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MEASURING CLOSE APPROACHES ON A BROWNIAN PATH

By EpWIN A. PERKINS! AND S. JAMES TAYLOR?
University of British Columbia and University of Virginia

Integral tests are found for the uniform escape rate of a d-dimensional
Brownian path (d > 4), i.e., for the lower growth rate of inf{|X(¢) — X(s)|:
0<s,t<1,|t—s| = h}as hl0. The gap between this uniform escape rate
and the one-sided local escape rate of Dvoretsky and Erdés and the two-sided
local escape rate of Jain and Taylor suggest the study of certain sets of times
of slow one- or two-sided escape. The Hausdorff dimension of these excep-
tional sets is computed. The results are proved for a broad class of strictly
stable processes.

1. Introduction. For a transient process, X, starting at 0, one can measure
the rate at which X “escapes” from 0 by characterizing those increasing func-
tions ¢ for which |X(%)| > () for small & a.s. An integral test for ¢ was found
by Dvoretsky and Erdés (1951) for Brownian motion in R? (d > 3), by Spitzer
(1958) for Brownian motion in R? and by Takeuchi (1964b) and Taylor (1967) for
a large class of strictly stable processes. The related problem of determining the
two-sided rate of escape of X was solved by Jain and Taylor (1973) for Brownian
motion in R? (d > 4). An integral test was found for the class of increasing
functions ¢ such that

|X(t+u) — X(¢ —v)| = (u+0)"*Y(u+0),
for 0 < u, v small a.s. for any ¢ > 0.

Corresponding results for a large class of d-dimensional strictly stable processes
of index a (d > 2a) can be established by the same techniques (see Theorem 3.1).
The difference between the problems of one- and two-sided escape is illustrated
in the Brownian setting by the fact that the latter problem is only of interest if
there are no double points (d > 4), whereas the former only requires the process
not to hit points (d > 2).

In this paper we consider the uniform (in time) escape rate of a d-dimensional
strictly stable process, X, of index a. More precisely, we study the asymptotic
behavior of

W(h) = inf{|X(¢) - X(s)|[:0<s<t<1,¢t—s>h},

as h | 0. Assume d > 2a. For the processes to be studied this is necessary and
sufficient for the nonexistence of double points [see Taylor (1967), Theorem 3].
An integral test is established for the lower growth rate of W (Theorem 3.3). A
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condensation (i.e., Baire category) argument shows that if W(h) < Y(h) as
h |0, then there is an uncountable dense set of times ¢ such that

liminf| X(¢ + k) — X(¢)|y(R) " =0
hl0

(Theorem 3.4).

As one would expect, there is a gap between the one- or two-sided local escape
rate at a fixed time and the uniform escape rate. We determine the Hausdorff
dimension of various sets of unusually slow one- or two-sided escape (Theorems
4.1 and 4.3).

To illustrate our results, let us consider the Brownian case a = 2. The integral
test given in Theorem 3.3 implies that for any ¢ > 0,

RM/2HEA-DTe « W(R), ash|0 but W(h,) < hl2+@-97"
for some 4,0, if d > 5,

e " < W(h), ash|0 but W(h,) < e,
for some £, 0, if d = 4.
For a fixed ¢ > 0, the test of Jain and Taylor (1973) shows that for any & > 0,
(u+0)*" < |X(t+u) - X(t- v)|, asu,vl0 but
| X(¢+u,) - X(t - v,)| < (u, +v,)"",
» for some u,,, v, 10, if d > 5,

e < |X(t+u) — X(¢—v)|, asu,vl0 but

| X(t+u,) — X(¢t—v,)| < (u, + v,) 80"
for some u,, v, | 0, if d = 4.

This suggests we look at the exceptional sets of times of unusually slow
two-sided escape defined by

C, = {t: liminf | X(¢ +s) — X(¢ —u)|(s +u) " = 0},
s,ul0

D, = {t: liminf | X(¢t + s) — X(t — u)|eC+» " = O}, 0<y<l,d=4.
s,ul0

(Throughout this work liminf, , , will mean s, u > 0 but s + u > 0.) dim A is

the Hausdorff dimension of the set A and a negative value of dim A means

A = @. Theorem 4.1 shows dimC, =1 — (y — $)(d — 4) for y > 1 (d > 5) and

dim D, =1 — y for y > 0 (d = 4). Moreover, C, ,2+(d-4-+ and D, are uncount-

able dense sets (Theorem 3.4). The local one-sided escape rates of Dvoretsky and
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Erdos (1951) and Spitzer (1958) lead one to the exceptional sets

E, = {t: limin | X(¢ + h) - X()| ™ = o},
hl0

l<y<li+1/(d-4)",d>2.

Theorem 4.3 gives dim E =1 — (1 — (2y) " ')(d/2 — 1) for y> }, d > 2 and
E, /3, (a-4-1 is uncountable and dense for d > 5. Note that for d > 5, E, c C,
and in fact dim E, < dimC, for <y < } + (d — 4)~". Nonetheless, the two
families of sets become empty at the same critical y. In fact, Theorem 3.4 shows
that for d > 4 a given set of times of unusually slow one-sided escape is empty if
and only if the corresponding two-sided set is empty. The effect of the double
points in dimensions 2 and 3 leads to

lim dim E, =

Y=o

%1 d=31
1, d=2.

These limiting values are precisely the dimensions of the times at which X is a
double point. This is true more generally and is discussed at the end of Section 4.

The results are proved for type A stable processes if a # 1 and for the
symmetric Cauchy processes if a = 1. For a # 1 this excludes stable subordina-
tors and their higher-dimensional analogs [the precise definition is recalled from
Taylor (1967) in Section 2]. In the subordinator case, however, Hawkes (1971a)
found an exact uniform escape rate of ch'/*(logl/h)'~'/* as opposed to an
integral test. The situation is apparently quite different in the “type B setting.”
The reader only interested in Brownian motion may safely ignore this degree of
generality because after some well-known hitting estimates are stated in Section
2, the proofs are only slightly simpler in the Brownian case due to the continuity
of paths.

2. Preliminaries. Throughout this work X(¢) denotes a d-dimensional sta-
ble process of index a € (0,2] with zero drift. It is assumed that the law of X(1)
is not supported on a lower-dimensional space and hence X, has a bounded
continuous density [see Rvaceva (1962)]. Finally, we assume:

(i) If @ = 1, then X is a symmetric Cauchy process, i.e.,
E(eX=X®) = exp{ —tA|z|}

for all z in R and some A > 0.
(ii) If a # 1, then the density of X(1) is nonzero at 0.

Processes satisfying (ii) are called stable processes of type A [see Taylor (1967)].
[(ii) will always hold if a > 1.] X(ct) and c/*X(¢) have the same law (as
processes in t) for every ¢ > 0. We may (and shall) select a version of X with
right-continuous paths and left limits. X is defined on a complete probability
space (2, #, P) and will start at 0 at ¢ = 0, unless otherwise indicated. If Y(¢)is
a process on this space, %, denotes the smallest right-continuous filtration such
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that Y(¢) is % -measurable and %,’ contains all the P-null sets. We write %,
for #,X.

# denotes the class of real-valued functions, y, which are defined and strictly
increasing on some [0, ¢), ¢ > 0, and satisfy ¥(0) = ¢(0 + ) = 0. B(x, r) denotes
the closed ball in R with radius r and center x. Unimportant positive constants
appearing in the course of a proof are denoted by ¢, ¢,,... and constants that
may reappear in subsequent arguments are denoted by k,, c®, c®, ¢@,... . The
latter constants depend only on the law of X, unless otherwise indicated. [x]
denotes the integer part of x.

Assume d > a throughout this section. The first lemma is a well-known
estimate on the number of balls exited by X on a finite interval.

NoraTioN. If ¢, A > 0, let 755%(A) = 0,
X (A) = inf{t > 1X(): | X, - Xox)| 2 A},
N*(¢,A) = max{n: 1%(A) < ¢}.

LEMMA 2.1. There are positive constants ¢V and A, dependin;g only on the
law of X, such that P(N*%(t, A) > n) < e™*" whenever n > ¢VtA~°.

PrROOF. Let {T}} be an ii.d. sequence with distribution equal to that of 7%(1),
and let p = E(T)). Take ¢<® =2/p. If Y. = T, — p and n > cMtA~¢, then

P(NX(,4)  n) = p( Y Y < ,m)
i=1

sP( Y Y. < —un/2).

i=1
The result follows from the well-known exponential bounds of Cramér [note that
Y; has an exponential tail by Lemma 5 of Taylor (1967)]. O

The following “delayed hitting probability” estimates are taken from Pruitt
and Taylor (1969), Theorem 4. The hypotheses of the first result are slightly
different but the same proof works. The second result (Lemma 2.3) is a trivial
consequence of the first.

LEMMA 2.2. There are positive ¢®, ¢® such that
c(z)(rh_l/"‘)d_a < P(X(t) € B(x,r) forsomet > h) < ¢®(rh~1/)%"%,
where for the lower bound we assume B(x, r) € B(0, h'/*) and otherwiser, h > 0
and x € R? are arbitrary.
LEMMA 2.3. There are a ky, > 1 and ¢®, ¢® > 0 such that
e®(rh~ V)" < P(|X(t)| < rfor some t € [h, koh]) < ¢ (rh~ V)",
whenever 0 < r < h'/°,



1462 E. A. PERKINS AND 8. J. TAYLOR

We now can extend the key estimates in Jain and Taylor (1973) (Lemmas 4.1
and 4.2, respectively) to our current setting.

LEMMA 24. Letd > 2a. Assume X,Y arei.i.d. and A(h)h~/* - 0 as h | 0.
(a) For each k > 1, there are a c®(k) and a § = 8(A) > 0 such that

P inf|X(u) - Y(0)| < A) < e®(an"v0)

h<u<kh,v>0
forall (x,y) € R**and 0 < h < 8.
Here P>Y(X,Y)€ A)=P(x+ X,y + Y) € A).
(b) There are a ¢ and a 8§ = 8(A) > 0 such that

i - (A p—1/a) 922
P( u,uel[l};f, koh]lX(u) Y(U)l < A) zc (Ah ) ) for O<h<$

(k, as in Lemma 2.3).

PROOF. (a)
Pw( inf |X(u)—Y(o)|sA)

h<u<kh,v>0

x, y . 3
<P (hsuslII:I{,ushLX(u) Y(U)l < A)

+Pw( inf |X(u)—Y(v)|sA)

h<u<kh, h<v
< PY(N¥(h,A) > ¢®hA~%) + P*(N*(kh,A) > ¢VkhA~*)
[cVRrA™?]
+ Y EY(P*(X(u) € B(Y(r¥(4)),24) for some u € [k, kh]|Y))
i=0
[cVERA™]
+ Y E*(PY(Y(v) € B(X(rX(A)),24) for some v > h|X))
i=0

< 2exp{ —AcPAA™} + 2([cMRRA~] + 1)c(3)(2Ah‘1/“)d_"
(Lemmas 2.1 and 2.2)

< cO(k)(AR~V*)" 7%,

where & < §(A) is needed for the last inequality.
(b) follows by making the obvious changes (using Lemmas 2.2 and 2.3) in the
derivation of Lemma 4.1 of Jain and Taylor (1973). O

LEMMA 2.5. Let d = 2a. Assume X, Y, A(h) and P*” are as given previ-
ously.

(a) For each k > 1, there are a ¢®(k) and a 8§ = 8(A) > 0 such that
Pw( inf | X(u) - Y(0)| < A) < c®|log AR~1/2| ",

h<u<kh,v=0
forall (x, y) ER??and 0 < h < 8.
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(b) There are a ¢® and a 8 = 8(A) > 0 such that

; _ ©) ~1/a|”1
P(u’uel[l}zf,koh]|X(u) Y(o)| < A) > cO|log AL~V ™", for 0 < h < 8.

The proof is very similar to the derivation of Lemma 4.2 in Jain and Taylor
(1973). In addition to Lemmas 2.2 and 2.3, one uses the estimate

P*(X(t) € B(y, r) for some t > 0) > 01[("/|y _ xl)d—a A 1]

[see Pruitt and Taylor (1969), Theorem 3]. Note that the converse inequality
does not hold in general (it does if d < 1 + 2« or if X is symmetric stable) as is
shown in Pruitt and Taylor (1969). This is why, for a = 2, Lemma 24(a) is a
little weaker than Lemma 4.1 of Jain and Taylor (1973).

The introduction of a general starting position leads to a simpler proof of

LEMMA 2.6. Let y € # satisfy Y(h) < h'/* as h |0. If k,, k, > 1 there are
a cO(ky, ky) and a 8(ky, ky) > 0 such that if 0 < hy, hy < 8 and t > kyh, +
kyh,, then ‘

P( inf | X(¢—u)— X(t+0)| <¥(h),

u,v€[hy, kh]
klhlsusnlzlfhl+k2h2 |X(t B u) B X(t + O)| = ‘P(hZ)

ki +hy<o<k by +kyh,
< c(10)|10g(\l/(h1)h1—1/a) I _lllog(\P(hz)hz_l/a)l_l, if d = 2a,
< C(m)(‘P(hl)hfl/“)d_za(.p(hz)h;l/“)d_%, ifd> 2.

ProOF. Consider only the case d = 2a. Let Y(u) = X(¢ — u) — X(t) and
Z(v) = X(t + v) — X(t), where t > 0 is fixed. If P*7 is as in Lemma 2.4, then
the Markov property shows the probability in question equals

E

1, nt, 1Y) = 2(0)| < 4(h)

X PYah). Zkh)| - inf |Y(u)—Z(v)|s¢(h2)))
O<u<kyh,
hy<v<kyh,

< c(s)(kz)llog(\p(hz)h;‘/“)I_lP(u ot 12(u) = Y(0)] < ¥(h)),

if A, < 8(k,) (Lemma 2.5)

< ¢®(ky)c®(k,)|log((hy)h;"/*)| " log(w(h,) A7 V)| "
if h; < 8(k,) (Lemma 2.5). O
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3. Integral tests for uniform escape rates. We first extend the integral
test for the local two-sided escape rate of a Brownian path in Jain and Taylor
(1973) to our stable setting. We include a proof for two reasons. First, the
argument given there uses the Gaussian tail of X(¢) (if a = 2). Second, there is a
small gap in the proof, as the @ described at the top of page 542 need not exist.
Fortunately, Lemma 2.6 allows one to close the gap and significantly simplify the
proof.

THEOREM 3.1. Let X be a d-dimensional stable process of index o satisfying
the conditions described at the beginning of Section 2. Assume d > 2a, t> 0
and § € #.

For a.a. w there is a 8(w) > 0 such that

1X(t+u) — X(t—0)| > (u+0)"*Y(u+v),
whenever 0 < u + v < 68,0 < u, v, if and only if

(3.1) [ 4R *rtdh< w0,  d> 2,
0+
(3.2) [ logy(h)| 'A 7 dh < w, d=2a
0+

Proor. We consider only the case d = 2a because the arguments for d > 2«
are similar.

If (3.2) holds, the short Borel-Cantelli argument given in Jain and Taylor
(1973) proves the result [use Lemma 2.5(a)]. Assume the integral in (3.2) is
infinite. If %, is as in Lemma 2.5(b), define

B, = {w: inf | X(¢t+u) - X(¢ - 0)| < kg"/"xp(kg")}.
ki <u,o<ky™"

Lemma 2.5(b) shows that for large enough n, P(B,) > ¢®|log y(k;™)|"! and

hence our assumption implies ¥, P(B,) = co. If m < n — 2, apply Lemma 2.6

with k) =k, hy = kg™, hy=ko™ — k""" and k, = k(1 — k31 — kg!)~!

to see that for large enough m,

P(B, N B,) < c|log y(k;™)| |log ¥ (k5™)| .
The preceding lower bound on P(B,) therefore implies that

N N N —2
limsup ), Y P(B,nN Bn)( Yy P(Bm)) < c, < 0.

N->ow m=1n=1

The Borel-Cantelli lemma of Kochen and Stone (1964) implies P(B, i.0.) >
¢; ' > 0. This probability is therefore 1 by the Blumenthal 0-1 law. The result
follows. O

REMARK 3.2. Comparing this to the tests for the local one-sided escape rates
obtained by Takeuchi (1964b), Theorem 1 [see also Taylor (1967) and Spitzer
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(1958) for d = a = 2 and Takeuchi and Watanabe (1964) for d = a = 1], we see
that the test for two-sided escape for X of index a is identical to the test for
one-sided escape for X of index 2a. Of course, for Brownian motion this is the
observation made in Jain and Taylor (1973) concerning the equivalence of the
two-sided test for d-dimensional Brownian motion and the one-sided test for
(d — 2)-dimensional Brownian motion.

The main result of this section is the following integral test for the uniform
two-sided escape rate of X.

THEOREM 3.3. Let X be a d-dimensional stable process of index o, satisfying
the conditions described at the beginning of Section 2. Assume d > 2a and let
Y € #. Then

(3.3) liminf inf{|X(¢) — X(s)|:0<s,t<1,|s—t| > h}/¥(h)
L0

is a.s. oo or a.s. 0 according as

(34) foy(h)d‘“h—d/“ dh<oor =, d>2a,

(3.5) fo+|1og¢(h)|‘1h-2dh<ooor w0, d=2a

ProorF. We consider only the case d = 2a because a simpler argument works
if d > 2a.
Assume the integral in (3.5) is finite and define

X, = inf{|X(s) — X(¢)[:0 < s,t < 1,|s — t| > h}.

If
Y(s) = X(2h/3 — s) — X(2h/3), 0<s<2h/3,
and
Z(t) = X(2h/3 + t) — X(2h/3), t>0,
then

P(X,<A) < (3”_1)P(ssh/§fl;flst51 1X(s) — X(¢8)| < A)

< 3h—1P( inf 1Y(s) — Z(¢)| < A)
h/3<s<2h/3, h/3<t<l

< ¢, Ylog AR~ 7Y,
for A small enough and A < AY* by Lemma 2.5. The finiteness of the integral in
(3.5) implies

[~

(3.6) Y 27|log (27 ")| ' < 0 forsome N €N
n=N
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and in particular y(h) < h*/* as h|0. Fix K >0 and let A = Ky(2~"*)),
h = 27" in the preceding, and use (3.6) to see that

S P(Xyr < Kp(2-71)) < co.

n=1
The Borel-Cantelli lemma implies

liminfX,/¢(h) > K a.s.
hl0

Letting K — oo we see that this liminf is oo a.s.
Assume now that the integral in (3.5) is infinite. This is equivalent to

T 2/logy(27)| " =
j=N

= Y (2ogve@)| ) A1= o0

J=N

o i 21'|loga'1;(2_j)|_1 = o0, where y(h) =y(h) A e Vh
j=N

< [ [1og§(n)| A "2dh = co.
0+

Hence by replacing y with / we may assume without loss of generality that
(3.7) v(h) <e VA
Fix k€N, k >k, and let h; = 2k)7,

I}? = [2pkh, (2pk + k — 1)h,],

I»? = [(2pk + k + 1)h;,2(p + 1)kh],

IP = [2pkh;,2(p + 1)kh)].

If ¢(h) = h~'|log y(h)|" ", the integral condition on y implies there is a se-
quence {z;} that decreases to 0 and satisfies ¢; > A; and

(3.8) Lejo(h)) = .

Define events A? and A; by
AP = {int{| X(s) - X(¢): s e I}?, t e 12} <y(h))},
4,= U a-

J o
0<p<e;(2k)’
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An easy computation using Lemma 2.5, (3.7), ¢;> h; and the independence of
{AP:0 < p < ¢;(2k)’} shows there are p0s1t1ve constants ¢, and cy such that
(for large j)

1

(3.9) cs|log (A, )| < P(AP) < c|log y(h,)| ,
(3.10) cye;0(h;) < P(A;)) < cge;0(h;).

In partlcular, we see that Y ;P(A;) = co by (3.8). To conclude that
P(A; i.0.) =1, an upper bound on P(A NA ) is needed. Fix i < j and for each
nonnegatlve integer, g, let p(g) denote the unique value of p for which I c If.
If p + p(q), then Af and AY are independent events and so, using (3 9) and
(3.10), one easily obtains

(311) P(A;nA))<c,P(A)P(A))+ X .P(A{’(q)nA}).
0<g<e;(2k)

Fix 0 < ¢ < ¢;(2k)’ and p = p(q). Assume first that
?c [(2pk + k — 1)h;,(2pk + k + 1)h;].
Apply Lemma 2.6 and (3.7) to see that (at least for i, j large enough)
— -1
(3.12) P(A% N AP) < ¢5llog y(h,)| '|log ¥(h;)]

Next consider the case when I7 c I>? (I C I?»? may be handled by a similar
argument). AP is contained in the union of the following three sets:

B, = {|X(s) — X(¢)| < ¢(h;) for some s in I}>? to the right of
I? and some ¢ in >},
= {IX(s) — X(t)| < ¢(h;) for some s in I} ? to the left of
I7 and some ¢ in I,?"’} ,
By = {|X(s) — X(¢)| < ¢(h;) for some s in I and ¢ in I»7}.
Then B, and AY are independent and hence (3.9) gives (for large i, )
-1 _
(8.13) P(A7N B)) < c}|log y(h;)| |log w(h;)| .
Moreover, Lemma 2.6 and (3.7) imply (for i, j large)
-1 _
(3.14) P(A;l N B,) < cs|log ¢(hj)| |log y(A;)| '
It remains to bound P(A} N By). Define i.i.d. copies of X by
Y(s) = X(2(g + 1)kh; — s) — X(2(q + 1)kh;),
Z(t) = X(2(q + 1)kh,; + t) — X(2(q + 1)kh;).
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If h;=(2pk + k + 1)h; — 2(q + 1)kh; > h;, then for n € N we have
P(A? N B;) < P(NY(2kh,, y(h;)) = n)
+E(I( A%, N¥(2kh;, ¥(h,)) < n)
xP(lY(s) — Z(t)| < y(h;) for some s € [O,2khj]
and t € [h, h] + 3h,]|Y)).
On {NY2kh j» ¥(h;)) < n}, the preceding conditional probability is bounded by

nz__:LP(Z(t) € B(Y(”'»{(‘P(hi)))’zip(hi)) for some t € [ A/, b} + 3h,~]|Y)

< 0(3)n(\p(h,-)h,~‘1/“)d—u =cOny(h;)°h;' (Lemma 2.2).
Therefore we have shown that for any n € N,
(3.15) P(AYN By) < P(NY(2kh;, y(h,)) = n) + c®P(A%)ny(h,)h; .

Fix r > 2« and assume first that ;> y(h,)". Take n = [cD2khY(h;)~°] +
[¥(h,)"**1+ 1 = h;*/*" and use (3.15) and Lemma 2.1 to obtain (for i, j large)

(3.16)  P(A!N By) <exp{—Ah;*/*} + ¢;P(A)(h;hi* + (h,)*h7Y).
Assume now that h; < ¢(h;)". Then
P(NY(2kh;, ¢(h;)) = 2)
< P(r¥(¥(h,)) < 2kh;)’

- P(suplX(t)l > ‘P(hi)(zkhf)_l/a)z

t<1
< cgy(h;) **h? [see Proposition 10.2 of Fristedt (1974)]
< cgh2ia/n),
Take n = 2 in (3.15) to see that in this case
(3.17) P(AY N By) < cgh2~/" + 2¢@P( A7) y(h;) h7

Combining (3.12), (3.13), (3.14), (3.16) and (3.17), we get that in any case (for i < j
large),

P(AINAP@) < c9(|log v(k;)| ogy(hy)| "+ exp{ —\h; /)

+[10g w(,)| " (R;ht + 9 (R)R7Y) + hf(l—am),
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Substitute into (3.11) and use (3.10) to conclude that

n n

)y ZP(AinAj)

i=1j =1

=0y
i

n n n
J

Y P(A)P(4) + ¥ ejh; Y{exp{ ~AR; /) + B20-o/)

1j=1 Jj=1

+ éP(Aj)hj( Zh;l) + ( i P(Aj))(ésb(h,-)a/zh:l))

Jj=1 i<j Jj=1

4 5 R(a)

Jj=1

=y

1+ (JéP(Aj)

In the last line we have used (3.7) and the fact that r > 2a. Recalling
IPP(A,) = o0, one concludes

2 -
n n n
limsup( Y Y P(ANn Aj))( Y P(Aj)) <ecy
n-oow \i=1j=1 j=1
and hence [Kochen and Stone (1964)]

P(A,i.0.) = c' > 0.

The Blumenthal 0-1 law shows the preceding probability must be 1 (this is why
we introduced {e;}). Finally, the required result follows by simply replacing ¥
with /M and letting M — . O

It is clear that the problems of one- and two-sided uniform escape rates are
one and the same. More precisely, the quantities

(3.18) lim inf inf |X(s) — X(¢)|[¢(h) "

hi0 0<s,t<l,|s—t|=>h
and

(3.19) liminf inf |X(z+ k) — X(¢)[¢(h)""
hi0 0<t<l1

are equal. Less obvious is the fact that these quantities equal the seemingly
larger quantities

(3.20) inf liminf|X(t+s) —X((t—u)Jr)lap(s+u)_l

0<t<l1 s,ul0
and
(3.21) inf liminf|X(z+ k) — X(¢)|¥(h)"".
0<t<1l py0

THEOREM 3.4. Let X be as in Theorem 3.3. Assume d > 2a and let € #.
The expressions (3.18), (3.19), (3.20) and (3.21) are a.s. infinite or a.s. 0
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according as the integrals in (3.4) (if d > 2a) or (3.5) (if d = 2a) are finite or
infinite. When these expressions equal 0 there is an uncountable dense set (in
fact a dense G;) of times, t, in [0, ) for which

(3.22) liminf | X(¢ + &) — X(¢)|¢(h) "' = 0.
hl0

PROOF. Assume the integral in (3.4) [or (3.5) if d = 2a] is infinite. By
Theorem 3.3 we may fix w outside a null set such that for any open interval, I,
with rational endpoints,

(3.23) liminf  inf h|X(s) - X(t)[¥ (k)" =0.

hl0 s teljs—t>
Define a sequence of open sets by
G,= {t:EI e>0and h € (0,1/n)suchthat Vs € (t — ¢, t + &),
|X(s + k) - X(s)| < 9(h)n").

By (3.23), if n is fixed and I is an open interval with rational endpoints, there is
atin I and an h € (0,1/n) such that |X(¢+ h) — X(¢)| < n"'y(h). By
right-continuity we see that for some & > 0, |X(u + h) — X(u)| < n~'y(h) for
u e (t,t+ 9). Clearly, (¢,t + 8) € G, and hence G, N I # @. G, is therefore
dense and hence by Baire’s theorem [Dugundji (1966), page 2491 S =N,G, is a
dense subset of [0, o) of the second category, and in particular is uncountable.
Clearly, (3.22) holds whenever ¢t € S. The rest of the theorem is immediate from
Theorem 3.3 and the obvious ordering (3.19) = (3.18) < (3.20) < (3.21). O

4. Hausdorff dimensions for points of slow escape. As was pointed out
in the Introduction, the gap between Theorems 3.1 and 3.3 suggests we look at
the following exceptional sets of times where the two-sided escape rate is
unusually slow:

C = {t> 0; liminf | X(¢ +s) — X(¢t —u)|(s +u) "= 0},

s,ul0

D, = {t > 0: Er,ril:(l)ﬂX(t +58)—X(t—u)let = O}.
Theorems 3.1 and 3.4 show that if d > 2a, C, is a nonempty set of Lebesgue
measure 0if a ! <y <a™'+ (d — 2a) 'andisemptyif y > a~! + (d — 2a) L.
They also show that if d = 2a, D, is a nonempty set of Lebesgue measure 0 if
0 < y <1 and is empty if ¥ > 1. The upper bound on the Hausdorff dimensions
of these sets is found by a simple covering argument, whereas the lower bound is
obtained by showing the set will a.s. intersect with the range of an independent
stable subordinator of appropriate index.

NotaTiON. If U(t) is a stable subordinator of index B’ and ¢ > 0, let
A =AYV ={U(7¥(279)):i=0,1,2,...} n (0,1).
[The notion rY(A) was introduced prior to Lemma 2.1.]
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Note that A = U%_, A, is the closed range of U in [0,1]. Using the fact that

n=1
x# — m(A) = oo as. [Taylor and Wendel (1966)], one can show that for a.a.
and for any @ € U?_,A, and ¢ > 0 there is an N(a, ¢, @) € N such that
(4.1) card(A, N (a,a + ¢)) > 2", forn > N.

[See the discussion following Proposition 3.4 in Barlow and Perkins (1984).]
Recall that dim E < 0 implies the set E is empty.

THEOREM 4.1. (a) If d > 2a, then
dimC,=1- (y—a')(d-2a), fory=al,

and C,-1, 4941 Is an uncountable dense subset of [0, o).
(b) If d = 2a, then dim D, =1 — y for y > 0 and D, is an uncountable dense
subset of [0, o).

ProoF. (a) In view of (b), we may assume d > 2a, and clearly we may
assume y > a~ .. Let

Z,={l(j-5)2(j+5)2"]:0<j<2%3se[(j-5)27"(j-1)27"],
te[(j+1)27",(j + 5)27"] such that | X(s) — X(¢)| < 27™}.

Let t€ C,N[0,1], and let s,1¢ u, | t satisfy |X(u,) — X(s,)| < |u, — s,|"/4
and u, < 1. Choose m, € N and j, < 2™, j, € N such that 22"™ <y, — s, <
23-™ and |(u, + $,)/2 — j,2 ™| < 2~ ™. Then

2_m”=21_m” - 2_m” S un - (un + sn)/2 - |(un + sn)/2 _jn2_m"|
<u,—Jj,27m
<(u,—s,)/2+2 ™ <527 ™,

Therefore u, € [(j, + 1)27™,(j, + 5)2™™] and similarly one shows s, €
[(J, = 5)2™ ™, (j, — 1)27™]. It follows that for each n € N,

te [(j,—5)2 ™, (), + 52 ™] €4,
and hence
(4.2) Cc,n[0,1)c {t: t € U{I: I € #,} for infinitely many n}.
If 8>1-(y— a1)d — 2a), then

E( Yy |I|") < 10P2-"f2"P(3s € [0,4-27"],t [6-27",10-27"]
les,

such that | X(s) — X(¢)| < 27")
< ¢, 27 "hgrg—rrd=2agn(d=2a)/a [T emma 2.4(a)].

The right side is summable by the choice of B. Therefore (4.2) shows that
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dimC, N [0,1) < B. Let B|1 — (y — a”')(d — 2a) and replace [0,1) by a se-
quence of intervals increasing to [0, c0) to get the required bound on dimC,.

To obtain the lower bound on dimC,, fix y > a™' and let U denote a stable
subordinator of index B’ > (y — a™!)(d — 2a), independent of X. We fix a
sample path of U such that (4.1) holds and argue conditionally on U. Let
k >k, V 2 and define

B,={teA,;3ue[t-27""" - k271"
and s € [t + k712717, ¢ + 2717"] such that | X(u) — X(s)| < n7127™}.
For ¢t € A, fixed, Lemma 2.4(b) implies

d—2a
P(t c Bn) > c2(n—12—n(y—a—1))

If s # ¢ are elements of A, the events, {s € B,} and {t € B,} are independent
and so (4.1) shows that for ¢t € U,A,,, ¢ > 0 and large enough n,

&2n8’
P(Bn N(tt+e)= !25) < (1 - c2n2“‘d2-n(7—a“)(d—2a)) .

which is summable over n by the choice of 8’. By the Borel-Cantelli lemma we
may fix & outside a null set such that for any ¢t € U,A, and & > 0 there is an
N(t, &, w) € N such that B, N (¢,t + ¢€) # @ for n > N. Define a sequence of
open sets by

G,= {t € (0,1):3h,, h, € (0,27") and § > 0 such that for all
ve (t-8,t+8),|X(v—hy) — X(v+ hy)| < k'n~Y(h, + hy)"}.

We will prove G,N A is dense in A = the closed range of U in [0,1].
If teU,A, and €¢>0 are fixed, then for large enough n there is a
teA,N(tLt+e), ue[t—2""L¢) and s (t,t' + 27" '] such that
| X(u) — X(s)] <n"R%s —u|". Let h,=t —u and h,=s — t. Then
h,h,€ (0,27 *)and

| X(¢' = b)) — X(¢ + hy)| < k" Y(hy + hy)".

This inequality must persist if ¢’ is replaced by v € (¢, ¢’ + 1) for some 1 > 0 by
right-continuity. Since ¢’ € A,, this open interval, which is contained in G,,
must intersect A N (¢, ¢t+¢) and hence G,NA N (¢, t+¢e)+ T for large
enough n. Therefore G,, N A is an open dense subset of the locally compact space
A for all n (G,lin n) and by Baire’s theorem [Dugundji (1966), page 244]
(NG,) N A is dense in A. Therefore C, N A # @ (for B’ as previously) because
NG, c C,. A fixed Borel set, B, will not intersect A (a.s.) if dim B <1 — B’ [see
Lemma 2 of Hawkes (1971b)]. The obvious Fubini argument implies dimC, >
1 — B’. Let B’ (y — a 1) (d — 2a) to obtain the required lower bound.

The last statement of (a) is immediate from Theorem 3.4.

(b) Simply use Lemma 2.5 in place of Lemma 2.4 in the preceding argu-
ment. O
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Consider now the following sets of times where there is an unusually slow rate
of one-sided escape:

E, = {t> 0: limint| X(¢ + h) - X(2)|p™ = 0}.
hl0O

If d > 2a, the integral tests of Takeuchi (1964b) and Taylor (1967) for local
one-sided escape rates and Theorem 3.4 show E is a nonempty Lebesgue null
set if a™' <y <a™'+(d—-2a)7" If d> 20, E, is nonempty for y =a"' +
(d — 2a)7! but is empty for y > a™' + (d — 2a)"". E, may also be of interest
for a < d < 2a since such an X will still not hit points even though it will now
have multiple points. The aforementioned local escape rates show that E. is still
Lebesgue null for y > a™! and d > a, but the integral tests of Spitzer (1958) for
d = a = 2 and Takeuchi and Watanabe (1964) for d = a = 1 show E_ is of full
Lebesgue measure for any y > 0 in these cases.

The derivation of the correct lower bound on E, is more involved than was
the case for C,. We will need a much stronger result than (4.1) on the structure of
the range of a stable subordinator. Recall the notation A, introduced prior to
Theorem 4.1.

LEMMA 4.2. Let U be a stable subordinator of index B’. Fix K > 1,0 < 8 <
B, 8>1and n> p'. If a € A, and the cardinality of A,s N (a,a +27"/K)
exceeds 2P"C=1 et

S,(a) = E,E/I(si’ §; €A, N (a,a+ 2_n/K))|3i -8

8,#8;

where Y’ indicates the sum is only over the smallest [2P"®~D] elements of
A,s N (a,a + 27 "/K). There is an M > 0 such that if

A = {a EA,: card(Ams N (a,a+ 2—n/K)) > 9Bn(3-1

S,(a) < M2r@En+B(E~ 1))} ,

then for a.a. » for all a € UT_ A, and ¢ > 0 there is an N(a, &, w) € N such
that card(A, N (a, a + €)) > 2"~ forn > N.

Proor. It suffices to prove the conclusion for a fixed a € UA, and ¢ € (0,1)
and to simplify the argument slightly we will assume a = 0. (It will then be clear
how to handle a general a € A,.) A scaling argument shows that if {Y;} are i.i.d.
copies of U(r{(1)), then U(7/(2 ")) is equal in law to 27 "°L/_,Y,. It is well
known that

(4.3) tlir?o P(Y, > t)tF = ¢, € (0, 0)

[see, for example, Theorem 4.1 of Fristedt (1974)]. It follows from the preceding
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that
P, = P(card(A,; N (0,277/K)) < 28n@-D)

< P(U('T[zﬁn(J—l)]+1(2_n8)) > 2_n/K)

[2AnC®-D]41
=P Y Y.> 2”“‘”/1()
i=1
[2An3-D]4+1
< Y Y -2> 2"(8‘1)/2K) (if n > N,)
i=1

< P(U([2P"®~D] + 1) 2 ¢;,2"®"V2K),

for some c; > 0. In the last line note that (4.3) and P(Y; — 2 > 0) < 1 show that
P(Y;, — 2> t) < P(UQ1) > ct) for all t € R for some ¢ > 0. Therefore if n > N,,
we have

(4.4) Pn < P(U(1) 2 ¢,27C¢D0-B/BY/K ) - 0, asn— c0.
Similarly, one obtains

g, = P(S,(0) > M2r@n+AG-1))

< M-12-n@n+BG-1)y Y'Y E((U(Tj(2_n8)) - U(Ti(2_"8)))_n)

1<i<j<[2f"¢-1)

< cgM 127 tBG-igndn SN B(U(j—i)"") [by (4.3), as before]

1<i<j<2Bn¢-D

<e¢ME(UQ)T) X i

1<i<2
C, M
S 6 ’

where in the last line we have used n > 8’ and E(U(1)™") < oo [see Lemma 1 of
Hawkes (1971a)]. Choose M > 0 and N, € N such that p, + q, < 1/3,if n > N,.
Therefore if

r, = P(card(A,; N (0,27"/K)) > 274~V and §,(0) < M2"®1+AC-1)),
then r, > 2/3 if n > N,. It follows easily from the preceding that if
Crr = {w: card(A4,; N (U(r(27")), U(7(27")) + 277/K)) > 2#7C-D,
S.U(r(27") = Mzroness-»),

then there is an N, such that n > N, implies

(4.5) P(C,."Lza;}(’z-n)) > 2/3.
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For each n € N define

kA2

Mr(k) =27 % H(U(x(27) < o) (CF) - P(CFG-H)].

i=0

Then {(M™(k), U o-»): k= 0,1,2,...} is a martingale and

E(M™Y0)?) = E(M™, M™),) < 272"8(2" + 1)

is summable. Therefore lim
a.a. « and large enough n,

M™o0) = 0 as. and hence (4.5) shows that for

n—oo

onB onB
L L(U(r(27) < e)I(Cr) > 2/3 X H{U(r(27) <) = (1/6)2"
> 2741 [by (4.1)]. o

THEOREM 4.3. If d > a, then
dimE =1 - a"l(l - (ay)_l)(d— a), fory=a 'l
Moreover, if d > 2a, E -1, 4_34-1 i an uncountable dense subset of [0, ).

Proor. The last statement is an immediate consequence of Theorem 3.4.
Moreover, if d = a, we have already remarked that E, is the complement of a
Lebesgue null set for any y > 0, so assume d > a.

Fix y > a7 ! and for each n € N inductively define a sequence of stopping
times by

Ty =0, T, =inf{t> T/ |X(¢) — X(T")| = 27} A (T + 27 ™).

A law of large numbers argument (as in the proof of Lemma 2.1) shows there
is a ¢, such that if N, =[c,2"*] — 1, then Tj > 1 for large enough n as.
Fix such an « and let ¢t € E, N [0,1]. Choose %,|0 and m, € N such that
|X(¢t + h,) — X(t)| < hY, 2™ 1 < h, <2 ™. For large enough n,
Ty 21 and hence T™ <t <T;}; for some i < N, . Note that if h; =
h,+t— T/ > 2 ™1 then

| X(T™ + hy) = X(T™)| <| X (R, + ) — X(£)] + 27

< 2t
Therefore if

g, = {1, T%]:i < N,,|X(T" + h) — X(T)| < 2!~ for some k > 27"},
then ¢ € [T;™, T"1] € 4, for large enough n, and hence

(4.6) [0,1]nE, c {t: teJ{I: 1e5) i.o.}.
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IfB>1-a'(1 - (ay) ')d — a), then

E( Yy lllﬁ) < ¢,2™2~"#12P(| X(h)| < 2" for some b > 27" 1)
Ies,

< 2 =Rg - nr(d-0gn(d/a-1) (Lemma 2.2).

The preceding is summable by the choice of B. (4.6) now implies
dim E, N [0,1] < B and letting 8|1 — a™'(1 — (ay) ')(d — a) we get the re-
quired upper bound on dim E, N [0,1] and hence on dim E,.

Tum1ng to the lower bound on dim E , we need only consider y > a~ L
Choose v/, ¥y’ sothat a ! <y' <y <7y” and assume y” — y’ is small enough so
that y”/y’ — (ay’)~! < 1. Now select B8, 8’ so that

(4.7) (d/a) —1> "> B> (v"/v - (av') ))((d/a) - 1).

Let £ > k, V 2 (k, as in Lemma 2.3) and let U be a stable subordinator of index
B’, independent of X. Now argue conditionally on U, assuming we have fixed a
sample path satisfying the conclusion of Lemma 4.2 with § = ay’, n = d/a — 1
and K = 2k. If )

B,={teA,3ucA, Nt e+272k) Y, set+2 )t +27"]

such that | X(u) — X(s)| < 2_”7"},
then we claim that

fora.a. wandall a € |JA,, ¢ > O thereisan N(a,¢,w) €N
(4.8) n

such that B, N (a,a + &) # @ forn > N(a, ¢, w).

It clearly suffices to show this for a fixed @ € A,, and & > 0. There is an M and
an N, such that if A, is as in Lemma 4.2 (w1th K, 7,8 as before), then for
n>N0, A, n(a,a+s)3{t" 1<z<[2"’3 1}, where t”<t” if i<j. Fix
n > N, and t? as before. Let {r:j=1,...,[28~ ‘1)]} 1.1, be the
smallest [23"("7"1)] elements of A,,, N (7, t" + 27" /(2k)). If

R;= {w:EIs € [ti” + 27"k tr 4+ 27" ] such that IX(s) - X('}‘)I < 2—ny"}’

then
[2ﬂn(av' - 1)]
P(treB,)>P| U R,
j=1
[2Bn(dv’ - 1)]
(49) > Y P(R)
Jj=1

- IX  PR;nR).

1<j+l<[2fMar-D)
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Lemma 2.3 implies that

P(R. 20(4)2—n7"(d—a) k19 n _ (p — ¢ —(d/a—1)
(4.10) (%)) ( (r;— 7))

> ¢,2 7Y~ -0,

To bound P(R; N R;) we argue as in the derivation of (4.13) of Jain and Taylor
(1973). If

V,=inf{s > f + 271 | X(s) - X(ry)| <277},

then
(411) P(R,nR,) <P(V;<V,<tr+27") + P(V,<V;<tF+27").
The first probability is less than or equal to
E(I(VJ <th+ 2_")P(|X(s) - X(r;)| < 27™" for some s > V}lﬁvl))

< E(I(R,)P(| X(s) - X(V}) = (X(r) = X(r))| < 2~

for some s > V}lﬁvj))
< E(P(Rj%lpﬁ—n(“)-l)PX(’I)‘X(’J')(IX(s)| < 217" for some s > 0))
< ¢, 27 ~e )d-0p(| X(s)| < 2'~™" for some 5 > 1, — 7;) (Lemma 2.3)

< ¢g2 @Y e A=)y — g | TYDTD (hy Temma 2.3 again).

By symmetry the second probability in (4.11) is bounded by the same quantity.
Substitute this bound and (4.10) into (4.9) to see that

P(t* € B,) > 03(2—n((‘v"—a’l)(d—a)—ﬂ(ay'_1)) _ 062_n(2y,,_a_1)(d_a)sn( t:"))
> c32—n((Y"—a_l)(d—a)—B(ay’—1))(1 _ c6M2—n(v"—y')(d—a))
> ¢, 27O —aT)d- - Blar' = 1),
In the last line the value of N, has been increased (if necessary) and in the next

to last line the fact that t* € A, has been used to bound S,(t7). The events
(t" € B,}, 1 < i < 2"#~1, are independent. Therefore

. - , [Znﬁ—l]
P(B,Nn (a,a+¢)=92)< (1 — ;27" aT N dm o)~ Aay ‘1»)

=< exp{ - 082-n((v"—a“)(d—a)—ﬁav')} .

This is summable over n by (4.7). The Borel-Cantelli lemma now gives (4.8).
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Now argue as in the derivation of the lower bound of dim C,, using the open
sets

(4.12) G,= {t€(0,1):3h € (0,27") and 8 > 0 such that for all

ve (t—98,t+8),|X(v+h) — X(v)| < n'h7},

to see that dim E, > 1 — B’. Let v/, y” — y and 8’| (1 — (ay) ') (da™' — 1) to
obtain the required lower bound. O

REMARK 4.4. If a < d < 2a, then the preceding result implies
lim dim E, = 2 — d/a.

Y- 00
In the symmetric stable case this limit is precisely the dimension of the time set
corresponding to the double points of X [see Section 7 of Taylor (1986) and the
references cited therein, and use Theorem 1 of Pruitt (1975) to convert the
spatial dimensions into temporal dimensions]. It is not hard to modify
the preceding proof to show that if ¢ € »# and .

E, - {t = 0:limint| X(¢ + 1) - X(6)(h) " = o},
then dim E, > 2 — d/a. It is, however, more illuminating to explain this (at
least in the strictly stable case) directly in terms of the double points

F={te(0,1): X(¢) = X(u) for some u # t}
and the set of “close double points,”
F,={t<(0,1): Jusuchthat 0 <|¢t — u| < eand X(¢) = X(u)}.

Then dim F = dim F, = 2 — d/a for any & > 0. The latter equality is clear from
dim F = 2 — d/a because F, contains the double points of X|, . Let A be the
closed range (in [0, 1]) of an independent subordinator of index g’ > d/a — 1. If
G, is given by (4.12) but with (k) in place of A, then F,-. C G, as. (use
the fact that all points in F, . are a.s. continuity points of X). If a€ U, A,
(A, as before) and € > 0, then sets of dimension > 1 — 8’ will intersect A N
(a, a + ¢) with positive probability [Lemma 2 of Hawkes (1971b)]. Therefore
P(F,-»NAN(a,a+¢)+ @)=p>0. Let us take a = 0 (a similar argument
goes through if a@ > 0). A scaling argument (use the scaling properties of both X
and A) shows that for any ¢ > 0,

P(Fy-=nNAN(0,ce) # @) =p.
By the 0-1 law we get .
P(Fyny-1 0 AN (0,e/k) # @ for infinitely many &) = 1.

The preceding sets are decreasing in %, so p must equal 1. Therefore G, N A is
dense in A a.s. By Baire’s theorem (1,G,) N A # @ andhence E, N A # @ 2as.
As in the previous proof this shows dimE, >1— ' > 2 —d/aas '\ d/a — 1.
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The corresponding problem concerning points of unusually fast escape for
Brownian motion (jumps allow a very fast escape indeed) can be handled using
“slow point techniques” [see Davis (1983), Greenwood and Perkins (1983) and
Perkins (1983)]. Here the maximal rate is 4!/2 and, in fact,

sup liminf | X(¢ + k) — X(¢)|h"2 = ¢, € (0, 0).
t  hio

Davis (1983) shows ¢; = 1 and ¢, can be characterized in terms of the nonnega-
tive eigenfunction of an associated Sturm-Liouville problem using the tech-
niques of Perkins (1983), Section 6. These methods also allow one to compute the
Hausdorff dimension of times such that

liminf | X(¢ + k) — X(¢)|h" 2 > ¢,
R 10

for 0 < ¢ < ¢,.
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