < @ < 2 do.? No
ground seems to be gained in Theorem 1 by replacing (5) with a condition of
the form of (7) but with range of integration as in (5) and « in [1], [2].

CoOROLLARY 2. Let {Y,,n = 1} be i.i.d. random variables with distribution F,
mean zero, variance ¢,* < co and let {o,, n = 1} be (nonzero) constants satisfying
5,2 = 2to— oo. If for somed > 0

(11) Zea p{re > 085N o
. On
1
(12) E-z Z;L=1 (sz S[y2>es,-2/v,-210g2sj2]y2 dF(y) = 0(1) ’ e > 0
2
(13) Z:::l Tn S[eanz/an2 logg 8,2<y258(8,2/0,2) 108y 3,21 .y2 dF(.y) < o0, € > 0

s,'(log, 5,7)
then the LIL holds for {c¢,Y,, n = 1}, that is,
. » g, Y,
14 P{hmsu _,m—zfi‘”’—’: }:1.
( ) p"‘ Sn(2 log2 S'nz)?g o-Y
Since (12) is automatic when the integral therein is o (1), Corollary 1 yields

CorROLLARY 3. Let {Y,, n = 1} bei.i.d. random variables with finite variance and
let {o,, n = 1} be nonzero constants satisfying s,* — oo and

Then if for some a in (0, 2]

2 al/2
(15) 2in=a ("ln—> S[ﬂzssnz/vnzloggsnzl I.ylﬂ dF(y) < oo, €e>0

s,? log, s,

the LIL obtains for {+o,(Y, — EY,), n = 1}, that is, (14) holds with Y, replaced
by (Y, — EY)).

3. Weighted i.i.d. case. Let Q denote the class of sequences {¢,Y,,n = 1}
where o, #+ 0, n = 1 5, = 37, 0> — oo, and where {Y,} are i.i.d. random vari-
ables with mean zero, variance ¢, < oo and distribution F.

As will become apparent, the status, of the LIL in Q may be conveniently
described in terms of

(16) Tn =

X
v

2 The case a = 2 of Corollary 1 in conjunction with Kronecker’s lemma reveals that the solitary
condition (¥) X 5,2 S[zz>£a“2(logzsn2)‘1] x2dF, < oo, ¢ > 0 suffices for the LIL when EX, =0,
sn? — co. However, (*), which is clearly unnecessarily stringent, is implied by, hence less strin-
gent than, condition (1) of the theorem of the appendix of [6].
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In Q, the necessary condition (1) for the two-sided LIL becomes

(17) Zea P{r > 008 <o, 5>8.
I

Now if

(18) 0, =3 (f_log__lf”_f)% = o(n*)

n

and ¢, 1, then letting ¢(+) denote a monotone extension of ¢, to (0, o) its
inverse function ¢=(y) = y*g(y) where g(y) — oo as y — oo and (17) entails

(19) Ep~(|Y1]) = EY9(|Y1]) < oo .

It may be noted that ¢, is automatically increasing if s,_, - s,,, < s,% that is, if
log s,? is concave.

When 7,, increases more rapidly than log, 5,2, (17) asserts that something beyond
a finite second moment is necessary for the two-sided LIL in Q. The next theorem,
generalizing that of Strassen [14], stipulates that nothing less than finite variance
will do even when 7, = O(1) or more generally when

7‘” fred 0<_._n_.__) .
log, s,2

THEOREM 2. Let {0,, n = 1} be nonzero constants satisfying s,* = 3.1 ;> — oo,

S,

g, = o(____—) .
log, 5,2

If{Y,Y,, n= 1} arei.i.d. with EY = 0, EY? = oo then

20 Pl PREC ¢ =1.
(20) {nn sUp s,(log, s,%)} oo}

The proof, which parallels Feller’s [7], requires an extension of his key lemma?®.

LeMMA 1. Let {X,, n = 1} be independent, symmetric random variables and {a,},
{c.} sequences of positive real numbers. Let X! = X, Iy o1 S, = 2T X/,
S, = nrX,. Then

. S/
P{hmsup "> 1} =1

n

implies

1) P{limsupﬂgl}=1.

n

3 Professor Harry Kesten has kindly informed the author that a somewhat more general version
of Lemma 1 was communicated to him about 5 years ago by his colleague Professor Larry Brown.
Essentially the same lemma with @, — oo appears in [5] but (i) existence of the subsequence ng
seems in doubt when Sw/a. obeys a central limit theorem (ii) it is not clear that the events of (36),
(37) are 0-1 events (it may be possible to utilize a result of Lévy but this would certainly require
some discussion).
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Proor. By hypothesis, N,, = inf{j = m: S;’ > a;} (= oo otherwise) is a finite
stopping time for all m = 1. If, whenever, n > m
(22) P{S, = S,', Ny = n} = P{S, £ 8./, N,, = n},
then

PlU5-n [S; > a;1} = PUSa [Si' > a5, S; = 81} = P(Sy,, = Sy, Nu < o0}

=2ven P{S, = S, N,, =n} = §
implying
P {nm supS» > 1} > P[S, > a,, i.0.} =}
a

n

and hence (21) by the Kolmogorov zero-one law.

To prove (22), set X;* = X; Iy .c,0 — X; I x;i>c;1 and note that by symmetry
and independence, the joint distributions of (X}, ---, X,) and (X%, ---, X,*%)
are identical for all n. Hence, if n > m

P{S, =S, N, = n}

= P27 Xj1[|Xj|>¢j] =0, 27 XjI[Ileécj] >a,S' sa,m<h<n}
= P{Z;‘ Xj*I[IXj*I>cj] g 0’ Zf Xj*I[lA'j‘lgcj] > a'n.’ Z{‘ Xj*I[IXj*IScj] é ah’
m< h < n}
=PS,<8S,),N, =n}.
and equality also holds for » = m, mutatis mutandis. [

ProOF OF THEOREM 2. Let {Y,*, n = 1} denote the symmetrized {Y,} and for

c>0setY, =Y, *lyy 4o X, =0,Y,/. Ifo? = EY,”* thens,” = ¥i7_, 0%, =
¢ ’s,’ whence { X'} satisfy Kolmogorov’s condition for the LIL, implying

P{limsupM >ocl» =1.

s.(log, 5,%)*
By the lemma
(23) P {nm sup 2= % it > o'c} =1
s,(log, 5,%)t

and since ¢, — o0, as ¢ — oo, (23) holds with ¢, replaced by +oco which, in
turn, yields (20). [

Recall that y, was introduced in (16) to designate no,’/s,’. The case y, = O(1)
was treated in Theorem 1 of [2] whereas, in general y, = 1,0 <y, <n,n > 1.
It follows from (16) via (1 — x)~* > e, x > O that

— 2 I -1 sn2 — n T -t n ;
(24) 52 =s_, (1 — 7) , = IL-=2(1 — “f) > exP[Zj=z 1ilJ]-

5
Moreover, 7, = O(log s,*) provided

(25) 7./n is non-increasing, all large n
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or more generally
(26) lim inf,,_,o,, —1— Z';=2 Tj/j > 0.

In fact, under (25), for some integer n, and all large n
Tias1il) Z Tieny1il] 2 (0 = m) Te 2 47,
implying (26) which, in turn, yields, via (24), for some ¢ > 0 and all large n
Ta 2 €%, % < c[log 5,* — log 5,7] .

Of course, if y,/n—1 (or merely y,/n> 7 > 0), then (26) holds and
7. = O(log s,%).

If the Hartman condition [9] (for the LIL when Y, is normal) prevails, that
is,

0-2
— 1—?, some ¢ > 1
K

n

27)

B |§
IA

then s,2 grows at most geometrically since via (24) for some ¢, > 0,
(28) 5.2 < ¢ 0", log, s < (1 4+ o(1))logn.
Moreover, from
-1 i k i k
» (1= =z () s ool () o))
(29) ( p 2160 . +1_rn/n_eXP 2iist . + n)
there follows, in view of (24),
¢ exp{Z;‘Q} < st cexp {min[& Z;‘% , Z};‘fji +4d 23 (?)2}}
J

and the upper bound collapses to ¢, exp{}.; r;/j} when } 5., (r;/j)* converges.

Recall that (i) the subclass Q of weighted i.i.d. random variables was defined
at the beginning of Section 3 and (ii) if y,, grows faster than log, 5,%, finite variance
for Y is insufficient for the LIL. The complementary condition is almost suf-
ficient according to

THEOREM 3. If {0,Y,} € Q where 0,’ = o(s,*[log,s,”) and y, = O((log, s,%)"),
some B > 1, then the LIL (14) holds proyided ¢,* < oo.
Proor. According to Corollary 3 of Theorem 1 it suffices to verify (15) for
some « in (0, 2]. Define
_ es,’ — en
orlog,s,?  7,logs,?

The hypothesis entails y,/n = o(1) and a fortiori the Hartman condition (27) so
that the ensuing Lemma 2 is applicable for « < 2. By hypothesis and this lemma,
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for suitable constants C, C,, C,

3 i Y <c 3 1 < G-
o jlog, s/~ J=1j‘"/z(log2 57)@ma=5 = (log, 5,7)@D0=5

n (2—a)/2 (2—a)/2
o)
7. 10g; 5.} (log, 5,7)*~#2-
é Ce r‘n(2—¢1)/2(10g2 an)ﬁ-!-l—a .

Hence, for any ¢ > 0,

a/2
= ( )" Stz Y1 dF()

9;
2 2
s log, s;

. - T al/2 - N
= 5 (1) T Srasricra D17 4P
< €, Dt 1108, 5,17 St ypcry o I AF = CLEY* < oo

provided 1 + 8 < a« < 2, so that (15) obtains. []

CoRrOLLARY 1. If 5, — oo, 1, = O(1) and {Y, Y,} are i.i.d. random variables
with EY = 0, the LIL holds for {¢,Y,} and {—0, Y} if and only if EY? < oco.
Proor. The hypothesis implies (27) whence (28) ensures

g,'log, s, _ r,log,s,’ _ Clogn _ o(1)
5, n = n

and the conclusions follow from Theorems 2 and 3. []
It remains to verify the following generalization of Lemma 2 of [2]:

LemMma 2. If {o,} satisfy (27), s5,* — co and

(30) 7. = o((log 5,”) log, s,%)
then for any p, > 0 and p,,

" 1 nt1
i=1 T T o = 0 <7> *
J71(log, 5,%) (log, s,%)"2
Proor. Under (27), recalling (24) and employing (29) with k = 1,

— Tn 07
log 5,> = log s2_, — log <1 — _n-> < <1 + m) log s;_,

implying

0
log, 5,? < <1 T )1 :
08 = + n(log s%_,) log, 55 _, OBz Sua

Therefore, noting that these entail log; s,> = (1 + o(1)) log, s2_,, i = 1, 2,
1 _ (n — 1)#;( log, s,’ >l‘2 >1_ <1 _ _1_)#:(1 I 07, )m
n log,s2_,/ — " n n(log s3_,) log, s%_,

[ o ()] o]

_ M+t o(l)

n

1\
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for 4, > 0; the same conclusion is obvious when g, < 0 so that for all g,

(n—= 1 (1 + o(1)

(log, s,%)~ (log, s2_,)» — n~#i(log, 5,%)"

whence for all large n

n#

(log, s,,2)"2 )

" 1
j=1 jl—,u](log2 st)yz

which is tantamount to the lemma. [J

<2
th

To go beyond the confines of Theorem 3, it seems appropriate to utilize
(Corollary 2 of) Theorem 1 as opposed to the weaker Corollary 3. To this end,
suppose for all ¢ > 0, some § > 0, and all large k that

() a=aE=maxin_ "< 9(k + 1) log, ‘iﬂ} > C.k,
Tn 10g2 s Tk
c.>1.

For numerous choices of 7,, (31) is automatic and conclusions for y, outside
the domain of Theorem 3 flow from

THEOREM 4. Let{s,Y,} € Q whereo,’ = o(s,%/log,s,?), 1,/l0g, 5,2 1 and suppose
that

;
(32) @, In___0 <h (i@Eﬁkf) ) , >0
n o, 5, e

for some positive 6 and non-decreasing function h on (0, o). If
(33) EYh(|Y]) < oo
the LIL (14) obtains.

ProoF. As noted just prior to Corollary 3, ¢,2 = o(s,?/log, 5,%) guarantees (12)
of Corollary 2 of Theorem 1. Moreover, the hypothesis entails the validity of
the last inequality of (31) whence (all constants C being strictly positive)

w_ Ta > Cnlog(afk) S Gri k> k.

“n log,s,> —  log,s,* — log,s?

Hence, setting r, = dk(log, 5,%)/7,,
o0 > EYH(|Y]) 2 S5, nh(rd)Plr, < V' < r,..)

=G 2 Dk, Ts P <Y =n)
n log, s,

= C Y kP, < Y < .} + O(1)

2
—c, z;:::lp{yz S 51’%&} + o)

so that (11) likewise holds.
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Finally, (13) obtains since for all ¢ > 0,

i1 'mg‘;s—z S[m/r,,,Ings,,kv?sm]y dF(.y)

< C + Zk=l(§[7‘k<v2s"k+1y dF )Z rrlog Sy 2
2

= G Xia M) Stry<irsng V' dF < CLEYR(Y]) < oo
and the conclusion follows from Corollary 2. []
For example, if s,’=exp{n°}, 0< a< 150 that y, ~an®,then Y%7 (n log,s,)'<
Cka(log k)(stx—l)/(l—a) and h(k) — k2a/(l—a)(log k)(?a /(- ) Thus the LIL holdS lf

EY¥-®[(log |Y])~*/0= < oo whereas the necessary condition for the 2-sided
LIL is tantamount to EY¥"~*/(log |Y])¥"~® < co. (See note added in proof.)

THEOREM 5. (i) If 0’ = 6™, b > 1 so that 5,> = Y. 02 grows geometrically,
{04, Y., n = 1} disobeys the LIL for all bounded* i.i.d. random variables {Y,}in the
sense that the strong law of large numbers

(34) P {nm,w°° PHET/R O 0} =1
cn S%
holds for any numerical sequence ¢, — oo and in particular for c, = (log, s,%).
(ii) In the case 0,} = (log n)~' exp{24nflogn}, n > 1, 2 > 0 of Marcinkiewicz~
Zygmund growth, {c, Y, n > 1} contravenes the LIL for any sequence of boundedi.i.d.
random variables{Y,} in the sense that whenever A ,*>C*=inf {M?: P{|Y,|<M 1=1},

25=29; —
(35) {llm sup,,_mn—(llongz)i; < ZiaY} 1.
Moreover, for Y, non-degenerate and 2 as in (41)
*_,0,(Y; — EY})
36 {lmsu P NELL 0}_1
0 e S g
PRrOOF. Apropos of (i), note that with probability one
b—l b — 1\t b+ 1)\?
—'Zf“ 1505 7 (o) se () nz

so that (34) is immediate.
In case (ii), it is easy to verify and shown in [12] that

22]} 1 ex {ZZn}

= 1 ! — .
521 = T log) " exp {2 iog o

22
Now,

o P08 ]} _ (16p nyt s, eXP{Aiflogj} _ (log m)} An
=T (log )t (log m)* 235 log j 2 P {log n}

4If 0, > 0 and Y; is merely bounded above, the same argument devoid of absolute values shows
that the LIL fails (where, in case (ii), 20,2 > inf {M2: P{Y, < M} = 1}).
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and for any 8 in (0, 1), the first sum is at least

., Xp{ij/logj} _ (Blogn)} _An ) _ An’
(Blog n)t 3. .8 log 2 [exp {log n} exp { Blogn }]

and so letting n — oo and then g — 1

o j : |
(37) 23-a (log ) °"P{lon} ~ (8 exp {lcfg it

Hence, with probability one

DWELIR AT C X loil L + o)At _ €[ + o))
5,(2 log, s, = 2%s,(log n)}(1 + o(1)) 22)t 2t

IA

proving (35).

Next, suppose for convenience that EY, = 0 and note for any ¢ in (0, 1),
setting M = max (27! log Ce~*(3/2)}, 2|log p,|™") and r = [M log n] (where p, will
be defined later) that (37) ensures that

IS0, Y| < C(l(;g n)t exp{ A(n — Mlog n) }

(1 4+ o(1))logn
implying for all large n that

3
(38) (5,1 logys. )t Di 0y Vil = C(5) e (1 4 o(1) < e
Furthermore, if m = n — [r log n], it follows from (37) that

ayn,, exp{4j/logj} _ ¢ P exp {4j/logj}

(log j)? T (logj)
_ (log n)t exp {an/log n}
A
(39) X [(@ + o(1))(1 — e=%1) — (C + o(l))(e~*r — e*¥)]
- (%)* (log n)* en)_%ri__z/)lfgn} [a — (@ + C)e™*r 4 Ce ¥ 4 o(1)]

> os,(log, 5,%)}
provided # is large and
a— (a+ Ce > 5(22)t.

The latter inequality and a fortiori that'connecting the first and last terms of
(39) will hold for some é > 0, e.g. 6 = d, = A~¥a — (a + C)e*7] provided

(40) 2> rtlog (1 + Cla).

Consequently, defining the event B, = {}»_,0;Y; > d,s,(log,s,?)}}, its
probability

P(B)z P(Y;Z a,n —[rlogn] + 1 <] < n} 2 pJ"s" = d, (say)
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where for some a in (0, C)
Po = P{Y; = a)e(0, 1) .
Define n, = [2Mk log k]. Then {B, } are independent events (for all large k)
and
log “%41 — r(log p,) log "+t
d n,

g
2(k 4+ 1)Mlog (k + 1) — 1}
2kMlog k

= 7(log p.) log |

= r(log p,) log {(1 + %) (1 + EB%? + 0 (%;)) - WlngE}

bR o)

choosing y = |log p,|~*. Then
const.
dnk:W’ ZkP{Bnk}g denk:m
and so the Borel-Cantelli lemma and (38) ensure that with probability one

llmsupnM = lim su Z” 2in-r i Y; + lim inf, M >

s,(log, 5,7t — s, (log, 5,)! s,(log s,)t

o — €
provided

(41) 2> |log P{Y, — EY, = a > 0}| log (1 + C/a)

with a chosen so that 2 < oo, recalling (40). Since ¢ is arbitrary and J, > 0,
(36) is established. []

CorOLLARY 1. For g,* = (log n)~* exp{24n/log n} of Marcinkiewicz—Zygmund
growth, {Y,} non-degenerate i.i.d. random variables whose support is contained in
[-C, C]and 2 > max [4C*[s,?, |log P{Y, — EY, = a > 0}| log (1 4 C/a)]

lim sup,, 250 9;(Y; — EY;) _

= A,¢(0, 1)
5,(2 log, 5.,

with probability one.

The proof of (36) of Theorem 4 is clearly influenced by that of Lemma 6 of
[1]. Although possible, it seems less than equiprobable that A, of Corollary 1
depends on F (apart perhaps from C).

Obviously, whenever

Z;‘L=l Iajl = O(Sn(10g2 sna)’) ’
{0.Y,, n > 1} fails to satisfy the LIL for all bounded i.i.d. random variables

{Y.}. This would appear to be the case with many sequences ¢,’ between
Marcinkiewicz-Zygmund and geometric magnitude.
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4. An interesting example. Consider the sequence {02, n > exp{e‘}} defined
by
s} = exp{IIi., (log, n)=}, a;=20,i=1,2,3.
It will be supposed that a, > 1; otherwise s5,> = O(n'*1*»/%) and Corollary 1 of
Theorem 3 applies. Since

1, [_logi (n — 1)}“* == a
= log, n nlogn  n(logn)log,n

. a, 0 1
n(log n)(log, n) log, n + (n2 log n)

necessarily '
0,,,2 1 3 a; 3 M:_l) o —
Snz = 1 CXP{ i=1 (logi n) [Hi:l ( lOgi n ) 1:|}
_ o II:.. (log, n)~ 0(2(10g3 n)“s «

3
n(log n)'~=1 n 13-, (log; n)'== * n T3, (log, n)'~=
$_2 (log, )=
o (1li=z (log;
+ ( n*(log n)'-=1 >
so that according to (18)

1o(n) — Sn 108, 8. _ n lower order t .

B =TT aloganye TI (g et e ST e
Now if ¢(n) = }a,n*(logg n)*s [}, (log; n)~~" it is readily verified that (¢(n)) ~
n/2 < n whence ¢~'(n) = ¢(n) for all large n. Consequently, recalling (18), (19),
the 2-sided LIL fails in Q whenever

(42) EY’(log, |Y])* I]i-: (log, [ Y])%™" = oo .

If EY? < oo this requires either &, > lora;, =1 < ayorey, =a, =1, a; > 0.
In the particular case @, = a, = 1, (42) reduces to
43) EY?*(logs | Y|)* = oo .
Now ¢,? = o(s,*/log, s,?) and
ng,’

snz ~ al(log n)al_l ?:2 (logi n)“i ~ 0 _lgé_n-

Vo=

so that 7, = o(n(log, 5,%)™"), r.(log,s,’)™* 1 and a, ~ (9/e)a,*k(log, k)* implying
log a, = log k + 2log, k + O(1).

Thus, ife, = 1,0 < a, < 1, necessarily y, = O((log, 5,%)?), 8 < 1 and Theorem
3 guarantees the LIL in Q. (See note added in proof.) Since

(log, @,)*2™" T s, (lOg; @)% — (log, k)™ T4, (log; k)™
= (log, k)*27" ]y, (log, k)%

(1 2o ) (e G ) 1]

= O((log k)"~ (log, k)s~ (log, k)s*")
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it follows that

akr n_lozg”_s_i < C Y4k n7Y(log, n)*s I3, (log; n)~i*
2 Yn
< C'[(log; a,) ™" T1ix2 (log; @) — (log, k)~ T] ., (log, k)]
= O((log k)x1~*(log, k)*2~(log, k)=s*1) . '

Consequently, for ¢, = 1 < @, or @, > 1, (32) and therefore the LIL holds
provided
EY*(log | Y|)"1=(log, | Y])*~*(log, | Y])™s** < oo .

This should be compared with (42) and (when a, = a, = 1) with (43).

Note added in proof. The writer has recently shown that the necessary con-
dition is also sufficient. Likewise in the example of Section 4 when a, > 1.
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