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We show that if oy is the time that the contact process on {1,... N} first
hits the empty set then for A = A, the critical value for the contact process
on Z, 6y/N = o0 and ay/N* - 0 in probability as N — 0. The keys to the
proof are a new renormalized bond construction and lower bounds for the
fluctuations of the right edge. As a consequence of the result we get bounds
on some critical exponents. We also study the analogous problem for bond
percolation in {1,... N} X Z and investigate the limit distribution of o, /Eoy.

1. Introduction. In this paper we continue the study of the contact process
on a large finite set. The reader will find the motivation for such questions and
relations to previous work discussed in the introductions of Durrett and Liu
(1988) and Durrett and Schonmann (1988). For motivations coming from the
physical problem of modeling metastability, the reader is referred to Cassandro,
Galves, Olivieri, and Vares (1984) and to Schonmann (1985). For examples of
other systems which have been studied on a finite set, see Lebowitz and
Schonmann (1987), Cox (1989) and Cox and Greven (1988).

We begin by describing the model under consideration. For more details or
facts that we cite without reference, see Griffeath (1981), Chapter VI of Liggett
(1985), or Chapter 4 of Durrett (1988). The contact process is a Markov process
with state space the subsets of Z, and transition probabilities that satisfy

(1.1a) P(x &£,,,l¢) ~ s ifx €,
(1.1b) P(x€§, J&) ~Aslg,n{x—1,x+1} ifxe&é,

as s —» 0, where f(s) ~ g(s) means f(s)/g(s) = 1 as s = 0. If we think of the
sites in £, as occupied by particles, then the dynamics can be described as:
“particles die at rate one and are born at vacant sites at rate A times the number
of occupied neighbors.” It is by now well known that there is a unique Markov
process with the properties given above and there are several ways to construct
it. We will introduce one of these (the graphical representation) in Section 2.
We will use {¢7, ¢ > 0} to denote the contact process with ¢5 = A C Z. For
simplicity, we write £ for £{*} and use similar abbreviations below. Let 74 =
inf{t > 0: ¢ = ¢}, where inf¢ = c0. Let p(A) = P(¢) # ¢ for all t>0) =
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P(7° = 0), and let A, = inf{A: p(A) > 0}. It is known that 1 < A_ < 2 and that
p(A) is continuous on (A, o0), but it is an open question whether p(A,) = 0.
While we are still not able to settle the last question in this paper, our results
can be used to prove some new facts about the critical contact process on Z.

The contact process on {1,... N} has transition probabilities given by (1.1) for
x € {1,... N}. We denote by {/¥ the process starting from (1,... N}, and let
oy = inf{¢ > 0: {N¥ =¢). Since {) is a Markov chain on a finite set,
P(oy < 0) =1 for all A. Differences between the A’s appear when we let
N — . In Durrett and Liu (1988) and Durrett and Schonmann (1988) the
following results were proved:

(1.2) If A < A then there is a constant y,(A) € (0, «) so that
oy/(log N) > 1/y,(A) in probability as N - oo.

(1.3) If A > A_then there is a constant y,(A) € (0, ) so that
(log o) /N — v5(A) in probability as N — .

The constants ¥:(A) and y,(A) may be defined by

1 .
(1.4) H(A) = - lim —log P(£) # ¢),

1
(1.5) YZ(A) = — lim ;logp(,r{l,...n} < w).
n-—oo

In Durrett, Schonmann, and Tanaka (1989) we argue that L (A) = 1/v,(A)
and L, (A) = 1/y,(A) are reasonable definitions for the temporal and spatial
correlation lengths used in nonrigorous studies of the contact process and
oriented percolation (see e.g., Grassberger and de la Torre (1979) and Kinzel and
Yeomans (1981)). We will have more to say about these quantities below.

(1.2) and (1.3) tell us that in the subcritical case o, grows logarithmically with
N, and in the supercritical case o, grows exponentially with N. From these two
results the reader can probably guess that in the critical case o, grows like a
power of N. Indeed, we will show:

(1.6) THEOREM. If A=A, and a, b € (0, ) then P(aN < oy < bN*) - 1
as N = oo.

The lower bound is essentially due to Griffeath (1981). He got a weaker result
(see page 179 of his paper) because it was not known -at that time that the edge
speed « (defined in the proof of (3.1) below) was 0 at the critical value. Our main
contribution is to prove the upper bound. The keys to the proof are the following
résults concerning the right edge 7, = sup £~ % and the survival time 7°.

(1.7) Let v > 0. If t °E(r;?) > o0 as t = oo, then 6,/N?/* - 0 in probability
as N - oo.
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(1.8) For any A > 0 there is a constant C > 0 so that Var(r,) > C[¢t]P(7° > ¢),
where [¢] = the greatest integer < ¢.

(1.9) If A = A_then #'/2P(7° > t) > o0 as t > oo.

The last result is (8) in Section 4b of Durrett (1988). When plugged into (1.8)
it shows ¢~ '/2 Var(r,) > oo, which with (1.7) gives the upper bound in the
theorem.

We believe that nothing is lost in (1.7). The other two results are not the best
possible results. The nonrigorous studies quoted above suggest P(7° > ¢t) = ¢~161,
As for (1.8), which generalizes a result of Galves and Presutti (1987), we believe
that when A = A\ _E(r2)/t'** > oo for some ¢ > 0, and hence that the correct
power of N is less than 2. The next result makes it clear that 4 is far from the
right answer:

(1.10) If A = A_ and 6 > 2.5 then limsup, _, ., P(oy < N%) = 1.

PROOF. On {oy > N}, some point of the form (x, N%/2) with 1 <x < N
must have paths in the graphical representation connecting it to Z X 0 and to
Z X {N}. (This is the key to the proof of (1.9).) So if (1.10) is false

lim in NP(1° > N?/2)* > 0.

Changing variables ¢ = N%/2 and using (1.8) shows (1.7) is true when v < 1 —
(1/28), but this is a contradiction unless 8 < 2/(1 — (1/28)),i.e.,, § < 2.5. To get
the last conclusion observe that the left hand side is increasing, the right hand
side is decreasing on (1/2, o0), and they are equal when 6 = 2.5. O

We believe that for finite range growth models on Z (i.e. translation invariant
attractive systems in which ¢ is a trap), o,/N? is tight. In support of this
conjecture we observe that (i) if we consider the biased voter model on a finite
set (as in Durrett and Liu (1988)) then o,/N? has a limiting distribution, and
(ii) if the contact process survives at the critical value then (1.8) and a modifica-
tion of (1.7) show that oy/N? is tight. For the contact process, scaling theory
predicts (V. Privman, private communication) that the right power is », /v, =
1.74/1.10 = 1.58, where the »’s are critical exponents defined by

LA =N=AJ™, L, (A)=]A=X]7".

Here L (A) and L, (A) are the correlation lengths defined above and f(A) =
A = A" means log f(A)/logl]A — A | = —» as A = A_. (To complete the pic-
tire here we would have to define L (A) for A > A, and L, (A) for A <A . We
will give the definition of the second quantity in Section 5. In Durrett, Schon-
mann, and Tanaka (1989) other definitions are given and their relationships are
discussed.)



1306 R. DURRETT, R. H. SCHONMANN AND N. I. TANAKA

(1.9) gives a lower bound on the survival time for the critical contact process.
Combining this with (1.6) and (1.10) gives a lower bound on its spatial spread.

(1.11) Let R® = sup(U,, o£)). If A = A then as r > o
r(log r)"*P(R° > r) - o,
and
limsupr'?**P(R°>r) > oo for any e > 0.

r—oo
When our results are combined with an idea from Chayes, Chayes, Fisher, and
Spencer (1986), who proved the analogue of (1.12) for ordinary percolation and
other systems, we can get bounds on the correlation lengths defined above. In all
the results below ¢ is an arbitrary positive number.

(1.12) As AT A,
liminf L,(X)/(A = A,) """ > 0.

(1.12) is proved by using the lower bound in (1.6). If we could improve the
lower bound to N'*? then we would show that v, > 1, its “mean field” value. As
we remarked above, the right power is supposed to be v, = 1.74.

Using the lower bound in (1.6) and (1.10) gives:

(1.13) As A A,
liminf L (A\)/(A = A,)~®®*¢ > o,

and
limsup L, (A)/(A =A,)~"#P* >0,

The second result shows that », does not take its mean field value 1/2, but is
still far from the right answer », = 1.10. Using (1.11) we can get results for L, in
the subcritical regime. Our result is worse than in the supercritical case although
it is implicit in the definition (L, (A) = (A — A,)7"+) that the exponent should
not depend upon the direction in which we approach A .

(1.14) As AT A,
liminf L (A)/(A,— A)~®?** > 0,
and
limsupL, (\)/(A,— A)~ P> 0,

, Having seen three of the four possible combinations in {A > A, A <A} X
{ll, L}, the reader should be wondering what we know about L ||()\) asA A It
follows easily from the definitions in Durrett, Schonmann, and Tanaka (1988)
that L (A) = L, (). Combining the last observation with (1.13) gives bounds
for », but does not come close to beating the mean field value.
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(1.7) is proved in Section 3, and (1.8) in Section 4. The main ideas of the proof

of the second result are due to Galves and Presutti (1987) but our proof is

simpler and extends the result to the critical case. (1.11)—(1.14) are proved in

Section 5. The astute reader will have noticed that we have not mentioned
Section 2. The title below should indicate what we study there.

2. Limiting behavior of oy / Eoy. From the proofs of (1.2) and (1.3) one
can easily get the corresponding statements about expected values:

(2.1) If A < A_then Eoy/(log N) = 1/v(A) as N = co.
(2.2) If A > A_then log(Eay)/N — y5(A) as N — oo.

From (1.2) and (2.1) it follows that

(2.3) oy/Eoy — 1 in probability for A < A..
We also know that
(2.4) P(oy/Eoy>t) > e forA>A,.

This result was first proved by Cassandro, Galves, Olivieri, and Vares (1984) for
large A, and extended to A > A, by Schonmann (1985). A simple proof is given in
Durrett and Schonmann (1988).

Comparing (2.3) and (2.4) we see that if we let x be the limit of oy/Eoy then
x is deterministic in the subcritical case, and is unpredictable in the supercritical
case, that is, x has the lack of memory property

(2.5) P(x>t+s|x>s)=P(x>t).

In the critical case we expect that the limiting distribution is something in
between these two extremes. To be precise, we expect x to be random but
the = in (2.5) will be replaced by <.

To support the speculation in the last paragraph we will now describe a
related result for ordinary (i.e., not oriented) bond percolation. As explained in
Durrett and Schonmann (1988), there is a similarity between results for the
contact process on a finite set and the results in Grimmett (1981) for sponge
crossings in two dimensional bond percolation. To describe the connection,
consider bond percolation in [1, N] X [0, o) and let

Gy = sup{l = 0: there is a path of open bonds from [1, N] x {0} to
[1, N] x {1} inside [1, N] X [0, 0)}.
Grimmett (1981) showed that:
(2.6) If p < 1/2 then ay/(log N) = 1/v(p) in probability.

(2.7) If p > 1/2 then (log 65 )/N — y(p) in probability.
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Here y( p) is a positive constant which in the subcritical case can be defined as
1
~ lim —log P((0,0) - (r,0)),
n—oo N
where x — y stands for “there is an open path from x to y.” To define y( p) for
p>1/2 we set y(p) = y(1 — p). By analogy with the contact process, the
reader should guess:
(2.8) If p < 1/2 then oy/Eoy — 1 in probability.
(2.9) If p > 1/2 then P(6y/Eqy > t) »> e %
The first conclusion is an easy consequence of Grimmett’s proof. The second is
proved in Durrett and Schonmann (1988). To investigate the critical case

p = 1/2 we observe that by the self-duality of bond percolation (see Kesten
(1982) or Durrett (1988), Section 6a)

(2.10) P(gy>N)=1/2.
It is easy to see that
(2.11) P(éy>L+ K)<P(oy=>L)P(oy=>K),

since to cross [1, N] X [0, L + K ] there must be crossings of [1, N] X [0, L] and
[1, N]X[L,L + K] and the last two events are independent. From the last
observation it follows that P(dy > kN) < P(6y = N)*, so EGy/N is bounded
and /N is tight. With a little more work one can show:

(2.12) THEOREM. No subsequential limit of o5/ N is degenerate or exponen-
tial.

Proor. We use two well known properties of sponge crossings (see (2) and (3)
in Section 6a of Durrett (1988)):
3
(2.13) P(Gy>3N/2) > (1- (1- P(Gy = N))"¥),
(2.14) P(Gy > kN) = P(6y > (k + 1)N/2)® fork > 1.

The first inequality and (2.10) shows that no limit is degenerate. Combining
(2.13) and (2.14) one gets easily

(2.15) P(crossings of [1, N] x [0, N]and [1, N] X [N,2N]
exist but there is no crossing of [1, N] X [0,2N]) > ¢ > 0.
To prove (2.15), notice that the desired event occurs if
(a) there are open crossings
from bottom to topin Ay = [1, N/3] x [0, N],
and from bottom to top in By = [2N/3, N] X [N,2N],
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and
(b) there are closed crossings on the dual graph

from right side to left sidein Cy = (N/3, N) x [0, N],
from right side to left side in Dy, = (0,2N/3) X [ N,2N],
and from bottom to top in E, = (N/3,2N/3) x [0,2N].

See Figure 1. There the solid wavy lines are open paths and the dotted ones are
closed. Harris’ inequality implies that the existence of the three paths we want in
(b) is positively correlated. Since Ay, By, and Cy U Dy U E, are disjoint, the
occurrence of paths in those regions are independent. Combining the last two
observations with (2.15) we see that for large N

P(6y>N)’-P(6y=2N)>e>0

so no limits are exponential. O

2N

0 N/3 2N/3 N

Fic. 1.
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3. Proof of (1.7). The first thing we have to do is to introduce the usual
construction of the contact process. (See the sources cited in the introduction for
more details.) To each x € Z we associate three independent Poisson processes
with rates 1, A, and A respectively. Let {T** n > 1} k =1,2,3 be the arrival
times for these processes. For each x € Z and n > 1, we write a § at each point
(x, T>') and draw arrows from (x, T*2) to (x + 1, T*2) and from (x; %) to
(x — 1, T*=3). The effect of a 8 is to kill a particle (if one is present), while the
arrows cause a birth to occur if they point from an occupied site to one which is
vacant.

To formalize the intuition we say there is a path from (x, s) to (y, t) if it is
possible to go from (x, s) to (y, t) by a path which goes up and across arrows in
the direction of their orientation without crossing any &’s. Using the “percola-
tion structure” introduced above we can define all the processes we are interested
in:

¢4 = {y: for some x € A there is a path from (x, s) to (y,¢)},
g = gao,
= {y: for some x € {1,... N} there is a path from (x, s) to (y, t)
inside [1,... N] x [0, ¢]}.

We will now prove the lower bound in (1.8):
(31) If A=A, and a < oo then P(oy <aN) - 0as N - co.

ProoF. We begin by recalling some facts about the right edge, r,=
sup £~ %, It is known that r,/t - a()) as. as t > co, where a(A) = — oo if
A <A, a(A,) =0, and a(-) is strictly increasing and continuous on [\, o). Let
A={x€Z: x<2N/3} and rA = sup {/. Then r,* has the same distribution
as r,+ [2N/3]. Let G = {rA € (N/8, N) for all ¢ € [0, aN]}. Since a(),) =
it follows from the limiting behavior of the right edge recalled above that
P(G) > 1as N - .

On G there is a path from (—o0,2N/3] X {0} to [N/3, ) X {aN} which
does not cross the vertical line {N} X [0, aN]. To finish the proof we have to
argue that with high probability the path does not touch {0} X [0, aN]. To do
this, we observe that by the symmetry of the Poisson process with respect to
time reversal (i.e. the self-duality of the contact process), the probability of
having a path touch {0} X [0, aN] and end up in [ N/3, c0) X {aN} is the same
as the probability of a path from [ N/3, c0) X {0} to {0} X [0, aN ], which by the
left-right symmetry of the model is more unlikely than G°. Combining the last
observation with results in the'last paragraph we have shown

P(oy > aN) = 1 — 2P(G°)

and the proof is complete.
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REMARK. Larry Gray invented the trick used in the second paragraph of the
proof above to simplify the renormalized bond construction of Durrett and
Griffeath (1983). ~

We turn now to the proof of the upper bound on oy:
(32) If A=A, and b > 0 then P(oy > bN*) > 0 as N - co.

Our argument is divided into several steps. In the first one we use a “renor-
malized bond construction” which has its roots in the work of Russo (1981), and
which has appeared in various forms in a number of papers. Here we introduce
yet another variation on the theme. As in most treatments the renormalized
lattice is

&= {(m,n) € Z®: m + niseven, n > 0}.

Fix two positive integers N and L, and to each site (m, n) in £ associate the
rectangles R(m, n), S(m, n), and T(m, n) defined by

R(0,0) =[1,N] x [0,2L],
R(m,n) = R(0,0) + (Nm,2Ln) = {(x,t): (x — Nm,t — 2Ln) € R(0,0)},
5(0,0) = [1,2N] x [L,2L],
S(m, n) = S(0,0) + (Nm,2Ln),
T(0,0) = [-N +1, N] x [L,2L] = 8(0,0) + (—N,0),
T(m, n) = T(0,0) + (Nm,2Ln).
We also define events
F(m,n) = {thereis a path in R(m, n) from its bottom to its top, i.e., from
[Nm + 1, N(m + 1)] X {2Ln} to
[Nm + 1, N(m + 1)] X {2L(n + 1)}},
G(m, n) = {there is a path in S(m, n) from its left side to its right, i.e., from
{Nm + 1} x [L(2n + 1), L(2n + 2)] to
{N(m+ 2)} x [L(2n + 1), L(2n + 2)]},
H(m, n) = {there is a path in T((m, n) from its left side to its right, i.e., from
{N(m—-1) +1} x [L(2n + 1), L(2n + 2)]
to {N(m + 1)} x [L(2n + 1), L(2n + 2)] }.

We will write R for R(0,0), F for F(0,0), etc. Figure 2 may help explain the
definitions. In this picture a bold line surrounds the T -shaped region R U S U T.
Points of the form (N/2, L) + (Nm, Ln) with (m, n) € £ are indicated by
crosses. The wavy lines are paths in the graphical representation of the contact
process. In this picture F, G, H, F(1,1), G(1,1), and H(1,1) occur.
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>X.

\
A

F1a. 2.

We will say that the renormalized site (m, n) € £ is open and set n(m, n) =1
if F(m, n), G(m, n), and H(m, n) all happen, otherwise we say that (m, n) is
closed and set n(m, n) = 0. It is easy to see that the random variables n(m, n)
are 1-dependent, that is, if we let |(m, n)|| = (Im| + |n|)/2 and if (m,, n)),

...(my, n,) are points with |(m;, n;) — (m;, n;))|| > 1 for i# j, then
n(my, n,),...n(my, n,) are independent.

By translation invariance P(n(m, n) = 1) is independent of (m, n). Denote
this probability by II(N, L, A). We will say that “(oriented) percolation occurs
in the 7 system starting from (0, 0)” if there is an infinite sequence of open sites
0,0) = (my, ny),(my, ny), ... with n, =k and |m,,, — m,| =1 for k > 0; and
we will let (N, L, \) denote the probability of that event. A result in Section 10
of Durrett (1984) implies:

(3.3) If TI(N, L,A\) > 1 — 373 then (N, L, \) > 0.
The critical relationship between the renormalized and original process is:

(3.4) If percolation occurs in the 1 system starting from (0, 0) then 7{1%--- N} =
oo in the contact process.
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Using (3.3), (3.4), and an argument of Russo (1981) we get:
(3.5) LEMMA. For any Nand L, II(N, L,A,) <1 — 373,

PrROOF. Suppose for some N and L that II(N, L,A,) > 1 — 3736 {(0,0) =
1} if defined in terms of the finite region RUS U T, so A - II(N, L, A) is
continuous and there is a Ay < A, with II(N, L, A;) > 1 — 3736, But then by
(3.3) and (3.4), p(A,) > O contradicting the definition of A .

P(F) = P(oy = L) is the event we are interested in. To control G and H we
use:

(3.6) Suppose A=A, and v>0. If ¢t °E(r?) > o0 as ¢t — oo, then
on/N?* = 0 in probability as N — co.

The proof will be easy once we show:

(3.7) Under the hypotheses of (3.6)
limsup P(oy > 28N%/*) <1 —37% forany 8 > 0.

n-—o0

ProOF. Suppose (3.7) is false, and let A = 1 — 3%, Then for some sequence
N.

(3.8) f(N;) = P(F(N,, L;)) > A,
where L; = §N2/*. From left-right symmetry
g(N,) = P(G(N,, L,)) = P(H(N,, L,)).
Set theory and symmetry tell us that
1-P(FNGNH)<1-P(F)+2(1 - P(G)),
or rearranging
g(N,) < (1/2)(2 - f(N,) + II(N,, L;, 7).
Hence from (3.5) and (3.8) we get
(3.9) g(N)<(1/2)1+337+1-33%)=1-3%=B8B.

(Yes B = A, but for future clarity we ignore this accident.) Now if r(L;) > 2N,/
then each of the rectangles [(2N;k) + 1,2N(k + 1)] X [0, L;], k = 0,1,...1— 1,
must be crossed from left to right by paths. So (3.9) 1mp11es P(r(L) > 2N 1) <
B!, and it follows that

5 (2n - )P(r(Ly) = n)

n=1

E("(Li)Z; r(L;) = 0)

(3.10) -
Y. 2N;m- N, P(r(L;) = 2N,(m — 1)) < C;N?

m=1

A
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where C, = £2_,2mB™" 1.

On the other hand if r(L;) < —N,, then each of the rectangles
[-N,(k + 1)+ 1, —N;k] X [0, L;] cannot be crossed from bottom to top by a
path. So from (3.8), P(r(L;) < N;l) < (1 — A)" and repeating the computation in
(3.10) shows
(3.11) E(r(L,)% r(L;) <0) < C,NZ,
where C, = X2_,2m(1 — A)™~ . Combining (3.10) and (3.11) gives

L7°E(r(Ly)") < (€, + G)NZL® = (Cy + G;)87° < o,

contradicting the hypothesis of (3.7). O

PROOF OF (3.6). Let b > 0 and K be a positive integer.
P(oy > BN?**) < P(oy > (b/K)N?")".
Using (3.7) now with 26 = b/K shows
lillslsup P(oy > bN??) < (1 - 3'38)K,

which proves (3.6) since b and K are arbitrary. O

At this point we have proved the result called (1.7) in the introduction. (1.8) is
proved in the next section, and (1.9) is proved in Durrett (1988) so we are done
with the proof of the upper bound. O

4. Galves and Presutti (1987) revisited. In this section we will prove }(1.8).
The proof is based on the argument of Galves and Presutti (1987), but uses a
countable partition of the sample space instead of what they call a “measurable
partition.” This modification allows us to give a simple proof of the crucial
conditional independence property that they state without proof. We give the
proof here only for r, = sup £~ "% but the argument works whenever the initial
configuration is in {n: 0 € 9,7 N (0, ) = ¢, |n| = o0}

Let £ denote the contact process starting with x occupied at time s, and
let

£ = sup ¢,
7(x,s) = inf{£ > s; £ = ¢}.
For n=0,1,2,... and s>n + 1 let
A(n) = {thereisno 8 at r,, from time n to n + 1},
B(n,s) = {r(r,,;,n +1) 2 s},
C(n,s) = A(n) N B(n, s),
D(u,v) = vﬂl C(n,v)".

n=u
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Let T, = —1 and for i > 0 let
T = inf{n: T.+1<n<[t]-1,C(n,t) occurs}

12

where inf ¢ = co. Notice that the times 7, depend on ¢, which is considered fixed
in the construction below. Let N = sup{i: T; < c0}. For what follows it is
convenient to redefine Ty, = ¢ and to define random variables on {N > i} by

S(w) =r(T.y,) —r(T,+1) fori>0,
A(w)=r(T;+1) — r(T,) forix>1.

Let (2, &#, P) be the probability space on which the graphical representation
is defined, and let IT be the partition of © defined by considering two outcomes
w, and w, to be in the same atom if and only if

(a) T(w,) = Ty(w,) for all i, in particular N(w,) = N(w,), and
(b) S)(w;) = S)(wy) for 0 < i < N(w,).

It is clear that
N N
(4.1) =Y S+ Y A,
i=0 i=1

We will now show that conditioned on II, the random variables A; are indepen-
dent and have the same distribution as (r?|7° > 1) where r? = sup £°. The key
observation is that if A(n) occurs but B(n, t) does not, then we must wait until
at least 7(r,,,, n + 1) to get the next T, since until that time the right edge is
part of a process which will die out. If we let

x;=r(t;+1),
F,=D(t;+1,t,,) N {”(xi’ ti+ 1) =t ,, r () = si}’
G, = A(t) N {r&9(¢; + 1) = 8},

then a little thought reveals

(4.2) P(M=n,Ti=ti,lsisn,Sj=sj,05jsn,Ak=8k,lsksn)
=P(FFNG,NnF,Nn...nG,NE,)

and the events in the right hand side are independent since they depend on the
graphical representation in disjoint regions. The conditional probability

P(A,=8,,1<k<nN=n,T,=t,1<i<n,S;=s,0<j<n)
P(F,FNnG,NnF,Nn...nG,NF,)
(4.3) P(F,NA,NF,N...NA,NF)

kIjIIP(leAk) = I?II_'-[IP('H0 = 8k|A0)‘

This completes the proof of the claim about the conditional independence of the
A,. The rest of the argument is easy (and a slight improvement of the calculation

I
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on page 1143 of Galves and Presutti). By (4.1)
E((r, - Er)A11) > E((r, - E(rJ1))’1)

2

{ % A, - E(AdH)} I

i=1

(4.4) =E

N

- [ £ (8- B - o
i=1

where C > 0 is the variance of r? given A(0). Taking expected values now gives

(4.5) Var(r,) > CEN = C[t]Z—IP(C(i, t)) = C[tlz—le_lp('r(xi, i+1)>t)

i=0 i=0
which proves the desired result since P(7(x;,i + 1) > ¢) > P(7° > ¢).
5. Bounds on correlation lengths. The key to the developments below is

the following result, which is the analogue for Poisson processes of a result of
Chayes, Chayes, Fisher, and Spencer (1986) for independent Bernoulli variables.

(5.1) Consider independent Poisson processes T,...T™ with rate A and
TO, ... T~V with rate 1. If A is an event which is determined by the arrivals in
[0, ¢] then

d 1/2
T P(4) < (Mt/N)”.

The proof is a little messy and is postponed to the end of the section. We will
now demonstrate (1.12), (1.13), (1.11), and (1.14) in that order. As in the
introduction the &’s which appear in the statements of (5.2)-(5.5) are arbitrary
positive numbers. C, and C, are positive finite constants whose values are
unimportant.

(5.2) As AT,
liminf L (A)/(A,—A)"""* > 0.

PROOF. Let Gy = {0y > N°). (1.6) implies that when o = 1
(a) Pcr(GN) - 1’

where the subscript on P indicates we are considering A = A_.. When A <A_ a
result from Durrett (1984) gives

(b) P,(Gy) < NP(7° > N*) < Nexp(—N®/L,(}\))

where P, indicates we are considering the contact process with parameter A.
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Using (5.1) now we have
(c) P\(Gy) 2 P, (Gy) — (A, — A)NC*72
for A > A /2. Let §=A,— A and
N = (1/3C,8)**%,
Using (a), (b), and (c) now gives that for this choice of N

(d) 1/3 < Nexp(-N?/L,(}))

when 8 = A, — A is small. Rearranging the last inequality gives
(e) L,(\) = N*/log(3N)

which implies that for small §

() Ly(A) = C2¢/0* /log(871).

Setting @ = 1 now gives the desired result. O

REMARK. We used « instead of 1 in the proof above for two reasons: (i) to
indicate that an improvement in (a) would give a corresponding improvement in
(5.2), (ii) to bring out the similarities and differences with the proofs of (5.3)—(5.5).

(5.3) As A LA,
liminf L, (A)/(A = A,) " #®P* >0,

and
limsup L, (A)/(A = A,)"®#P* > 0,

Proor. Let Gy = {oy < N*}. (1.6) implies that when a = 4
(a) P (Gy) = 1.

When A > A, combining Lemma 1 with the proof of Lemma 4 in Section 3 of
Durrett and Schonmann (1988) gives

(b) P\(Gy) < e®N?*exp(—N/L, (7)).

(Lemma 1 implies that the probability of a “dual path” from x on the right side
of 1/2, N + 1/2) X [0, N*] to y on the left side is smaller than exp(—N/L (})).
Integrating over the possible x and y and using (*) in the proof of Lemma 4 now
gives (b).) Using (5.1) now we have

(c) P\(Gy) 2 P,(Gy) — Ci(A — A )NC 272
for A > A_.Let §=A—A_and
N = (1/3C8)*®.

Using (a), (b), and (c) now gives that for this choice of N
(@) 1/3 < eN“exp(—N/L, (A))
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when 8 = A, — A is small. Rearranging the last inequality gives

(e) .L, (A) = N/log(3e2N2%*)
which implies that for small §
() L, (N) 2 CH72/4*9/1og(871).

Setting a = 4 gives the first result. To prove the second, notice that when
a < 2.5 we have limsup P, (Gy) = 1 by (1.10), and apply the argument above to
a sequence N, = oo for which P,(Gy;) = 1.0
(5.4) Let R® = sup(U,, o£?). If A = A_thenas r - oo
r¥(log r)*P(R° > r) - oo
and

limsup r'#**P(R® > r) = oo.
r-oo

Proor. Let a = 4. Now
P(r° > relogr) < P(oy,,, > r*logr) + 2P(R® > r,0,,,, < r*logr),
and (1.6) implies
P(oy,,, > r*logr) < P(o,,,, > r*)l'*® < (e~10)te"
for large r. Combining the last two equations gives
P(R°>r,0,,,, <r%logr) = P(oy, ., > r*logr) — r=°
for large r, so it follows from (1.9) that
lirrgio?f re/2(logr)?P(R° > r) > lirn_l)iorolf(r“ logr)*P(+° > r*logr) = .
To prove the second conclusion we repeat the proof with ¢ > 2.5 and use (1.10)
in place of (1.6). O
(5.5) If A <A, then
liminf L, (A\)/(A, = A)~®2** >0,
and
limsupL, (A)/(A, - A)~ P> 0,
PROOF. Let Gy = {R°> N, r° < N*log N}. From the proof of (5.3) we see
that when a = 4
(&) (N*10g N)*P,(Gy) = co.
Our next step is to observe that when A <A,
(b) P(Gy) < P(R°> N) < exp(~N/L, ()).
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The second inequality is trivial since L, (A) is defined in Durrett, Schonmann,
and Tanaka (1988) to be

-1 -1
lim{T log P(R® > n)} = inf{—n— log P(R° > n)}
Using (5.1) now we have
(©) P(Gy) 2 Po(Gy) = (A = A )(N**<log N)*
for A > A /2. Let § = A, — A, € > 0, and pick
N = §-1-9/(5+a)
so that when & is small (N**log N) < 8! and hence
8(N'**log N)/* < (N*1log N) /%

Using (a), (b) and (c) now gives that for this choice of N

() (N*log N)™/* < exp(~N/L, (\))
when 6 = A, — A is small. Rearranging the last inequality gives
(e) L, (\)>2N/log(N*log N),

or since ¢ is arbitrary .

(f) L, (N)/§ B> forallB<1/(.5+ a).

Setting a = 4 gives the first result. Letting a < 2.5 and modifying the proof
slightly as in (5.3) gives the second conclusion. O

Proor oF (5.1). We begin by proving the result when there is one rate A
Poisson process {T,,, n > 1} and no rate 1 processes. Let N, = sup{k: T}, < t}. If
k>1land 0=1¢,<¢ <t,...t, <t then with an obvious abuse of notation we
can write

P(th= k,Tl = tl"“Tk = tk)

= {ﬁ}\exp(—l(ti - ti_l)}exp(—A(t —t))

i=1
= A~ At
If A is any event concerning the Poisson process in [0,¢] and %2 > 1 then

AN {N,=k}={(T,T,...T,) € B,} for some B, C {(¢,...8,): 0<¢ <
. < t,}, and we have

P(A N {N,=k}) = Ne™™|By|
where |B,| denotes the %2 dimensional Lebesgue measure of B,. The last formula

alsg holds when & = 0 if we consider |B;| = 1 or 0 according as {N, = 0} C A or
c A¢ Differentiating now gives

P4 N (N,= k) = (; - t)P(A N (N, = k).
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The right hand side is smaller than |(2/A) — ¢{|P(N, = k), and hence the sum on
k converges uniformly on compact subsets of (0, o). From this it follows easily
(see page 1034 of Durrett (1984) for details) that the derivative of the sum is the
sum of the derivatives, and hence

'—P(A) < E|(N,) - 4.

To bound the right hand side we observe
E|N, - At < (EIN, - A)2)"* = (Ae)V2
S0
< (¢/0)2.
The proof for the general case is almost the same. We begin by observing that
P(Ivtm = k(m)s Tlm = t]’_n’ Tk(m) tk(m) N =m=< M) = Ne —)\Mt -V

where « = k(1) + ... +k(M). Now if A is any event involving the Poisson
processes in [0, ¢] then

P(A N {]\_f = ]}'}) = c(]_é)}\xe—)\Mte—(N+l)t
where — indicates a vector indexed by —N, ... M, and c(k) is a constant

which only depends on k. Differentiating with respect to A, and summing over £
gives

’ P(A)

I P(A)|<E Z (N™/A) = Mt| < (eM/N)Y2,
m=1
proving the desired result. O
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