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GAUSSIAN MEASURE OF LARGE BALLSIN /!

By WERNER LINDE

Friedrich-Schiller-Universitdt, Jena

We study the behaviour of u{x € E; [|x|| > ¢} as ¢ - » for a Gaussian
measure 4 in a Banach or quasi-Banach space in the following cases:

1. E=1, 2 <p <, and u of diagonal form but not necessarily symmet-
ric;

2. E = Hilbert space and u arbitrary;

3. E=13,0<p <2 and u of diagonal form.

While 2 solves a problem of Hweng (1980), 1 and 3 extend some results
of Dobrié, Marcus and Weber (1988).

1. Introduction. Let u be a Gaussian (Radon) measure in a Banach
space E, that is, a(u) is Gaussian for each a € E’, the dual space of E. Then
there exists a uniquely determined x, € E for which

(1'1) #’0 :=/-"*8x0
is Gaussian symmetric on E [cf. Borell (1976)]. Define o = o(u) by

1/2
(1.2) o= sup{{fE<x,a)2 duo(x)} slel<1,a € E’},

where u, is as in (1.1). Then the following fundamental result holds [cf. also
Landau and Shepp (1970), Fernique (1970) and Marcus and Shepp (1972)]:

THEOREM 1 [Borell (1975)]. If w is Gaussian on E, then
(1.3) lim ¢~2log ufllxll > t} = —1/202.
t—>o

If @ on [0, ) is defined by
(1.4) ®(t) = Y2/ [ /2 ds,
0

then Theorem 1 can be reformulated as

o=l >,
(1.8) e Yryes R

for each ¢ > 0.
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While for arbitrary measures (1.5) is best possible, Talagrand [cf. Talagrand
(1984)] verified

(1.6) lim pill=ll > 1

—————e =0 >0
toeo 1 — q)(t/(r)e ’ € ’

in the case of symmetric u. Moreover, (1.6) is optimal in the following sense: If
¢: [0,0) — (0, ) is an arbitrary decreasing function with ¢(t) - 0 as ¢ — «,
then there exists a Gaussian symmetric measure p with o = 1 and

(1.7 plllxll > 2} /(1 = ®(8)) 2 e,  t>¢,

[Talagrand (1984)].

Hence the rough behaviour of ufllxll > ¢ is 1 — ®(¢/0), that is,
exp(—t2/20?), while the fine behaviour, that is, the behaviour of wlllxll >
t}/(1 — ®(¢/0)), may vary between 1 and e**® in the sense of (1.7) (symmetric
case) or between 1 and (¢), where y(¢)exp(—ct2) > 0 as ¢ — = for each
€ > 0. Thus, given a concrete Gaussian measure p, it is interesting to investi-
gate the exact behaviour of u{l|x|| > ¢} as ¢ — «. This was only known in a few
examples, as for instance for symmetric u in [, [Zolotarev (1961), Hertle
(1983)] or for some nonsymmetric u in 1, [Hweng (1980)]. We shall determine
this behaviour for arbitrary p in I, which answers a question of Hweng
(1980). Another example of known exact behaviour is that of symmetric
measures in [, 2 < p < », possessing diagonal form [cf. Dobri¢, Marcus and
Weber (1988)]. We extend their result to the nonsymmetric case.

Finally, we investigate this question for symmetric diagonal measures on
I3, p < 2. Here we obtain the following surprising result: If o,.. ., o, > 0 are
arbitrary real numbers, o == {L707}/", 1/r = 1/p — 1/2, then

lim P{ 3 aPlofP > t"}/(l - ®(t/0)) =(2/V2-p )H’
1

t—> oo

where 6,,...,0, are independent standard Gaussian. This also extends a
result of Dobrié, Marcus and Weber (1988).

2. Notation. Here and in the sequel, 8,, 6,, ... always denotes a sequence
of independent standard Gaussian random variables. Of course, we have

P{lo,| < ¢} = ®(2),

where @ was defined in (1.4). Moreover, we set ®(¢) = 0 for ¢ < 0. Later on,
the two following properties of ® will be used several times [cf. Fernique
(1976) for the first one]:

(2.1) V2/m(1+18) e /2 <1 - ®(t) < (4/3)Y2/m (1 + t) le~t*/2

for ¢t > 0 and

(2.2) lim (1 - ®(t))tet* /2 = /2 /7 .
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Furthermore, for each natural n we define ®, on [0, ) by

(2.3) ®,(t) = P{ Y 62 < t2}.

1
It is well known that

() = (2"/27T(n/2)) " ['sn e/ ds
0
and

lim (1 - @,(1))/("%~*"/%) = (2"/2"'[(n/2)) .

3. Measures on l,, p>2. Let o= -+ =0;,>03,;,2>2 - 20bea
sequence with ¥70;” < ». Then Dobri¢, Marcus and Weber (1988) proved

lim P{ f) aPlo,P > t”}/(l - ®(t/oy)) =k
—® 1

for 2 <p < .
We want to study the same question for

P{ Y o0, — £F > tp},
1

where (¢,)7_, is an arbitrary sequence in /,. We shall need properties of two

functions g and A both defined on [0, 1]:

p

(3.1) g(u) = (1 - uP)?” — 1+ u?.
Let a, B be real numbers with @ > 8 and @ > 0. Then h = h,, g is defined by
(3.2) h(u) =a(l — uP)"’? — a + Bu.

LeEmMMA 1. Assume 2 < p < ». Then for each n > 0,

(3.3) lim ¢2 1exp{—tzg(u)/2 + th(u)}du = 0.

t— n

Proor. Let us first verify that this is valid for the integral from n to 1 — &
for each & > 0. Observe that g(u) > 0 for u € (0,1). Hence,

8o =inf{g(u);n<u<1-6>0

and
tzfl_sexp{—tzg(u)/2 + th(u)}du < t*exp{—t2g,/2 + td},
n

where d = sup, ., <; h(u). Clearly, 2 exp{—t3g,/2 + td} - 0 as t > o, prov-
ing our first claim.
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In order to complete the proof we first treat the case a > B. Then A(1) = B
— a < 0 and for some 6 > 0, we have

y=sup{h(u);1 -8 <u<1}<0.
Then

(3.4) tzfl exp{—t2g(u)/2 + th(u)}du < 6t%” > 0 ast — =,
1-5

completing the proof in this case.
Finally, we assume a = 8 > 0. By a change of variables, (3.4) coincides with

(35) [ exp(-t%(u)/2 + th(u)}uP " (1 - u?)"* " du,
0
where (1 — (1 — 8)P)/P = ¢,
If 6 (or, equivalently, &') is small enough, then
1-1
g(u) >u?/2, h(u)<2Bu and (1-u?)'"*?>1
for all u € [0, §']. Inserting this in (3.5) leads to

2t2f8’exp{—t2u2/4 + 2BtuluP tdu < c(8,B)t2 P -0
0
as ¢t — « and this completes the proof. O
LEMMA 2. Let g and h be as in (3.1) or (3.2), respectively. Then we have

lim lim sup tfn exp{—t2g(u)/2 + th(u)}du < ehB?/2 fw e /2 dy
ni0 t—o o 0 -B

and the reverse inequality holds for the limit inferior.

Proor. We only prove the assertion for the limit superior. The case of the
limit inferior follows after some obvious modifications in the same way.
Furthermore, we suppose 8 > 0. If 8 < 0, some small changes are necessary.

We have g(u) = u%(1 — ¢)? and h(u) < Bu, (e = 0), whenever 0 < u <17
and ¢ —» 0 as n = 0. Consequently,

t[" exp(~t%(u)/2 + th(u)} du
V]
< tfn exp{—tu?(1 - £)%/2 + tBu}du
0

= exp(B2(1 - e)“"/z}tjo” exp{—3(tu(1 — ) — B/(1 - ¢))”} du

B e /2 dy
-B/(1—-¢)

and the assertion follows by taking the limit n — 0, that is, ¢ » 0. O

<(1-¢) exp{B3(1—¢) /2
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Our next aim is to determine the behaviour of
(3.6) P{ f 16, — &P > t"}
1
as t - «» for some finite sequence ¢;,...,§,. Observe that (3.6) does not

change if we permute the ¢;’s or if we replace one (or several) ¢; by —&;. So we
can and do assume

b= 6> Gz 2620,
For each k£ = 1,...,n the function ¥, is defined by
k
(3.7) Wk(t) = P{ Z |0l - §ilp < tp}.
1

LemMA 3. The following is true:
1-W(t) = 1~ {®(2+ &) + (2 —§,)}/2

(3.8) + (2m) V2 [0 (1= % _4((27 - 7))

X {e~ Gt /2 4 o= (=tw*/2) g
fork=2,3,...,n.

REMARK. Defining ¥, by ¥, = 1, then formula (3.8) also holds for & = 1.

LeEmMMA 4. Let &,,...,¢&, be as above and assume 2 < p < . Then

. iz & >0,
fim (1= 9,0)/0 - 0 - e0) = {7/% 870

Proor. For & = 1, we have

(1—Wy())/(1 — (¢ — &) = Plo; — &] > ¢}/Pfloy] > ¢ — &1},
which tends to 3 or 1 according as £, > 0 or £, = 0. Thus the lemma is valid in
the case n = 1. Let us now assume

(3.9) lim (1= ¥,_y(8)/(1 - ®(t - £)) = e4os,

where c,_, = min{j, k2 — 1}/2 for £, > 0 or & — 1 for ¢ = 0, respectively.
Dividing (3.8) by 1 — ®(¢ — ¢,), the first term on the right-hand side tends to
3,k <j,thatis, & = & > 0, to zero for £, < £, or to 1 in the case ¢; = ¢, = 0.
Consequently, it remains to prove that
- 1— W, _y((t? - s7)'7)
lim (2 1/2 [t k-1

L I A S O

(3.10) toeo
x[e-@ren?/2 4 e~C~a"/2| ds = ¢, _,

in each of the cases mentioned above.
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Substituting s := tu, (3.10) coincides with

— W,y (t(1 — u?)"?)
1-®(t-¢)

1
(3.11) (2~17-)'1/2tf1 [e-Curant/2 4 g-wu-a/2] gy
0

and we claim that for each n > 0 this integral taken from 7 to 1 tends to zero
as ¢t — o, By assumption,

L= ¥ (t(1 - u”)?) s el - @(t(1 - u”)”” - &)

for some constant ¢ > 0. This and (2.1) let us conclude that it suffices to prove

lim #(1 + t)flexp{—(tz/Z)[(l —uP)?? — 1+ u2]
(8.12) °* n

+t[§1(1 —uP)P — ¢+ ugk]}du =0

for each n > 0. Defining the functions g as in (3.1) and - with a = ¢, and
B = &, as in (3.2), (3.12) can be written as

(3.13) lim #(1 + t) [*exp(~2(u)/2 + th(u)} du

and this is zero in view of Lemma 2.

To complete the proof it suffices to investigate (8.10), where we integrate
from zero to some n > 0.

Given p > 0, by assumption and (2.2), there exists a ¢, > 0 such that

1— W, _y(¢(1 - uP)'P)
1- <I>(t - §1)

= (1 + p)ck—lF(u’t)

cpi(1+p) 'F(u,t) <

(3.14)

for all ¢ > ¢, and all u € [0, n]. Here F is defined by

t—§
(1- up)l/p - &

F(u,1) =

xexp{ — (£2/2)[(1 - uP)"? — 1] + t,[(1 - u?)” - 1]}

Again we define g and % as in (3.1) and (3.2), respectively, where a = ¢, and
B = &,. Moreover, let A~ be given by

h(u) =&((1—u?)? - 1) —ug, Os<us<l.
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Then we conclude

_ n
(2m) V2 ["6(1 + p)ey 1 Fu, 1) et " /2 4 em¢umiu?/2] gy
0

(1 +p)ck—1t(t _gl) e_g’%/z

3.15 <
(815) (2m)2(¢(1 - 9P)' P - &)

X fﬂ exp(—(t2/2)g(u)[e™™ + e‘h_"‘)]) du,
0

and if we take lim, |, lim sup,_,,, of (3.15), Lemma 2 shows that it is less than
(2m) V%, _y(1 + p)e_g’%/z[f% e 2 du + fwe‘“z/z du]e‘ff/2
—& &

=1 +p)cp_s.
Summing up, we arrive at

— W y(t(1 — uP)P)
1- <I>(t - §1)

. ~12, (11
lim sup (27) Vztf [e'(“”‘f’e)z/2 + e'(‘”‘fk)z/z] du
0

t— o

< (1+p)ep,y

for any p > 0.
Analogously, by (3.14), the limit inferior is larger than (1 + p)~'c,_, and
the proof is completed by taking the limit p — 0. O

Before we formulate Theorem 2 let us fix the notation: oy = -+ =0, >
0.1 = -+ = 0 denotes a sequence in [,,. Given (¢;)7_; in [,,, we define ¢ > 0

by
& =sup{¢l; 1 <i <k},
j=card{§; g = €,1<i <k).

Then we have:

THEOREM 2. If 2 <p < =, then

lim P{ > lo, — & > tp}/(l - o=/ - (1 20
i=1 ,  6=0.

t—> o

Proor. Without losing generality, we may assume o; =1 and ¢ = ¢, =
e =¢;>€,,2 0 2§ 20 Then we define random variables X
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and Y by
k
(3.16) XP:=) |0,
1
(3.17) YP = Z lo,6;, — &,IP.
+
By virtue of Theorem 1,
(3.18) th_)n; t 2logP{Y >t} = —302,,< — 1,
which implies in particular that
(38.19) lim P(Y > ¢} /(1 — ®(t — ¢)) = 0.
t— o0

Because of
P{X? + Y? > tP) =P{Y > 1} + [;(1 — B, ((t7 — 57)1/7)) dPy(s)

[P, is defined as in (3.7)] by (3.18), it follows that
P{X? + YP > tP}

' e ; 1— \Pk((tp — sP)l/P)
(320) tlEIclo ]_—(I)(t_f) - }EI:OL l—q)(t_f)

dPy(s).
Lemma 4 now implies
— o((#* = s7)"P — ¢)

o1y I LT W)
(3:21)  lim 1-®(t—¢) ke 1— Ot —¢§) = O

where ¢, =j/2,£ > 0or ¢, = k, £ = 0, respectively. Moreover, it easily follows
from (2.1) that

(1-@((27 = s7)7 = £))/(1 - O(t - §)) < $e**/2,

provided that ¢ > (s? + éP)V/P If s <t < (sP + ¢P)/P) the left-hand side is
less than 1 — ¢((sP + £PIV/P — €)1 < £ exp((s?/2X1 + £P/sP)?/P). By
(3.18), e**/2 and exp((s2/2) (1 + f”/s”)z/”) are integrable with respect to Py.
Thus Lebesgue’s theorem applies and the proof is completed by (3.20) and
(3.21). Observe that by Lemma 4, sup, . o(1 — ¥,(¢))/(1 — ¢(u — §)) < . O

4. The Hilbert space case. The aim of this section is to describe the
behaviour of wf{||x|]| > #} as ¢ - x for an arbitrary Gaussian measure p in a
Hilbert space H. Equivalently, we have to study

u{x € H;llx — yll > ¢}

for symmetric p and arbitrary y € H.
Let us first recall some well-known facts about Gaussian measures on
Hilbert spaces. If u is Gaussian symmetric on H, then there is an orthonormal
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system {x;}7_; € H and o; > 0, £J0;2 < =, such that
1
for any measurable subset B c H. Moreover, the number o defined by (1.2)

coincides with sup, o;. Consequently, the investigation of u{x € H;|lx — y|| > ¢}
is equivalent to the study of

1

for some 0y >0, > -+ >0, £702 < ® and (n,)7_; with £$n? < . For each
a > 0 and natural n, we define ®, , on [0, ©) by
®, (¢) = Plo; —al® + 16,)> + -+ +16,I° < 7).
It is well known and easy to see that for real &,...,¢,,
P{0, — &7 + -+ +16, — £,1* <t} = @, (2),

n 1/2
a = {Z If,'z} .
1

We shall need the following result of Hweng (1980):

where

LemmA 5. If a > 0, then 1 — ®, (t) behaves like
(2m) a7 (t/a)" P exp(— (t — @)’/2)

ast — oo,

REMARK. In view of (2.2), this is equivalent to
lim (1 - ®, (£))/(t" V21 - ®(t — @))) = ta~ "~ D/2,
t—>o

Let us fix the notation again. Let oy = -+ =0, > 03,; > - > 0be a fixed

00

sequence in [,. Given (n,;);_; in /,, we define a > 0 by
& 1/2
a = {E I"Iilz} .
i=1

THEOREM 3. If a > 0, then we have

lim P{ (0.0, - m)* > tZ}/(t“-lW(l - 9((t - @) /v)))
1

t— oo

o _ 1 o
=4 T1 0 - oiyt) el 5 5 ot/ (oF - o).
k+1 k+1
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Proor. For simplicity, we assume o; = 1. But observe that we have to

divide o0;,i > k£ + 1, ;, « and ¢ by o in order to obtain the general case out of
this special one. As in (3.16) and (3.17), X and Y are defined by

k
X? = Z 6, — "7i|2’
1

0

2
Z |0’101 - ’”zl ’
k+1

YZ:
and again (1.3) leads to
th_r)r; P{Y >t} /(t*~V/%(1 - (¢ — a))) = 0.
Since
P{X2+Y2>2) =P{Y>1¢) + [0’(1 - @, ,((£2 - 87)"%)) dPy (s),
we only have to investigate

lim O‘(l = @, o((£2 = 57)"))((1 - (¢ — a))t*=D/2) APy (5).

By Lemma 5 and (2.2) it follows that
lim (1 - @, ,((£2 - 52)"%))(t*"72(1 - (¢ - @))) "
(4.1) ioe
_ %a—(k—l)/2esz/2.
Moreover, it is easy to see [use (2.1)] that [recall that ¢(u) = 0 for u < 0]
(1-@((£2 - 57" - 2))(1 - @(t — @) * < $e=/2(1 + 5)e*"/2

for all ¢ > s. Consequently, for every fixed ¢ > a, the left-hand side of (4.1) is
less than ¢(1 + s)exp(s2/2) for some ¢ > 0 (use Lemma 5). An application of
(1.3) implies

[o°°(1 + 5)e**/2 dPy(s) < ,

hence, by Lebesgue’s theorem and (4.1) we obtain
im P{X2+ Y2 > ¢2)} /(t*~ V(1 - ®(¢ — @))) = La~*~D/2EeY*/2,

t— oo
But
Ee*/? = klleexp{(o'ioi - :)*/2)
had 2y —1/2 2 2
- ILO - o?) ™ emlnt/2(1 - 02))
w® _ 1=
- 1-0?) exp{= /(o)
FL0 )™ en(3 £ /0 -

which completes the proof. O
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ReMARK 1. If @ = 0, that is, n; = -+ = n, = 0, then the tail behaviour

P{ Y lo6, — 1 > t2}

1
differs from that for o > 0. Recall that for a = 0,

lim P{ Y lo6, — 1% > tz}/(l — D, (t/ay))

t— oo

0 _ 1 o
1/2 -
- L0 -/t em{ 5 ¥ aitet - a?) )
k+1 k+1

where ®, was defined in (2.3) [cf. Hweng (1980)]. Recall that the behaviour of

(tk—2e—t2/2)/(2k/2—lr(k/z))
while for > 0, the behaviour of ¢*~1/%(1 — ®(¢ — a)) is equal to

m tk=3)/25—(t-a)? /2

REMARK 2. It is not difficult to see that after some minor modifications,
our proof also works in the case @ = 0. One only has to replace t*~V/2(1 —
(¢t — @) by 1 — ®,(¢) and to use

lim (1 — ®,((¢2 — s )7%))/(1 - @) = e

t— o

5. Diagonal measures on I, p < 2. Finally, we want to study the case
p < 2. It turns out that this case is much more complicated than p > 2
because of the following fact: If 4 on [,, p < 2, is defined by

u(B) = P{ Y oife; € B},

where e; denotes the ith unit vector in [,, then the rough behaviour of
ufllxll > t} is exp{ —t2/20%}, where

© 1/r
={ZU,~’} »  l/r=1/p-1/2.

Especially, this behaviour depends on the whole sequence (o;)7_; and not only
on the first £ terms as for p > 2. Thus, even a very small change of any of the
o;’s changes the rough behaviour, hence it may destroy the fine behaviour
completely. In particular, no approximation argument applies and we only
have results in the case of finite sequences. These improve some results of
Dobri¢, Marcus and Weber (1988), where the asymptotic behaviour for finite
sequences (1 < p < 2) was determined up to a constant (for p = 1 this con-
stant was already known).
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Let us fix the notation. Given oy,...,0, > 0, we define A, on [0,x)
by

k
(5.1) A (t) = P{ Y loof < t”}, 1<k<n.
1

Furthermore, we set a, := {L%0;7}!/", where 1/r :=1/p — 1/2, that is, r =
2p/(2 — p). So we have

ay,_, +of=a), and a,=o0,
and we define functions f, on [0, 1] by
(5.2) fu(w) = (L - u?)*?/a}_, + u?/o} — 1/dj,

2 <k <n. We shall see that the behaviour of P{Z}0/16;” > ¢t} depends
heavily on properties of the functions f,. Let us summarize some of these
properties for later use.

LEMMA 6. Assume 0 < p < 2 and define numbers u, € (0,1) by
(5.3) Up = (o'k/ak)r/p'
Then the functions f, defined in (5.2) possess the following properties:

(i) We have fk(uk) = f,;(uk) =0.

(ii) Each f, is strictly decreasing on [0,u,] and strictly increasing on
[uk’ 1]'
 (iii)) The Taylor expansion of f, at u, is

fu(u) = (2 = P)(ar/as_1) " (u = uz)*/ai + o((u — u,)’).
Proor. We only give some steps of the proof of (iii). All other properties
are easy to verify. Since
fi(u) = (4 = 2p)(1 — uP)"*u~%a2,
—(2p - 2)(1 — uP)*P 'uP-2%;2, + 2/02,
we obtain
P(up) = (4 = 2p)ag?y(as 1/a)"P ¥ (0r/ar) P
+(2 - 2P)a;31(ak—1/ak)2r/p_r(‘7k/ak)r_2r/p +2/0f

= (4 - 2p)a;l,0{7* = (2p — 2)0; ® + 20,2

= (4 - 2p)o; (1 + o /a}_y)

=(4- 2p)0'k_2(ak/ak—1)r
as asserted. O

REMARK. Later on, exactly the factor 2 — p of the Taylor expansion will
appear in the limit.
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THEOREM 3. Suppose 0 < p < 2. Then we have

lim P{an lo;6,1” > tp}/(l - o(t/0)) = (2/V2-p)" .

t— o 1

Here 0o =a,={L}?0/}/"and 1/r=1/p — 1/2.

Proor. Again we prove this by induction. If n = 1, there is nothing to
prove, so we assume

lim (1 - Ay 1(8))/(1 - @(t/a,_1)) = (2/V2=p)" ",
where A, was defined in (5.1).

It is easy to see that

1—Ay(t) =1 - ®(t/oy) + \/2/770,;1j‘(1 = Ayoy((22 = sP)P))es* /2 ds
0
for k = 2,...,n. Moreover, if £ > 2, then a, > 0, and thus
lim (1 - @(t/63))/(1 - @(t/a,)) = 0,
which implies
1 - AL(2)

i S a,)

1— Ayy((27 - s7)'7)
=2 —1 1 t k-1 —s
Ve&/moy i | ot /ay)
The right-hand side of (5.4) can be written as
. 11 - Ak—l(t(l - up)l/p)
(5.5) P_{?o\/2/w(t/ak) [0 T (/a.)

and our first aim is to show that this limit is zero provided that we only
integrate over A,(n) = {u €(0,1]; lu — u,| > 7} for some n > 0. The number
u, was defined in (5.3). To verify this, observe that

1— Ay_y(t(1 - u?)?) < 1 - @(¢(1 - u?) P /a,_,))

(5.4)
/20 gs.

—32,,2
e tu/ZO'fdu’

for some ¢ > 0 and ¢ > ¢, so in view of (2.1), it suffices to show that

tlim t(1 + t/ak)j‘; ( )exp{—t2(1 - uP)??/2d2%_, - t*u/20% + t?/2a3} du

= lim #(1 + t/ak)fAk(n)exp{—t2fk(u)/2} du =0,

where f, was defined in (5.2). But by Lemma 6,
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which proves
t(1+¢/a,) [ exp(—2fy(u)/2}du < t(1 + t/a,)e s,
Ak(’ﬂ)

which clearly tends to zero as ¢ — .

So it remains to study (5.5), where the integral is taken over [u, — 7,
u + nl. Let us assume that 7 is small enough, that is, we have u, — n > 0
and u, + n < 1. Then by assumption,

lim (1~ Ay _y(¢(1 — u?) 7)) /(1 - @(¢(1 - u?)"? /a,_,))

t—oo
- (2/ ,—2_p)k—2

and this limit is uniform with respect to u € [u, — n,u, + 7l
In view of this uniformity, we have

. uptn 1l — Ak—l(t(l - up)l/p) 1242 /252
hl;n_)s:p \/2/1-1-(t/a,e)fuk_?7 1= ®(i/a,) e W /2% dy
(5.6) <(2/V2-p)" " limsup y2/7 (t/a})
t—o o

e —t2u? /202 du

xfu,,m 1-®(¢(1 - u?)""/a,_,)
up—m 1- q)(t/ak)

as well as the reverse inequality for the limit inferior. Furthermore, (2.2)
implies the following: Given p > 0, there exists a ¢, > 0 such that for all ¢ > ¢,
and all u € [u, — n,u, + 1],

(1+p) (ap_1/a,)(1 — u?) "7 exp{—£3(1 - u)*? /2a3_, + t*/243)
< (1-@(e(1 - uP)/a,_,)) /(1 - ®(2/a4))
< (1+p)(a4-1/a,)(1 - uP) ™"
xexp{—t3(1 — u?)*” /243 _, + t2/2a%)}.
Thus, the right-hand side of (5.6) can be estimated (for large ¢) by
(/o) (1 +p)(2/V2=P) " Ve/m (as-r/as)

n -1
X [ (1= (u+u,)P) e ttherer2 gy,
-n

(5.7)

(5.8)

Lemma 6 implies

filu + u;) = uay(n),
where

a,(m) = (2 ‘P)"k_z(ak/ak—l)r = v(m)
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and y(n) - 0 as n — «. Thus (5.8) is less than
L+ (2/V2=p)" " V2/m (/o) (as-1/a) (1 - (uy+ ")
an exp{—t2u®a,(n)/2} du,
-n
which tends to
(1 +p)(ar_1/a)(2/V2 - p )k_z V2 /m

(5.9) p\—L/p ~1/2
Xog Y1 = (up +1)°) 7 V2w au(n)

ast — o«
Summing up, the limit superior

lirtnsup(l = A(1))/(1 — ®(t/a,))

is less than (5.9) and this is valid for all p,n» > 0. Now, if n — 0, then
(1 - (uj, + 7)P)/P tends to (a,_,/a,)"/? and a,(n) tends to

(2 -p)oy%(a/a,_y) .
Hence (5.9) tends to

(2/V2 -p )k_l(ak—l/ak)(ak/ak—l)r/p(ak—l/ak)r/z
=(2/V2-p)"" asp,m—0.

Similar arguments prove the same estimate from below for the limit inferior.
One only has to use (5.6) together with (5.7) and to replace a,(n) by
(2 - ploy%a,/a,_)" + y(n) and u, + 1 by u, — 1. This completes the proof.
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