Open Access
October, 1990 Estimates of the Largest Disc Covered by a Random Walk
P. Revesz
Ann. Probab. 18(4): 1784-1789 (October, 1990). DOI: 10.1214/aop/1176990648

Abstract

Let $R(n)$ be the largest integer for which the disc of radius $R(n)$ around the origin is covered by the first $n$ steps of a random walk. The main objective of the present paper is to obtain better estimates for the upper tail of the distribution of $R(n)$. For example, we show that there are constants $0 < \lambda_2 < \lambda_1 < \infty$ such that \begin{align*}\exp(-\lambda_1 z) &\leq \lim \inf_{n\rightarrow\infty} \mathbf{P}\big\{\frac{(\log R(n))^2}{\log n} > z\big\} \\ &\leq \lim \inf_{n\rightarrow\infty}\mathbf{P}\big\{\frac{(\log R(n))^2}{\log n} > z\big\} \leq \exp(-\lambda_2z).\end{align*}

Citation

Download Citation

P. Revesz. "Estimates of the Largest Disc Covered by a Random Walk." Ann. Probab. 18 (4) 1784 - 1789, October, 1990. https://doi.org/10.1214/aop/1176990648

Information

Published: October, 1990
First available in Project Euclid: 19 April 2007

zbMATH: 0721.60071
MathSciNet: MR1071825
Digital Object Identifier: 10.1214/aop/1176990648

Subjects:
Primary: 60J15
Secondary: 60F05

Keywords: covered disc , limit distributions , Local time , Random walk , strong theorems

Rights: Copyright © 1990 Institute of Mathematical Statistics

Vol.18 • No. 4 • October, 1990
Back to Top