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ASYMPTOTIC NORMALITY OF TRIMMED MEANS IN HIGHER
DIMENSIONS

By R. A. MALLER
CSIRO Division of Mathematics and Statistics

A representation for the distribution of the trimmed sum of vector-valued
random variables is obtained, generalising a one-dimensional formula. The
trimming is with respect to observations falling outside a fixed family of sets,
e.g., spheres. Asymptotic normality of the heavily trimmed sum, when normed
and centered in different ways, is proved, and rates of convergence are given
for some cases.

1. Introduction and notation. Let X, (X,),., be nondegenerate iid random
vectors in R% Let {S()}, 5 be a fixed family of subsets of R¢ for which S(y)
and dS(y) [the boundary of S(y)] are bounded and measurable, satisfying

(1.1) {0} = S(0) € S(x) € 8(y,) € S(+m) = R¢

for 0 < y, < 3, < + 0. Assume S(y) increase continuously in the sense that for
x # 0 there is a unique y such that x € 3S(y).

Let F denote both the distribution function of X, and the measure induced by
this distribution on the Borel subsets of R¢. Assume F is continuous with respect
to {S(y)} in the sense that

(12)  lim {F(S(y +8)) - F(S(»))} = F(85(y)) =0, y=0.

So
(1.3) h(y)=P{X€S(y)}, »20,

is a probability distribution on [0, «), continuous on (0, «) and continuous from
the right at 0. \

The family S(y) induces an ordering on X,,...,X,, which by the continuity,
is almost surely unique, defined as follows: Let

Y., = inf{y > 0: S(y) contains exactly n — rof X,,...,X,}, r=>1.
Then define
X® =X, 4, wherei,(1)=isuchthatX; ¢ S(y,_,),

n

X =X, ), wherei,(r)=isuchthatX;¢& S(y,_,),
i#i,1),...,i,(r—1),2<r<n.
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In dimension 1, X{” is the term of the rth largest modulus when S(y) =
[—y, y]; for d > 1 the ordering is essentially one-dimensional, indexed by y > 0.
The prototypical examples of {S(y)} are the spheres S(y) = {x| |x| < y}, where
|x| denotes the Euclidean norm of a vector, and the cubes C(y) = {x: |x;| <y,
1 < i < d}, where x has components x,,..., x;. The S(y) may be generated, for
example, by S(y) =S, y >0, where S is a convex compact set of nonzero
measure containing 0. The resulting ordering of X,,..., X, is then with respect
to Minkowski distance. In general, however, we do not require S(y) to be convex.

The properties we require are easily carried over from the one-dimensional
theory. Most importantly for our purposes, X{/ satisfy the following Markov
property: If y, >y, > -+ >y, then

(XPD:r+1<j<nXP edS(y)1<k<r)
(1.4) =p{XP:r+1<j<nXP e dS(y,)}
=p{XP(3):1<j<n-r},
where
(1.5) {Xi(¥)} =p (XiX; € S(»)},

and X{I(y,),...,X{"(y,) is the ordering induced on X(y,),...,X,(3) by S(y).
(“D” means “has the same distribution as.”)

The preceding conditional probabilities are defined by P(A|X; € dS(y)) =
P(A|X; = y), where A is any measurable set and X are the real-valued random
variables given by X; = y when X; € dS(y). These are iidrv’s with distribution
h(y). The required Markov properties described previously then follow from
one-dimensional methods.

Now define trimmed sums by

( =
(1.6) N8 =X+ ... +X0*D 1 <r<n,

where addition of vectors is defined componentwise. A corollary of (1.4) is that
N 2y2 o 2, implies

wn  (OSIEP IS, 1 s ks r) = (V8D € 05(5,))

=p{Sa-r(3)},

where S (¥) =X(y) + -+ +X (y)for y>0, n > 1.

The purpose of this paper is to show that under “heavy” trimming, i.e., when
0 < a < 1 and r = [na] (the integer part of na), "S_ is asymptotically normal
when normed and centered appropriately, without the requirement of moment or
other conditions on the tail of F, but with certain smoothness conditions on F in
the neighbourhood of the (1 — a) quantile of A. With other than “natural”
centering, ["*JS, may converge to a mixture of normal distributions under
smoothness conditions on F. These results are related to a theorem by Stigler
(1973) as explained later.

Under similar conditions on F, we show that the rate of convergence of [**1S,
to its limit can easily be estimated using the methods developed for measuring
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rates of convergence of ordinary multidimensional sums to normality; see
Bhattacharya (1977) and Sweeting (1977) for recent results and discussions on
these.
Our results are stated and proved in the next two sections. Here we introduce
more notation and give two lemmas, which are required in the next section.
Assume the existence of centering constants defined as follows: There is a
measurable m: R? » R such that when z € 3S(y), y > 0,

m(z) = E(X|X € S(»))

(1.8)
=p(y),
where p: [0, c0) > R? is given by
p(y) = EX(»)
(1.9) _ < dF(x .
- fsm F( )/ fsmdF( )

when h(y) = [g,, dF(x) > 0.

The S(y) are essentially homotopies of the sphere, and there may exist a
function f:R?¢ — R such that S(y) is given by S(y) = f'[0, ¥], ¥ > 0. Then m
can be taken as

m(z) = [ xdF(x)/k((z), zER
S(f@@)

For example, when S(y) = a sphere of radius y, f(X) = |x|. More generally,

ellipses are given by f(x) = x"V~'x, V a fixed nonsingular matrix, xT the
transpose of x and rectangles by f(x) = max(c,|x,|,..., c4x4), where c; are
positive constants and x = (x4,..., X4).

As a result of (1.7) and (1.8), we have for any measurable A C R? the
following formula, which is the basis of our analysis:

P{"8, — (n - r)m(X{) € A}
= [7P(8,-(3) = (n = r)u() € A} dP (X € (7))

and since ES,_,(y) = (n — r)u(y) we have the correct centering for S,_,(y).
The variance of X(y) is

2(y) = E(X(y) - EX(»)}{X(y) - EX(y)}", =0,
and we let A(y) be a symmetric matrix such that
(111) A(9)Z(0)AT(y) = 1T,

where I is the identity matrix in d dimensions.
The behaviour of X[ is related to the (1 — «) quantile of & defined by

(1.12) a=sup{y: h(y) <1-a}.
The value a is not assumed to be taken uniquely; in fact, let
(1.13) [a, 8] = {y: h(y) =1 - a}.

(1.10)
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Also let

(1.14) A, ={y:|r(y) -1 -a)|<e}, O0<e<l.

Since h(a) > 0, we have that 2(a) is positive definite. Then by continuity of F,
2(y) is positive for y € A, if ¢ is small enough. Thus A(y) is also nonsingular
for y € A, and '

(1.15) 27(y) = AT(9)A(y).

Now Z(y) may be singular for some values of y < a but since we will only be
interested in values of y in A, we can define Z7!(y) and A(y) arbitrarily for
YEA,

We also need the notation of Bhattacharya (1977) and Sweeting (1977). Let
B¢ be the bounded measurable real-valued functions on R? A sequence of
probability measures @, — ,@ (weak convergence on R?) if

J1®Qu(dx) - [f(x)Q(dx)

(integrals without limits are assumed to be over R¢) for all f € B¢, which satisfy
1

w(Q,8) = [w;(x,8)Q(dx) 0, 8-0+,
where

w(x,8) = sup{| /(y) - /(z)|,y,2 € B(x,8))
and B(x, d) is the sphere of radius 8 centered at x. Bounds on

[1Q.- [1@

in terms of w;, give rates of convergence of @, to Q.

Finally, we require two lemmas on the asymptotic behaviour of X[, The
first is proved by the methods of Weiss (1970). The second is implicit in work of
Bjerve (1977), who gave rates of convergence to normality of linear combinations
of order statistics in dimension 1. Let N(0,1) be the standard normal random
variable in dimension 1, and N(O0, ) or just N the same in d dimensions. Let ®
be the distribution function of N(0, I).

2

LEMMA 1. Suppose a < b in (1.13). Then for y > 0,
(1.16)  P{X[r e S(b+yn""%)} - P(N(0,1) < yh/,(b)(a(1 = @))%},
where
h(b+y)—h(b—- h(b+y)—(1-«
W) = i MOEN RS L AGE) - (o)
y=0+ y y—0+ y

finite or infinite. [ If infinite, interpret the right-hand side of (1.16) as 1.] Also,
for y > 0,

P(X[l e S(b—yn~1%)} - &,
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and similarly
P(X[" & S(a — yn~/2)} - P{N(0,1) < yh’ (a)(a(1 — a))"*},
where h’_(a) is finite or infinite, and
P(X!rl e S(a + yn~?)} - 1.
Ifa<ce<band —o0 <y < +o00,
P{XI"l e S(c+yn"1%)} > 1.
Ifa=b=h"'1— a), then
P(X[r e S(a + yn~2)} > P{N(0,1) < yh,(a)(a(l — @))"*},  y>0,
- y=0,
- P{N(0,1) < yn’ (a)(a(1 —a))"*},  y<o0,

with appropriate interpretations if h/.(a) or h’(a) is infinite. If a = b and
h’.(a) = h’ (a), finite and nonzero, then for —oo <y < + o0,

P(Xl" e S(a + yn~/2)} - P{N(0,1) < yk'(a)(a(1 — a))~"*}.

Proor. For y in a neighbourhood of [a, b] such that 0 < A(y) <1,
P(X!* e S(y)} = P{atleast n — [na] + 10fX,,...,X, arein S(y)}

=P{iI{XiGS(y)} >n- [na]+1}

n—[na]+1- nh(y)}
(nh(y)H(3)) " |

(1.17)

= P{Tn(y) >
where H(y) = 1 — h(y) and

| ELJI(X,€ S(2)) - nh()
) T G H)

has mean 0 and variance 1. The central limit theorem as in Weiss (1970) can now
be used to complete the proof [see also Reiss (1976)]. O

LEMMA 2. There is a constant ¢ > 0 such that

f dP{Xlrle S(y)} =0(e™), n-— .
YEA,

Proor. Let X; be iid with distribution A(y). Then for some 8, > 0, §, > 0,
[ dP(XeS(y)) < P{X[™ & [a~8,b+8,])
YEA,

=0(e ™),
by the argument in Bjerve (1977), page 360, paragraph 2, where X denote the
order statistics of X|,..., X,,. O
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2. Heavy trimming.

THEOREM 1. Assume (1.2) and (1.8) and let f € Bf. Then there are con-
stants ¢, > 0, ¢, > 0 for which
|1 P(4(@)(8, = (= [raDm(XE))(n - [nad) ™ € ax)
(2.1)
- [0

(2.2) < 01[71 + fw,(czn'l/z,x)d)(dx)],
if n = ny(n), where n may be arbitrarily small; i.e., the weak convergence
A(a)("8, = (n = [na])m(X[))
(n~ [na])”*
holds. Suppose, in addition,
h(b+y) - h(y) -

- pN(0, I)

h(b+y) — h(y) |
p <

(2.3a) 0 < liminf lim su; + 00,
y—0+ Yy y—0+ Y
h(a) — h(a - h(a) — h(a -
(2.3b) 0 < liminf (a) = h(a =) < limsup (a) = hla = 5) < +o00
y—0+ Yy y—0+ Yy
Then for n sufficiently large, (2.1) is bounded by
(2.4) cl[n'l/2 + fw,(czn'l/z,x)d)(dx)].

Proor. By (1.10) and change of variable, (2.1) equals
‘ [ [1(A@ A7) [ A8, (s 7) = ES, ()

(2.5) x(n - [na])™* € dx} - P(N e dx}] dh,(y)

# [ JHA@A (1) - 1] PN < ax) an, (),

where
h(y)=P(XieS(y)}, y=0.

In the first term of (2.5), the integral over y & A, is O(n~/?) by Lemma 2. To
bound the integral over y € A, note that

Z = A(5)(Ss_(na(¥) — ESy_(nay(9))(n = [na]) ™

is the sum of iid random vectors with mean 0 and variance I. Let f*(x) =
f(A(a)A™Y(y)x), which is in B{. Sweeting’s result [(1977), Corollary 3, page 39]
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gives
[ Jripe e ax) - PN e axi] dn ()
(26) < cl[n'1/2 [ B(3) dh.(5)
Ae
+ j;efw,.(x, c2n-1/233(y))P{N € dx} dhn(y)],
where

B(¥) = EIX(»)/’.
Notice that c; = sup, . 4, By y) is finite. So (2.6) is bounded by

o(n™'2) + wa,,(x, c,n”Y?)P(N € dx)} dh,( ).

We defer to the end of the proof the demonstration that this is of the form of the
integral in (2.2) and (2.4).
Next, we deal with the second term of (2.5), which can be wntben as

[ J(A(@A7 ()x)P(N € dx) dh,(y) ~ [* [{x)P(N « dx} dn,(5)
- f0°° [#(A(a)x)P{A~Y(5)N € dx} dh,(y)

- fowff(A(a)x)P{A“(a)N € dx} dh,(y).
Again by Lemma 2 we need only consider values of y € A, in this. Let
A, ={y|h(y) -1 -a)|<e} c[a-5,b+8],
for some 8,(¢) > 0, 8,(¢) > 0. So we need to estimate

f_os ff(A(a)x)P{A‘l(a +y)N e dx}dh,(a+y)
(2.7) +f082ff(A(a)x)P{A‘l(b + y)N € dx} dh,(b + )

_ [/_"8 dh(a+y) + f:zdh,,(b +)

The elements of Z(y) are
ojk( y) = fS(y)xjxk dF(x) _ fS(y)xj dF(x)fS(y)xk dF(x)
h(y) R*(y) ’
for 1 < j, k < d. Assuming only the (left) continuity of A at @ and the bounded-
ness of S(y), we have if 5 is small

|°jk(a +y) - Ujk(a)| <n, for -8, <y<O,

ff(A(a)x)P{A-l(a)N € dx}.
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provided & (and hence §,) are small enough. Assuming instead (2.3b) gives
|ojk(a +y) - ojk(a)| <cly], for-8,<y<0,

for some ¢ > 0 because, for example,

J. xppdF(x)| < sup [x*[h(a) = h(a + )]
S(a+y)—S(a) xeS(a+y)

<cly], fory—>0-.
Summarise these two possibilities as
lox(a +y) - oi(a)| = O(norlyl), for -8, <y<O0.
Similarly, we obtain
lou(b + ) = ojk(a)l =|°jk(b +y) - ojk(b)l
=0(nory), for0<y<3é,,

assuming either that A is (right) continuous at b or (2.3a). Note that o,(a) =
0;,(b) since h (and F) are constant on [a, b] [and S(b) — S(a)].
Together these estimates imply

(2.8a) I2(a+y) —2(a)ll=O(norly), -8 <y<0,
(2.8b) I2(6+y) —2(b)=O(nory), 0<y<$,

where the matrix norm is defined by

IZ] = sup (xT=x)/(xx).
Next, A~Y(y)N is multivariate normal (0, Z(y)), so
[#(A(a)x)[P{A~(a + y)N € dx} - P{A"}(a)N € dx}]

— (27) Y2 Ala)x exp(—éxTE_l(a+y)x)
@) [l 3 7

~ exp(— 1xTS"Y(a)x)
(2.9) 2(a) [
exp(—1xT="Y(a)x)
|3(a + 5)2(a) |

= (27) " [{(A(a)x)

X{(exp(—% (2 Ya+y) - ="Ya))x) - 1)|2(a)|1/2

+2(a)[V* - |2(a + »)[*} dx.
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Also,
|exp(—éxT(2'l(a +y)— E'I(a))x) - 1|
<|x"(=Ha+y) - 2'1(a))x|exp(|xT(2_l(a +y) - E_I(a))xD,

whereas

|xT(Z2 e +y) - = Ya))x| =|x"2 Y (a + y)(2(a) - Z(a + ¥))= " Ya)x|
< xx||27N(a +y)27 ()| [2(a + y) - Z(a)|
= (x"x)O(norcly)), -8 <y<0,

by (2.8a). From the definition of the determinant, (2.8a) also implies

I%(a + )| =[(a)| + O(nory)),  —8, <y <0.
Putting these together shows that (2.9) is
O(norly), -8 <y<0;

here we again use the fact that f € B{.
A similar estimation holds for 0 < y < 8,, so the difference of integrals in (2.7)

is
O(n or [* yldh,(a+y)+ fszydhn(b + y)),
-8, 0

and this proves the part of the bound depending on 7 in (2.2). For (2.4), we use
the notation of Lemma 1 of Section 1.
We have

[eyana(s+y) < [*0 = ho(b+3) dy
= f:zP{X%”"‘] & S(b+ y)} dy

(h(b+y) — k(b))
(rh(b + y)H(b + y))'"

R,
T (nh(b + ) H(b + y))w} .

= j:zP{Tn(b +y)<-n

by (1.17), where H(y) = 1 — h(y) and
0<R,=n-[na]+1-nh(b)=n—-[na] +1-n(1-a)<2.

By (2.3a), for some ¢, > 0,

h(b+y) - h(b) 2 c,y, 0<y<8,
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so by Chebyshev’s inequality (7, has mean 0 and variance 1),
[Fydh,(b+)
= fszP{Tn(b +y) < —n'%c,y + ¢gn~ 2} dy
0
(2100 = n“”[[1 - fsz"m]P{T,,(b +yn V) < —cyy + e V%) dy
o 1
dy

(02y - c3n_l/2)2

<0(n V?) + n‘l/sz
1

- 0(n"12).

A similar proof works for the integral over [ —§,,0] and proves the O(n~'/?) in
(2.4).

To complete the proof, we have to replace w;» by «; in (2.6). Now if
z € B(x,8) and z* = A(a)A " Y(y)z, x* = A(a)A"Y(y)x, then

|z* — x*| =]|A(a)A™Y(y)(z - x)| :
<|z - x| |(A7%(»))"aA™(a)A(a) A7) |

<lz - x[[|Z7Ha) [ [|Z7(»)|
< cé,
for some ¢ when y € A,. Thus z* € B(x*, cf), so

Lfsup{lf(A(a)A“(y)zl)—f(A(a)A'l(y)zz)I,
, z,,2, € B(x, cln‘l/z)}(l)(dx) dh,(y)
= [ Joun{17G1) - i(ap)], 2,21 € B(x*, cein™"/2) }0(dx) d,(5)

= fA j o (A(a)A™Y()x, cn~72) P(N € dx} dh,(y)
= j; fw, (x, czn'1/2)P{A(a)A‘1(y)N € dx} dh,(y)
= [, Jer(x en™*) PN € dx} dh,(5)

+ [ f:dh"(“ +y)+ fo“zdh,,(b +)|O(n or cly)),

where the last step follows by arguments like those following (2.9). Arguing as up
to (2.10), the last bound is

< fw, (x, can~12)®(dx) + O(n or n~1/2),
which completes the proof. O

REMARKS. In statistical practise, the more usual kind of trimming (in
dimension 1) is “from above and below,” i.e., the [na] largest and [nf8] smallest
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terms are removed from the sum. In higher dimensions, though, trimming
outside spheres or ellipses (in multivariate analysis) or cubes is commonly
advocated, and occasionally in dimension 1 too, trimming is with regard to
absolute values. The origin plays a special role in this procedure, which is not the
case with trimming from above and below, and there results quite a striking
difference in behaviour. The basic limit theorem for trimming above and below
(with trimming proportions « and B) is due to Stigler (1973) [see also Bickel
(1965)], and the limit law for the trimmed sum is not the normal but a mixture of
normal distributions in the case where the upper (or lower) a (or 8) quantile of
the underlying distribution is not uniquely defined.

By contrast, Theorem 1 shows that “trimming absolutes” results in a normal
limit, even with a O(n~'/2) rate of convergence provided the random centering
by m(X[*J) is allowed. In fact, if F is symmetric with respect to {S(y)} in the
sense that m(-) = 0, this rate is always achieved if F satisfies the smoothness
conditions (2.3), and, in addition,

fw,(x, c,n2)®(dx) = O(n~1/2).

This holds, for example, when f is the indicator of a convex set in R? [Sweeting
(1977), page 40].

It is in replacing the random centering m by a constant centering, as would be
required in practise, that the possibility of a nonnormal limit arises in our case,
when the (1 — &) quantile of # is not well defined. This is the subject of
Theorem 2. After this, it is clear that rates of convergence of ["IS, to its
(possibly nonnormal) limit are entirely dependent on the smoothness of F at the
a quantile. '

The trimming proportion [na] can be replaced throughout Theorems 1 and 2
with a sequence of integers r, such that r,/n — a. If restrictions are placed on
the rate of decrease of the tail of F, r, may go to + co more slowly and still
preserve a proper limit for ["“]Sn when normed and centered appropriately. In
the extreme case, when a fixed number of terms r is trimmed (“light” trimming),
no essential effect on the convergence of (')S,, occurs [see Maller (1982) and Mori
(1984)]. In an intermediate case, when F is stochastically compact, r, > + 00
arbitrarily slowly is sufficient trimming to control the sum (but there is again a
problem with centering). See Pruitt (1986) for the one-dimensional case (follow-
ing a suggestion of Griffin) and Hahn, Kuelbs and Samur (1987) for higher
dimensions (although the latter use a “hybrid” trimming of absolute values
above a certain level not closely related to our form of trimming).

As mentioned, for the usual applications {S(y)} will be spheres, ellipses or
cubes but much more general shapes are covered by our treatment. For example,
let u € U, the unit vectors in R<. Suppose a(u) and b(u), the a/2 and 1 — a/2
quantiles in direction u, are uniquely defined, and define the convex sets

Sy(a) = {x: a(u) < u"x < b(u), forallu € U}.
Then S(y) = S1/(y + 1)) is an admissible family for trimming as in Section 1.
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Alternatively, we could take Sy(a) = {ua(u):u € U} whose boundaries are the
projectionwise quantiles. These sets, of course, depend on the distribution
function F. See Maller (1988) for other “projection pursuit” methods.

THEOREM 2. Assume (1.2) and let f € B¢. Suppose (2.3) holds with “ ="
replacing “ < ” and, in addition, p’_(a) and p/,(b) exist in the sense that

pa) —pla—y) _

(2.11a) yl.i,%i p(a),
(2.11b) Jim p(b+ y; —w(d) _ v (b)

are finite, where p(y) is defined in (1.9). Then
[1@P{A(a)("8, - (n~ [nal)n(a))
X(n - [na])""*? € dx}
= [1@) ["P(N + yA(a)wi(b) € dx)
XdP{N(0,1) < yh',(b)a™"*(1 - o) "}
+ ff(x)f_OmP{N + yA(a)p(a) € dx)

xdP{N(0,1) < yh’(a)a™ V(1 — @) 7'},

provided «;(e, ®) — 0 for every e > 0 as n = + 0.

Proor. By (1.10), Lemma 2 and Corollary 3 of Sweeting (1977) again, we
have

[t@)P{A(a)("S, — (n - [na])p(a))(r ~ [nal)"** € dx|
= [ J1@P{A@)(8,-na(7) = (n = [na])n(a))
X(n - [na])™"* € dx} dh,(y)
= fAeff*(X)P{A(y)(Sn_[na](y) ~ ES,_na(¥))
X(n—-[na])"?e dx} dh,(y) + O(n"V?)

=[4ff*(X)P{Nde} dh,,(y) + 0(1), n—- +oo,
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provided f* € Bf and
/ wp(e, @) dh,(y) = 0,
At

where

f*(x) = {{A(a)A™H(3)x + (n = [ra]) 7 A(Y)(r(¥) - r(a))}.

Deferring w;. until the end of the proof, we deal with

[, [*@P(N < axydn,(y)

= [ [10P{A@)A (5)N + (n  [nal)

XA(a)(p(y) — p(a)) € dr} dh,(y).
By (2.11), given 7 arbitrarily small,

lp(a+y) —p(a) —yp (a)|<mlyl, -6, <y<0,
p(b+y) —p(d) —ypi(B)[<my, 0<y<§,

where §,, §, are as in the proof of Theorem 1. For y < 0,

ff(X)!’{A(a)A‘l(a +¥)N + (n = [nal)”*A(a)(r(a +y) - p(a)) € dx}

= [(x)P(N + y(n - [na])"*A(a)(a) € dx} + O(aly|(n — [na])'”),
by arguments like those of Theorem 1. It was also shown there that

[* Bldh(a+) =012,  n— +,
-5,

SO

j"‘s O(nyI(n — [nal)”?) dh,(y) = O(n),

1

i.e., is arbitrarily small. Similar arguments hold for 0 < y < 6,
So we need to look at

[ [1@P(N + y(n ~ [na])*A(a)w, (b) < dx) dh,()

and the sarne integral over —8; < y < 0 but with p’ (a) replacing p’.(b).
For0 <y<$,

hn(b + y(n - [na])_l/z) - P{N(O,I) <yh' . (b)a %1 - a)_l},
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by Lemma 1. So the weak convergence

[H (RPN + yA(a)w(5) € dx) dho(b + 5(n ~ [na]) ™)

- fowff(x)P{N + yA(a)p,(b) € dr)

xdP{N(0,1) < yh’,(b)a~ /(1 - a) ')

holds, since the inner integral is a continuous bounded function of y. Similar
arguments hold for -6, <y < 0.
To complete the proof, we have to show

f wle, ®) dh,(y) = 0,
AC
if w;(e, ®) — 0. This is done as in Theorem 1; we omit the details. O

REMARKS. (i) Theorem 2 shows that ("8, — (n — [nalp(a))/(n —
[ra])/? is asymptotically a mixture of normal random variables if left and right
derivatives of h and p exist at ¢ and b, and (1.2) holds. If @ = b and the
derivatives of k2 and p exist at a, and A’(a) > 0, then the mixture of normals
reduces to a normal, and so the distribution of {['“']S,, —(n — [na)p(a)}/(n —
[na])/? converges to a normal distribution with mean 0 and covariance matrix

3(a) + a1 - «)'m'(a)[m(a)]"/(R())".

(ii) The results of Maller (1982) and Mori (1984) on “light” trimming, i.e.,
when the number of extreme terms is fixed as n — oo, can be generalised to the
present setup, and shown that there is “no effect” of light trimming in the sense
that the conditions required on the distribution are the same with or without
trimming.

(iii) For rates of convergence in dimension 1, see Hall (1984) (“light” trim-
ming) and de Wet (1976) and Egorov and Nevzorov (1975) (“heavy” trimming).

Acknowledgment. I am grateful to a referee for advice and reference to
Weiss (1970).
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