Open Access
Translator Disclaimer
October, 1988 Lyapunov Exponents for Matrices with Invariant Subspaces
Eric S. Key
Ann. Probab. 16(4): 1721-1728 (October, 1988). DOI: 10.1214/aop/1176991593

Abstract

If $\mathbf{M}$ is a fixed $d \times d$ complex-valued matrix, then the eigenvalues of $\mathbf{M}'$, the conjugate transpose of $\mathbf{M}$, are the complex conjugates of the eigenvalues of $\mathbf{M}$, with the same multiplicities, and if $\mathbf{M}$ is upper block triangular, the eigenvalues of $\mathbf{M}$ are the eigenvalues of the diagonal blocks, and the multiplicities add. We shall show that if $\{\mathbf{M}(j)\}$ is a stationary, ergodic, time-reversible sequence taking values in the $d \times d$ complex matrices, then similar properties hold for the Lyapunov exponents of $\{\mathbf{M}(j)\}$.

Citation

Download Citation

Eric S. Key. "Lyapunov Exponents for Matrices with Invariant Subspaces." Ann. Probab. 16 (4) 1721 - 1728, October, 1988. https://doi.org/10.1214/aop/1176991593

Information

Published: October, 1988
First available in Project Euclid: 19 April 2007

zbMATH: 0654.60013
MathSciNet: MR958212
Digital Object Identifier: 10.1214/aop/1176991593

Subjects:
Primary: 60B15
Secondary: 60H25

Keywords: invariant subspaces , Lyapunov exponents , Oseledec's Multiplicative Ergodic Theorem

Rights: Copyright © 1988 Institute of Mathematical Statistics

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.16 • No. 4 • October, 1988
Back to Top