The Annals of Probability
1990, Vol. 18, No. 4, 1635-1655

STOCHASTIC VOLTERRA EQUATIONS WITH
ANTICIPATING COEFFICIENTS

By ETIENNE PARDOUX! AND PHILIP PROTTER?

Université de Provence and Purdue University

Stochastic Volterra equations are studied where the coefficients F(¢, s, x)
are random and adapted to %, , rather than the customary % ,,. Such a
hypothesis, which is natural in several applications, leads to stochastic
integrals with anticipating integrands. We interpret these as Skorohod
integrals, which generalize Itd’s integrals to the case where the integrand
anticipates the future of the Wiener integrator. We shall nevertheless
construct an adapted solution, which is even a semimartingale if the
coefficients are smooth enough.

1. Introduction. Let (0 denote the space C(R,;R*) equipped with the
topology of uniform convergence on compact sets, % the Borel o-field on Q, P
standard Wiener measure, and let {W(w) = w(¢); ¢ > 0}. For any ¢ > 0, we
define %, = a{w(s); s < t} V &, where .# denotes the class of the elements in
& which have zero P-measure. Qur aim in this paper is to study equations of
the following form, whose solution {X,} should be an R%-valued and %,-adapted
process:

(1L1) X=X+ [F(t,5,X,)ds + ['G(H;t,s,X,) dW,,
0 0

where we use here and everywhere below the Einstein convention of summa-
tion upon repeated indices [i.e., (1.1) should be read with a “~*_,” added in
front of the second integral], and {H,} is an RP-valued and .%,-adapted process,
F(t,s,x), maps Q X {s,¢; 0 <s < ¢} X R? into R? and F(¢,s,x) is F-mea-
surable, and G(h;t,s,x),...,G,(h;t,s,x) map Q X R? X {s,¢; 0 <s <t} X
RY into R? and G(h;¢t,s,%),...,G4(h;t, s, x) are F-measurable.

A special case of equation (1.1) is a more standard Volterra equation

(1.2) X, =X+ [J(t,5)X,ds + [K,(H,t,5)X, dW,,
0 0

where J(¢,s) and K(h;t,s),..., K,(h;t,s) are d X d matrices. The novelty
here is that G(H,;¢,s,x),...,G,(H,;t, s,x) are Z;-adapted, and not %-
adapted, i.e., the integrands in the stochastic integrals are anticipating.

Note that G,(H,;t, s, X,),...,G,(H,;t, s, X,) anticipate the increments of
{W,} between s and ¢ in a special and restrictive way, namely through H,. We
shall explain below the reason for this restriction.
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Volterra equations with kernels which anticipate in the way described
above arise in applications (in particular in finance theory, see [4], [5] and
Example 3.1) and as such were the motivation for this work.

Clearly the problem in studying the above class of equations is that the
integrands in the stochastic integrals are not adapted, and therefore one
cannot use as usual the Itd integral to interpret the equation. Our approach is
to use the Skorohod integral [20] to interpret the stochastic integrals in (1.1)
and (1.2). Recent progress in interpreting the Skorohod integral (see [11], [12]
and [16]) have made this possible. We explain our interpretation of the
equation in Section 2. Note that recently there has been other work concern-
ing stochastic differential equations where the solution itself is anticipating
(which is not the case here). In [19], the Skorohod integral was used to solve a
one-dimensional linear equation with an anticipating initial condition. In [13],
[14] and [15], another kind of generalized stochastic integral, which generalizes
the Stratonovich integral, was used to solve stochastic differential equations
with an anticipating initial condition, or with boundary conditions (instead of
the usual initial condition).

This article builds on previous work concerning stochastic Volterra equa-
tions. Equations where the kernel is adapted to %, were studied among others
in [2], [7], [17] and [18]; Berger and Mizel considered linear stochastic Volterra
equations with anticipating integrands in [3]. Our results differ from theirs
since the stochastic integral is not the same, also the discussion in [3] uses in
an essential way the linearity of the coefficients. In [17], one of us commented
that such equations can also be studied using an “enlargement of filtration”
approach, but the technique used in the present paper yields much better (and
perhaps more ‘“natural”) results.

The paper is organized as follows. Section 2 contains a presentation of some
results concerning the Skorohod integral, which will be used later, together
with the precise interpretation of equation (1.1). The existence and uniqueness
of a solution to equation (1.1) is proved in two steps in Sections 3 and 4. In
Section 5, we establish, under additional assumptions, the existence of an a.s.
continuous modification of the solution process. This allows us to deduce a
weaker existence and uniqueness result, under local Lipschitz conditions.
Under still stronger regularity assumptions on the coefficients, we show in
Section 6 that the unique continuous solution is a semimartingale.

Let us point out the fact that the reason for restricting ourselves to a
Wiener driving process (versus a more general semimartingale) is the fact that
the Skorohod integral and the derivations which we will be using below are
only defined on Wiener space.

The following notation is used throughout the paper: c(a, B) stands for a
constant which depends only on « and B, and whose value may vary from one
occurrence to another.

2. The Skorohod integral. Most of this section is a review of some basic
notions and a few results from [11]. Let again O = C(R,;R*), # be its Borel
field and P denote Wiener measure on (), %). W(w) = (). Let %% =
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o{W,;0 <s <t}and & = %° v ./, where .# denotes the class of P-null sets
of &. For h € L%R,; R*), we denote by W(%) the Wiener integral

W(h) = f:(h(t),dm

Let . denote the dense subset of L%}, &, P) consisting of those classes of
random variables of the form:

(2.1) F=f(W(hy),...,W(h,)),

where n €N, fe C;R™), hy,...,h, € LAR,;R*). If F has the form (2.1),
we define its derivative in the direction i as the process {D;F; ¢ > 0} defined by
of

DiF= ¥ ST (W(h), .., W(h,))Hi(0).
k=1 k

DF will stand for the k-dimensional process {D,F = (D}F,..., DFF); ¢t > 0}.

ProPosITION 2.1. Fori=1,...,k, D' is an unbounded closable operator
from L*(Q) into L(Q X R,). We identify D' with its closed extension, and
denote by D}? its domain. D% = N*_D}? is the domain of D: L¥Q) -
L%(Q X R,; R*).

Note that D}2 (resp. D' ?) is the closure of . with respect to the norm
IFN;, 1,2 =IFllz + Il "DiF”LZ(R.,,)“Z

(resp. with respect to the norm

k
IFlli,2 =Fll2 + Z I ||DiF”L2(R+)||2)~
i=1
D' is a local operator, in the sense that: D!F = 0 dP X dt a.e. on {F = 0} X
R,. We denote by D}>2, the set of measurable F’s which are such that there
exists a sequence {(Q,, F,); n € N} ¢ & X D}? with the two properties

(1) 0,10 as,n - o
(ii) Fnlﬂn = Flﬂn, ne N.
For F € D}2,, we define without ambiguity DF by: DiF = DiF, on Q, X R,

V n € N. D2 is defined similarly. .
For i =1,..., k, we define 8, the Skorohod integral with respect to {W;’} as
the adjoint of D’ ie., Dom §; is the set of u € L%(Q X R,) which are such

that there exists a constant ¢ with

E[ DiFu, dt’ <clFll;, VFe.”
0
If ¥ € Dom §;, §,(u) is defined as the unique element of L%()) which satisfies

E(8,(w)F) = Ef:D}Futdt, VFe .7
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Let L2 = L%R,; D}>?). We have that %2 c Dom §;, and for u € 112,
(2.2) E[8,(u)?] =Ef0 u? dt+EjO jo Diu, Diu, dsdt.

Note that {z € 1%(Q X R,); u is &%, progressively measurable} € Dom §;, and
for such a u, 8;(u) coincides with the usual Itd integral. Note that when u is
progressively measurable, D,u, = 0 for s > ¢, so that (2.2) is consistent with
the formula in the adapted case.

REMARK 2.2. From (2.2), the L%{) norm of a Skorohod integral can be
estimated in terms of the L%(Q) norm of its integrand plus a norm of its
derivative. This means that an L2%({}) estimate of the last term in (1.1)
introduces the derivative of the solution X. This creates a crucial difficulty
if we try to apply standard techniques to study the existence and unique-
ness of (1.1). That is the motivation for letting G, anticipate the increments
{W, — W,; s < r <t} only through the process {H,}.

Note that if u € L},(R,;D}?), then for any T > 0, uly, 5, € L';? and we
can define

T :
fo u, dW; = 3;’(“1[0,7‘])-

The Skorohod integral is a local operation on L} (R,; D}>?) in the sense that if
u,v € L} (R,;D82), [lu,dW, = [fv,dW} as. on {w; u(w)=v,(w) for al-

loc

most all s < ¢}.
Let ;2 . denote the set of measurable processes u which are such that for

i,loc

any T > 0 there exists a sequence {(Q%, u7); n € N} ¢ # X 142 such that
(i) QT1Q as.,asn - «,
(ii) u=uTdP xdt ae.on QY x[0,T],neN.
For u € 1Y%, we can define its Skorohod integral with respect to W’ by

ftus dW} = ftuﬂ,des" on 0T x [0,T].
0 0

Finally, 12 = Nf_,1}? and L};2 is defined similarly as L%}2, .

We now introduce the particular class of integrands which we shall use
below. Let u: R, X Q X R? — R satisfy:

(i) VxeRP, (t,w) = u(t, w, x) is &, progressively measurable.
(ii) V(t,w) eR,. X Q, u(t,w, ) € CY(RP).
For some increasing function ¢: R, - R_,

lu(t, w, 2)| + [u'(t, w, 0| < @(x]), V(¢ w,x)e R, XQXRP,
where u'(¢, x) stands for the gradient (du /dx)(t, x).

(iii)
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Let 6 be a p-dimensional random vector such that
(iv) 6/ eD2NL(Q), j=1,...,p.
Let us fix T > 0, and consider

Ii(x) = jOTu(t,x)dmi.

Define moreover v, = u(¢,6). Under conditions (i)-(iv), the following proposi-
tion holds.

PROPOSITION 2.3. The random field {I'(x); x € R?} defined above possesses
an a.s. continuous modification, so that we can define the r.v. 1¥(8). Moreover
v € Dom §;, and the following holds:

(2.3) [Tv.aw; = 1'(6) - ["u'(t,6)Di6 dt.
0 0

We insist that 1°(6) stands for [fu(¢, x) dW,i|,—. Similar notation will be
used below.

Proposition 2.3 is proved in Nualart and Pardoux [10], under slightly
different conditions. We shall need below a localized version of that result.

We replace condition (iv) by

(iv') ¢’ D2, j=1,...,p.

Under conditions (i), (ii), (iii) and (iv), v € (Dom §,),,., in the sense that
there exists a sequence {(Q2,,v,); n € N} € %X Dom §, such that O, 1 Q a.s.
and v,|o, = vlg,. Indeed, let {(Q2/,, 6,)} be a localizing sequence for 8 in (D}2)?,

and {y,,; n € N} € C2(RP; RP) satisfy ,(x) = x whenever |x| < n. Define

v (2) = u(t, ¥,(6,)),
Q, =0, Nn{6l <n}.

Then {(Q,,v,); n € N} satisfies the above conditions.

It is then natural to define the Skorohod integral [ v,dW, again by
formula (2.3), and the latter coincides with [Jv,(¢) dW,’ on Q. Note that our
definition of [Jv,dW, does not depend on the localizing sequence of v in
Dom 4§, provided that sequence is of the form {u(-, 6,)} with 6, satisfying (iv).

3. Statement of the problem: Interpretation of equation (1.1). Our
aim is to study the equation

(8.1) X, =X, + [F(t,5,X,) ds + [G(H,;t,5,X,) dW,,
0 0

where we use here and henceforth the convention of summation upon repeated
indices. We define D = {(¢,s) € R2; 0 < s < ¢t}. The coefficients F and G are
given as follows: F: Q X D X R? - R? is measurable and for each (s, x) €
R, X R%, F(-,s,x) is & progressively measurable on Q X [s,+ »). For i =
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L,...,k, G QXRPXDXR?—> R? is measurable, for each (h,¢,x),
G{h;t,-,x) is & progressively measurable on Q X [0,¢], and for each
(w,t,8,x), G(+;¢,s,x) is of class C.

{H,} is a given progressively measurable p-dimensional process. It will
follow from these hypotheses that we shall be able to construct a progressively
measurable solution {X,}. Therefore, for each ¢, the process

{Gi(H,t, s, X,);s €[0,t]}

is of the form v, = u(s, 6) with u(s, k) = G(h;t, s, X,) and 6 = H,. We shall
impose below conditions on G, {H,} and the solution {X,} so as to satisfy the
requirements (i), (i), (iii) and (iv) of the last section. In particular we shall
consider only nonanticipating solutions. Therefore the stochastic integrals in
(3.1) will be interpreted according to (2.3), i.e.,

[[G(Hyt,5,X,) dW} = [‘G(hst,s, X,) dW/li-m,
(3.2) 0 0
_ftGi’(Ht; t,s, X,)DiH,ds.
0

In other words, we can rewrite (3.1) as
(38) X, =X, + ftF'(t,s,Xs) ds + [‘G(h;t, 5, X,) AWiluon,,
0 0

where
F'(ty S, x) = F(t’ S,x) - G{(Ht’t’ syx)D;Ht’

and the stochastic integrals are now the usual Itd integrals. We shall show
below that (3.3) makes sense for any progressively measurable process X
which satisfies X € N, (L0, ) a.s., for some g > p. We shall find such a
solution to (3.3); it will then follow from (3.2) that it is a solution to (3.1).
Similarly, uniqueness for (3.1) in the above class will follow from uniqueness
for (3.3) in that class.

Let us close this section with an example from finance theory.

ExampLE 3.1. Let X, denote the capital stock of an economic model at time
t, and Y, denote the investment (rate) process, where negative Y, is possible in
some cases. The random evolution of X, could be governed by a Volterra
equation of the form

X, =X, + fotF(t, Y, s, X,)ds + fOtGi(Ht;t,s, X,) dW;.

The fact that f, = F(¢,Y,, s, X,) is #,-measurable is natural if we think of f,
as the “payback” rate at time ¢ from investment Y, at time s, which clearly
should depend on the capital stock X, as well as random (%,-measurable)
returns to investment. Likewise, G,(H,, t, s, X,) reflects the random effects of

depreciation and stochastic growth. A limited example of G, is given in the
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Cox, Ingersoll and Ross [4] model of capital stock growth. More general
examples are shown in Duffie and Huang [5].

4. Existence and uniqueness under strong hypotheses. Let us for-
mulate a set of further hypotheses (those stated in Section 3 are assumed to
hold throughout the paper), under which we will establish a first result of the
existence and uniqueness of a solution of equations of the form (1.1).

Let B be an open bounded subset of R?, K > 0 and ¢ > p s.t.

(H.1) X, € L(Q, %, P;R9),
(H.2) P(H,eB,Vt=>0) =1,
(H.3) He (1?", ID,H|<K as,0<s<t,

k k
(H.4) |F(¢t,s,x) + Y 1G;(h;t,s,x) + Y IG/(h;t,s,x) < K(1+ |x]),

i-1 i=1
forany0 <s <t h € B, x € R? and as.

k
|F(t’s’x) _F(t’s’y)l + Z |Gi(h;t’s’x) - Gi(h;t’ s,y)l
(H.5) \ -t

+ 2 1G{(h;t,s,%) — G{(h;t,s,y) <Klx —yl,
i=1
forany0 <s <t h €B,x,y € R4
Note that from now on ¢ will be a fixed real number s.t. ¢ > p and (H.1)
holds. L%,,,(Q X (0,#)) will stand for the space L(Q X (0,%), &, P X A),
where &, denotes the o-algebra of progressively measurable subsets of () X
(0,¢) and X denotes the Lebesgue measure on (0, ¢).

LEmMmA 4.1, Let X € N5 oL3,,,(Q X (0,2)), where q > p, and suppose that

(H.4) is in force. Then for any t > 0 and i € {1,..., k}, the random field
{/’G,.(h;t, s, X,)dWis h e B}
0
possesses an a.s. continuous modification.

Proor. Using Burkholder and Gundy’s and Hoélder’s inequalities together
with (H.4), we obtain
)

<c(t,)E[1Gi(h;t, s, X,) — Gi(k3t, 5, X,)| ds
0

E||[‘Gi(h;t,s, X,) dW} — [‘Gi(k;¢,5, X,) dW;
0 0

< c(t,q) Kk — RIE [(1 + 1X,])" ds.
0
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The result now follows from the multidimensional generalization of Kol-
mogorov’s lemma (see, e.g., Sznitman [21] or Meyer [9]). O

We can and will from now on assume that for ¢ fixed, the random field
{ftGi(h;t, s,X,)dW;; h € B}

is a.s. continuous in h, provided X € L% (Q X (0, 2)).

From X € N,. ,L%,,.(Q X (0,?)), define

prog

I(X,h) =fGi(h;t,s,Xs)dW;i, heRP,t>0,
0
J(X)—fF(t s,X,)ds + I(X, H,).

LEmMmA 4.2. Foranyt > 0, 3 c(q,t) s.t.

E(J( X)) < c(q, t)(l + EfOtIXSI" ds).

Proor.

q
'ftﬁ(t, s, X,)ds
0

<c(q,t) [1F(t, s, X,)I" ds
0

< c(q,t)(l + ftIXsI" ds),
0

where we have used (H.2), (H.3) and (H.4).

(X, H,)| < supll,(X, k).
heB

It is easy to show, using in particular (H.4) and Lebesgue’s dominated conver-
gence theorem, that the mapping

h - I(X,h)
from R? into L9(Q) is differentiable, and that
aI(X h) +0G;
LA i j (h t,s, X,) dW/.

Since g > p, we can infer from Sobolev’s embedding theorem (see, e.g., Adams
[1], Theorem 5.4.1c)

q

) dh

IL(X, B

E(sggllt(x,h)lq) < c(q)EjB

J
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It then follows from the Burkholder-Gundy inequality that

E(sg};l[t( X, h)I")

< c(q,t)Eff

aG, q
—(h;t,s, X,)| | dsdh

q
|G;(h;t,s, X,)l +Z oh,

< c(q,t)(deh)(1 + B[ ds),

where we have used (H.4) and the relative compactness of B. O

A similar argument, but using (H.5) instead of (H.4), yields the following
lemma.

LEmMmA 4.3. Foranyt > 0,3 c(q,t) s.t.
4
E(J(X) = J(Y)?) <c(q,t)E /0 X, - Y,|? ds.
If moreover 7 is a stopping time,

B(J.r(X) = (V)) < e(a, ) B[ X, - Y,1" ds.

We are now in a position to prove the main result of this section. Note that
we prove uniqueness only among nonanticipating solutions.

THEOREM 4.4. Under conditions (H.1), (H.2), (H.3), (H.4) and (H.5), there
exists a unique element X € N,,(L%,,.(Q X (0,t)), which solves equation
(38.1). Moreover, if T is a stopping time, uniqueness holds on the random
interval [0, 7].

Proor. Equation (3.1) can be rewritten as
(4.1) X, =X,+J,(X), ¢t=0.
Uniqueness: Let X,Y € N, (L%,,(Q X (0,2)) and = be a stopping time,
such that
X, =X, + J,(X), 0<tx<r,
Y, =X,+J,(Y), O<t<r,
Xine = Yin, = t/\T(X) t/\r(Y)
From Lemma 4.3,

B(X,, = Y5 ") < e(g, O E[ "X, - Y,I" ds

t
SC(q,t)E/;IXsM— Y, 7 ds.

The result now follows from Gronwall’s lemma.
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Existence: Lemmas 4.2 and 4.3 allow us to mimic It6’s classical proof. Let us
define a sequence {X,*, ¢t > 0, n € N} as follows:

Xto = Xo, t > 0,
X=X, +J(X"), ¢t=0,neN.
Using Lemma 4.2, we show inductively that

X" e LLu(2% (0,8)), neN.
t>0
It then follows from Lemma 4.3 that

(4.2)

E(X/*' - XIY) < o(q,¢) [ (X} - X7~ 17) ds.
0

A classical argument then shows that

n+1tn+1

C
n+l _ xn Zat ©
E(X ' - X!7) < E(1X, (n D

which implies that X" is a Cauchy sequence in L% (Q X (0, D)V t>0.
Then there exists X s.t. X" > X in N, (L%, (Q X (0,2)), and using again
Lemma 4.3, we can pass to the limit in (4.2), yielding that X solves (4.1). O

5. An existence and uniqueness result under weaker assumptions.
Our aim in this section is to “localize” the result of Section 4. We formulate a
new set of weaker hypotheses.

(H.1) X, is F,-measurable.
(H.2) H e (132)", {H,} is a progressively measurable process which can be
™" localized in (L2)? by a progressively measurable sequence.

We assume that there exists an increasing progressively measurable process
{U,, t > 0} with values in R,, such that

k
(H.3) |H,| + Y, IDIH,| <U, as.,0<s<t¢.
i=1
Finally, we suppose that for any N > 0, there exists an increasing progres-
sively measurable process {V;"; ¢t > 0} with values in R, such that

k k
IF(t,s, %)l + X IG;(h;t, s, %)l + X IGi(h;t, s, x)l
(H.4) i=1 i=1

<VN(1+1xl), VIhl<N,0<s<t xeR?

k
IF(t,s,x) — F(¢,s,9)l + 1 1G;(h;t,s,x) — Gi(h;t,s,y)l
i=1

k
+ G!(h;t,s,x) — G!(h;t,s,y) < VV|x —yl,
(H.5) iz=:1| i( 8, %) z( s,y ¢ lx —

VIh| <N,0<s <t x,y R
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Let again g be a fixed real number, with ¢ > p. We have the following
theorem.

THEOREM 5.1. Equation (8.1) has a unique solution in the class of progres-
sively measurable processes which satisfy

Xe NLY0,t) a.s.

t>0

Proor. (a) Let us first see how equation (3.1) makes sense if X e
N,.oL%0,¢t) a.s. That is, we have to show that for ¢ > 0, fixed,

{ftGi(h;t,S,Xs) dWi; h € RP}
0

is a well-defined random field which possesses an a.s. continuous modification.
For that sake, we define

Ty = inf{t; [tIXslq ds>norVN > n}
0
The argument of Lemma 4.1 can be used to show that
h - f’“"G,.(h;t,s,Xs) PAUA
0

possesses an a.s. continuous modification on {|| < N}. Since this is true for
any n and N, and U {7, > t} = Q a.s., the result follows.

(b) Existence: We want to show existence on an arbitrary interval [0, T'] (T'
will be fixed below). Let {H"; n € N} denote a progressively measurable
localizing sequence for H in (I%)? on [0, T]. Since from (H.3") sup, _,|H,| is
a.s. finite, we can and do assume w.l.o.g. that

H(w)l <n, V(¢ w)e[0,T]XQ.

Note that H/(w) = H(w) a.s. on Q% V t €[0,T], where QT 1 Q as. as
n — o,

We moreover define

Xg = Xolx, < ny

S, = inf{t; sup|D,H*| v V" > n}

s<t

We consider the equation
(5.1) X7 =X+ ['F(t,5,X7)ds + [GP(hst,s, X]') dWineny,
0 0
where
Fr(t,s,x) = l[o,sn1(3)[F(t, s,x) — G{(H;t,s,x)D!H],
GI'(h;t,s,x) = 1 5 (8)G;(h;t,s,%).
It is not hard to see that Theorem 4.4 applies to equation (5.1).

/
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Define

. t .
5. (o) = {Sn(w) A 1nf{t <T; j;)le(w) - HM(w)lds > 0} if |Xo(w)l < n,
0 otherwise.

S, is a stopping time, and it follows from the uniqueness part of Theorem 4.4
that, if m > n

X=X on [0, §n], a.s.
Since moreover (S, = T}1 Q as., we can define the process {X,} on [0, T] by
X,=X" onl0,8,],¥neN.

Clearly, X € N L0, T) a.s. and solves (3.1) on [0, T']. Since T is arbitrary, the
existence is proved.

(c) Uniqueness: It suffices to prove uniqueness on an arbitrary interval
[0,T]. Let {X,, t €[0,T]} be a progressively measurable process s.t. X €
L%0,T) a.s. and X solves (3.1). It suffices to show that X coincides with the
solution we have just constructed. Let

S (o) = 5(w) A inf{t < T; [X () ds > n}
0
th = Xt/\ S,
X" e LUQ x [0, T']) and it solves equation (5.1) with S, replaced by S,. Then

X"(w) =X, (0)dt XxdP ae.on|0,S,].
The result follows from the fact that {S, > T}1 Q as. O
Note that the above solution satisfies in fact X € N ,.; N, ,L%0,¢) as.
6. Continuity of the solution. We want now to give additional condi-
tions under which the solution of equation (3.1) is an a.s. continuous process.
(H6) V(s,x) € R, XR% ¢t F(¢s,x)isa.s. continuous on (s, +).
(H.7) {H,;t > 0} is a.s. continuous.
(H8) Vie{l,...,k},s€R,, ¢t > DIH, is a.s. continuous on (s, +x).
(H.9) V(s,x) eR,XR%ie(l,... k),
(t,h) > G{(h;t,s,x) is a.s. continuous on (s, + o) X RP.
We also suppose that there exist a > 0, [ > 0 s.t.
VN>0,lhl<N,0<s<tAr,xeR%t—rl<1,
(H.10) there exists an increasing process {V;"; ¢ > 0} such that
IG;(h;t,s,x) — Gy(h;r,s,x) < VNIt —rl*(1 + |zI*).
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THEOREM 6.1. Under conditions (H.1)-(H.5') and (H.6)-(H.10), the unique
solution of equation (3.1) [which is progressively measurable and belongs a.s.
to N,51N;50L%0, )] has an a.s. continuous modification.

Proor. We need to show only that whenever X € N ,.;N,.(L%0,?) as.,
{J(X); t = 0} has an a.s. continuous modification.

(a) We first show that ¢ — [[F(¢, s, X,)ds is a.s. continuous. Note that
(H.6), (H.7), (H.8) and (H.9) imply that V (s, x) € R, X R¢,

(6.1) t —» F(t,s,x) isa.s.continuous on (s, +x).

Moreover, from (H.2), (H.3), (H.4) and the fact that X € N ., N,.,L0,?)
a.s., for any T > 0, there exists a process {Z[; s € [0, T ]} such that

(6.2) |F(¢,s,X) <27, 0<s<t<Tas,
(6.3) ftZsT ds < a.s.
0

Let first {¢,; n € N} be a sequence such that ¢, < ¢ for any n and ¢, > ¢ as
n — o,

[tF’(t, s, X,)ds — ft"F"(tn, s, X,)ds
0 0

= ftF~(t, s, X,)ds + ft"[F'(t, s, Xs)] ds — F(t,,s, Xs)] ds,
t, 0

['F(t,s, X,) ds
tﬂ

s[t:ZsTds

and the latter tends a.s. to 0 as n —> «.

[t"[F’(t, s,X,) - F(t,,s, Xs)] ds
0

< ftIF'(t,s, X,) - F(t,,s, X,)|ds,
0

which tends to 0 from (6.1), (6.2), (6.3) and Lebesgue’s dominated convergence
theorem. A similar argument gives the same result when ¢, > ¢, ¢, — ¢.

(b) We next show that ¢ — I(X, H,) possesses an a.s. continuous modifica-
tion. This will follow from (H.7) and

(6.4) (¢,h) » I,(X,h) hasan a.s. continuous modification.

By localization, it suffices to prove (6.4) under the assumptions (H.2)-(H.5)
and (H.6)-(H.10), with V;¥(w) in (H.10) replaced by a constant K, and in case
X, € N, LY R9). It then suffices to show that under the above hypothe-
ses, there exists ¢,q > 0 and 8 > p + 1s.t.

(6.5) E(I(X,h) — L(X, k)I") <c(it = rl° + |k — 1)
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for any h, k € R?; t,r > 0. Suppose, to fix the ideas, that 0 < r < ¢,
L(X,h) — L(X,k) = ['G(h;t,5,X,) AW,
+ [[Gihst,5, X,) = Gi(hir, s, X,)] AW
0
+ [[[Ghsr,s, X,) = Gi(k; r, 5, X,)] AW
0
It follows from the Burkholder-Gundy inequality that

q k . ) q/2
) < chIE[(frlGi(h;t, s, X,)| ds) ]

E(‘ftGi(h;t,s, X,) dW;

k
<c(t =2 Y E[1Gi(h;t, s, X,)I" ds
i=1 r

< cq(t _ r)(q—2)/2.

From (H.4) for G/, we deduce as in Lemma 4.1

E(‘fr[Gi(h; r,s, X)) — G(k;r,s, X,)| AW}
0

<c,(h - k)"(1 + Eforlel" ds)

<c,(h - k).
From (H.10), and the fact that X € N, ., N, (LU(Q X (0, 2)),

)

E(‘fr[Gl(h;ts S, Xs) - Gl(h, r,s, Xs)] dWsl
0

<K, lt—r“|1+E[ X, ds
r,q 0

<c,lt - rl*.

(6.5) now follows from the above estimate, provided we chose ¢ such that
inf((q — 2)/2,aq) >q + 1. O

7. Semimartingale property of the solution. Under the conditions of
Theorem 6.1, there exists a unique (in the sense of Theorem 5.1) continuous
solution {X,; ¢ > 0} of the equation

(3.1) X, =X, + [F(t,s,X,) ds + [[Gi(H,t,5, X,) dW,
0 0
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which we rewrite, with the notation of the above sections, as
(7.1) X, =X, + [’F(t, s, X,) ds + I(X, H,).

We now want to stabe conditions under which both { [¢F(¢, s, X,); t > 0} and
{I(X, H,); t > 0} are semimartingales (and then also {X,; ¢ > 0}) In order to
avoid some technicalities, we shall state some of the conditions in terms of ¥
(and not explicitly in terms of F, G and {H,}) for simplicity. In any event, our
conditions are easy to check for each example.

Let us first treat the term { [(;’F(t s, X,) ds}. We shall assume that for any

(s, x) € R, X R? the process {F(t, s, X,); t > s} can be rewritten in the form

F(t,s,x) = F(s,s, x)+fl"(0 s, x)d0+/A(0 s, x) dW,

where T',A,,..., A, are measurable mappings from Q X D X R¢
(H.11) into Rd, and for each (s,x) in R,X R, T(,s,x), A(,s,x),
,A(+, s, x) are progressively measurable on Q X [s, +»).

It follows from (H.5) that x — F(s,s,x) is continuous for any (w,s). We
suppose moreover that

(H.12) x » T'(6,s,x) iscontinuous for any (w;0,s) € Q X D,

and that for any N > 0 there exist R,-valued measurable functions cy and dy
defined on Q X D, which are progressively measurable in (6, w) on Q X [s, +)
for any fixed s, and such that for some ¢ > d andany 0 <s <¢, N €N,

(H.13) ftcN(O, s)df <» as., Eft(dN(B, $))?do < w,
s s

k
(H.14) sup (IF(B,s,x)I + Y |A,~(0,s,x)|2) <cy(6,s),
lx| <N i=1
|A(0,s,x) - A(0’37y)| < dN(oys)lx _yl,

(H.15)
Vx,y e R%st.|x| vV |yl <N.

It then follows that each term in the above decomposition of F(¢, s, x) is a.s.
continuous in x, after a possible choice of another modification (for the
stochastic integral terms, we apply the argument in Lemma 4.1). It is then not
hard to show that

F(t,5,X,) = F(s,s,X,) + [T(6,5,X,)d6 + ['A (6,5, X,) dW.
s s

It follows from (H.14) that we can use the Fubini theorems (the one for the
stochastic integral terms can be found, e.g., in Jacod [6] Theorem 5.44) to
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conclude

[F(t,5,X,)ds = ['F(s,s,X,)ds + ['['T(6,5,X,) dsdo
(1.2) 0 0’0

¢ 0 )
+ A(6,s,X,) dsdW,.
j;) j(; l( ) 0
We have shown the following proposition.

ProposITION 7.1. Under conditions (H.1), (H.2), (H.3), (H.4), (H.5),
(H.11), (H.12), (H.13), (H.14) and (H.15), {[§F(¢,s, X,) ds; t = 0} is a semi-
martingale whose decomposition is given by (7.2).

We now consider I(X, H,). Let us assume that {H,} is a semimartingale of
the form (here and in the sequel, we use the convention of summation over
repeated indices, even when they appear twice as superscripts)

(H.16) H,-Hy+ [K,ds+ ['LidW},
0 0

where H, is a %;-measurable p-dimensional random vector, {K,, L}, ..., L¥}
are progressively measurable p-dimensional random processes with

(H.17) [0‘

R
K|+ Y IL‘;IZ) ds <o as,Vt>0.
1

We suppose moreover that
(H.18) V(w,s,x), G;(*;,s,x)isofclass C>!(C? in h and C! in t),

and moreover for any N > 0; h, k € R? s.t. |hl, |kl < N; r,s,t € R,; x € R%
1<i<k,

4G, %G, aG;
'ﬁ(h;t,s,x) + W(h;t,s,x) +'7(h;t,8,x)
(H.19)
< VA1 + Ixl),
?G, G,
W(h;t,s,x) - o (k;r,s,x)
(H.20)

G, i |
+’7( ’t’s’x)_a_t( 37,8, %)

<VN (1 +Ix)(h =kl + 1t —rl),
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where again {VN; ¢ > O}y . is a collection of increasing and progressively
measurable R,-valued processes. Let us now denote by {I(X, h, r)} the collec-
tion of processes indexed by (h,r) € R? X R,:

I(X,h,r) = j:Gi(h; r,s, X,) dwW}.

Combining the argument of Lemma 4.1 for ¢ > p + 1 with a localization
procedure, we obtain the following lemma.

LeEmMA 7.2. Foreacht > 0,(h,r) > I(X, h,r) is a.s. of class C%>1, and
(X h %G 4, X,) dW;
%t( ’ 7r)__/;)ﬁ( 5T, S, s) s

o I(X,h :°Gy h X.) dW¢
Wt( ) ,r)_‘/;)W( 3T, S, s) s

S 1(x.h G X.) dWi
Et( ) ’r)_j(;ar( 3Ty S, s) s

I and its derivatives being jointly continuous in (¢, h, r).

Proposition 7.3 then follows from an adaptation of Theorem 1.8.1. in
Kunita [8] (see the Appendix).

PRrROPOSITION 7.3. Under the above conditions, in particular (H.16)-(H.20),
{I(X, H,, t); t > 0} is a semimartingale whose decomposition is given by

I(X,H,t) = /O’G,(Hs;s,s,xs) dw;}
(% x g L x m K |d
+j;)(¥( ) sss)+a_h-( ’ s’s) s) S
o H o oLiawis L[ 1, X, H.,s)Li Li|d
+~[0c7_h_( ) s’s) s s+§j;)(m( ) s7s) R s) S
[ (Hyys,5, %)L d
j‘oah( 378737 S) S S.

We can now conclude this part of the discussion with the following theorem.
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THEOREM 7.4. Assume that conditions (H.1)-(H.5") and (H.11)-(H.20) are

in force. Then the unique progressively measurable solution {X,; t > 0} of
equation (3.1) is a continuous semimartingale which takes the form

Xt=X0+[tF(s,s, X,) ds+[tfol"(0,s,Xs) dsdo
0 070

+ [ ['A6,5, X,) dsdW, + [[Gi(H,;5,5, X,) AW,

070 0

(% % m L x H 9K |d
+'/;)(¥( ) s7$)+£( ) s7s) s) S

O e H oyLiawis 2 71, X, H., s)Li,Li|d
+j;)£( ’ s7s) s s+§j;) th( ’ s’s) sy s $

190G, ;
+[0 7 (Hg;s,s, X)L ds.

APPENDIX

The aim of this Appendix is to prove the following It6—Ventzell formula,
which generalizes Theorem 1.8.1 in Kunita [8]. Sznitman [21] has analogous
results for general semimartingales.

TueoreM. Let {T(h,r); t = 0}, . crrxr, be a collection of d-dimensional
semimartingales of the form

(A1) T(h,r) = To(h,r) + [U(h,r)ds + [Vi(h,r) dW;,
0 0

where {W!,..., Wk, ¢t >0} are mutually independent ¥, Wiener processes
defined on (Q, F, P), {U(h,r),VXh,r),...,VHh,r); t 2 0}, ,ycpexr, OTe
progressively measurable processes s.t. h > (VXh,r),...,V*h,r)) is of class

CLV(w,t,r)e QxR and
(H.A.1) V NeN, ¢t >0, there exists an R -valued progressively
o measurable process {a® N. 0 < s < t} such that

. t
(1) foag’Nds <® a.s.,

\U(h, r)| f [Wsi(h )
s sup s )l + T
(11) r<t;|h|l<N oh

+ |V (h, r)lzl) <af?,

0<s<tV(o,t) e QXR,,

v vk
(HA.2) (h’r) - (Ut(hsr):‘,tl(h:r)yﬂ',‘,tk(h’r), _ﬁl-(h,r),.“’ ﬁ(h:r))

is continuous.
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We assume moreover that

VY (w,2) € Q X R,, (h,r) > Tyh,r) is of class C>', and ¥V

(H.A.3) T 9°T T

wE 'Q: T: P ahg, 5

Let {H,} be a p-dimensional semimartingale which satisfies (H.14) and
(H.15). Then the following holds:

are locally bounded in (t, h, r).

T.(H, 1) = To(Ho,0) + [U(H,,s)ds + [V/(H,,s) W,

A2 T g ok ds+ [P0 ) d s 0 oL aw
A2) [ (H, 9K, ds+ [[Z5(H,s) ds + [ (B, 9) L dW,

Lo Ty oL Lisds + M (H,, )L d
_ < i i i .
+5 [ < pr (Hoy $) L5, Li>ds + [ = (H, )Ly ds

Proor. Note that each term in (A.1) is #® %, -measurable, where &
denotes the o-algebra of progressively measurable subsets of X R, and %,
denotes the Borel field over R” X R,. By using a classical localization proce-
dure, it suffices to prove the result in the case where H,, T/(h,r),
3T,/dhXh, r), (3*T,/dh?Xh,r), (0T,/drXh,r) and [la’N ds are uniformly
bounded by a constant ¢ which is independent of w, ¢, ~ and r. Therefore we
make these assumptions w.l.o.g.

We extend below any function which was defined on R, as a function
defined on R by taking it to be 0 on R_. Let ¢ € CX(R?), ¢ € CI(R). From Itd’s
formula,

o(h — H)y(r — t) = o(h — Hy)o(r) - fo’so'(h — H,)K,0(r —s)ds
—[O‘qo(h ~H)y'(r —s)ds
-/ ‘o'(h — H,) Liy(r — s) dW;

1 o
+—[‘<¢"(h —H)L,Li>y(r - s) ds,
27

and also
T(h,r)e(h — H)¢y(r —t)
= To(h,r)e(h — Hy)¢(r)

+ [U(h, r)o(h — H)y(r - s) ds
0

+ [Vi(h,r)e(h — H,)b(r = s) AW
0
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= [Tu(h,r)e'(h ~ H)K u(r ~ ) ds
0
= [Tu(h,r)o(h = H)w/(r ~ ) ds
0
— ['T,(h,r)¢'(h - H)Lig(r — s) AW,
0
1 . o
+ 5[ T,(h,r)¢"(h — H)L:, LiY¢(r — 5) ds
0

— [Vi(h,r)¢'(h — H)Lig(r - 5) ds.
0

We integrate the above identity with respect to dhdr over R? X R, and
interchange the dhdr and the ds (resp. the dW,') integrals, using Fubini’s
theorem (resp. Theorem 5.44 in Jacod [6]). We moreover integrate by parts all
integrals involving derivatives of ¢ and ¢, yielding

[, Tih.r)e(h — H)y(r ~ 1) dhdr
= [, To(h,r)e(h = Ho)y(r ~ 0) dhdr
+flds[  U(k,r)e(h = H)W(r =) dhdr

+[[ W[ Vi(h,r)e(h ~ H)u(r ~s) dhdr
0 RPXR

; aT,
+'[0ds'/[;v><[R oh

; aT,
+j0 dszPXRW(h,r)(p(h — H)y(r —s) dhdr
+[Otdmifm><£}} iw(r —s) dhdr

1 . 2T ‘
+§fodszpXR< % *(h,r)Li, L‘s>¢(h—Hs)a,[/(r—s) dh dr

‘y(r —s)ds.

" '[()t ds'[RPxR oh

It remains to replace ¢ and ¢ by sequences {¢,} and {y,} which converge to
the Dirac measure at 0, as n — o, and let n > ». The convergence follows
easily from our hypotheses. O
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