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DUALITY FOR GENERAL ATTRACTIVE SPIN SYSTEMS WITH
APPLICATIONS IN ONE DIMENSION'

BY LAWRENCE GRAY

University of Minnesota

A duality theory is developed which works for general Markovian spin—flip
systems with attractive rates. This theory is applied to one-dimensional
nearest neighbor translation invariant systems to extend results which were
first proved for the contact process by Durrett and Griffeath (1983). In
particular, exponential convergence to equilibrium starting from all 1’s is
shown for noncritical nonergodic systems (Theorem 2). As a consequence, two
different definitions of the critical value are shown to be equivalent (Theorem
5). In the course of the proof of Theorem 2, a new result concerning the
distribution of the system near edges is obtained (Theorem 4).

1. Introduction. This paper has two main purposes. The first is to develop a
theory of dual processes which applies to general spin systems with attractive
transition rates. Duality has been a powerful tool in recent research, but only for
certain special systems. We have found a way to construct dual processes which
does not rely on the restrictive conditions that have always been imposed.

The second main purpose is to illustrate the applicability of our dual processes
by using them to generalize some results of Durrett and Griffeath (1983) which
were proved (using duality) for the nearest neighbor additive contact process in
one dimension. They showed that, except at critical parameter values, the process
converges exponentially fast starting from all 1s to an equilibrium measure which
has exponentially decaying correlation functions. Results of this type should hold
for a large class of translation invariant models with finite range interactions (for
an exception, see Frohlich and Spencer (1981)), but the author is aware of only
two other special cases in which some type of exponential mixing is known at all
noncritical parameter values: the classical nearest neighbor two-dimensional
Ising model (a proof can be constructed using high-temperature /low-temperature
duality, as found in Benettin et al. (1973) and the fact that exponential decay of
correlations occurs for all T > T, (see Lebowitz (1972))); and certain two-dimen-
sional percolation models (as can be shown using the methods of Chapter 6 in
Kesten (1982)). The result of Durrett and Griffeath is the only one involving
dynamical spin systems. We will extend this result to the class of all attractive
one-dimensional nearest neighbor spin systems which exhibit critical behavior.
While this class is not nearly as general as we would like, it is much larger than
the class dealt with by Durrett and Griffeath and is sufficient to illustrate the
potential usefulness of our dual processes.
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372 L. GRAY

Here is a brief outline of the paper: In Section 2 we construct dual processes
using a graphical representation of spin systems that goes back to Harris (1978).
Some general properties are developed and examples are given. In Section 3, we
give a brief description of the situation in the one-dimensional nearest neighbor
case and discuss the results of Durrett and Griffeath. In Section 4 we begin the
proof of the theorem on exponential convergence (Theorem 2) by carrying out a
modification of the percolation argument used by Durrett and Griffeath. The
remainder of the proof is contained in Section 5 and is based on a completely new
result (Theorem 4), which states roughly that if the process starts with the sites
in (—o0,0] occupied, then the distribution of occupied sites is thickest near the
edge of the process. Section 5 also contains a proof that the critical value for
the system starting from a finite set of occupied sites is the same as it is for the
system which starts with all sites occupied.

2. Dual processes. Although our entire construction can be carried out in
considerable generality for attractive spin systems, we will restrict our attention
to translation invariant systems with finite range interactions. The reader who is
interested in greater generality can get a start by looking at the discussion of
graphical representations given in Gray (1982).

Let = be the set of all subsets of Z¢ endowed with the usual topology (i.e.,
A, > Aiffforeachx € Z% A, N {x} = A N {x) for all sufficiently large n.) For
each x € Z9 let B,: = - [0,0) and §,: = — [0, o0) satisfy
(1) A>B=B(A)2B(B) and §(A) < d(B);

(2) B(A +x)=B,(A) and 8(A + x)=06,(A) for all A € =, where
A+x={y:y—x €A}

(3) there exists a finite set N, ¢ Z?\ {x} such that B (A) = B(A N N,)
and §(A) =8 (A NN, forall A €=

The functions B8, and &, are called the birth and death rates at x, respectively.

Conditions (1), (2), and (3) say that these rates are attractive, translation

invariant, and finite range. By (2), we can let N, = N, + x for all x. The birth

rate B,(A) is the infinitesimal rate at which a transition is made from A to

A U {x}, while 6 (A) is the rate at which the system goes from A to A \ {x}.

We will now describe a graphical construction of the spin system with rates 8,
and §,. We will state many of its properties without proof. See Gray (1982) for
the technical details. Generally speaking, a graphical representation is a means of
constructing a system (£(s,t, A); s <t, A € £) of Z-valued random variables,
jointly defined on some probability space (2, #, P), in such a way that
(4) for each fixed s € R and A € =, the process (£(s, ¢, A); t € [s,00)) is a

spin system with initial state A, initial time s, and rates 8, and §,;
(5) &(s,u, A)=4§&(t,u,é(s,t,A))foralls<t<uand A € X
. ADB={s,t, A) D &s,t, B) (this condition is only found in repre-
(6) . . )
sentations of attractive systems);
(7) the shifted system (é(s + u,t+ u, A);s <t, A € Z) has the same
probability law as the original system for all u € R.
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There are many different graphical representations (see Griffeath (1979), where
different representations are chosen to represent different systems). We will use
only one in this paper. It gives what is known as the “basic coupling” of the
processes described in (4). Our construction of dual processes works equally well
with other graphical representations, although different representations result in
different dual processes.

The construction is based on certain random point locations in the space ~time
graph Z¢ X R. The points in those random locations are called transition points:
If (x,¢t) is a transition point, then depending on the state of the process just
before time ¢, a birth or death may occur at x at time ¢. To define these random
locations, let 0 < b, < b, < -+ <b;and 0 <d, <d, < --+ <d; be the dis-
tinct nonzero values taken by the birth and death rates, respectively. There are
only finitely many such values by (2) and (3). Let b, = d, = 0. For x € Z¢ and
1 < k <i,let B(x, k) be a Poisson point location contained in the line {x} X R
with density parameter b, — b,_,. (The line {x} X R is thought of as a subset of
the space—time graph Z¢ X R.) Similarly, let D(x, /) be a Poisson point location
in {x} X R with parameter d, — d,_, forx € Z?and 1 < ! <j. (Recall that in a
one-dimensional Poisson point location with parameter A, the intervals between
points are iid exponentially distributed random variables with mean 1/A.) We
choose all these Poisson point locations to be mutually independent and let
(2, #, P) be the underlying probability space. The points in each B(x, k) are
called birth points and those in each D(x,l) are called death points. We can
assume (after removing a null set if necessary) that

(8)

for each ¢ € R there is at most one x € Z¢ such that (x,¢) is a
transition point;

(9) each bounded subset of Z9X R contains at most finitely many
transition points.

It can be shown that there exists a collection (§(s,¢, A);s <t A€ E) of
=-valued random variables defined on (2, %, P) which satisfies (4)-(7). After
possibly removing a second null set, it can be shown that this collection satisfies
and is uniquely determined by the following conditions:

right continuity and the existence of left limits (i.e., for all w € Q,
(10) lim,, £(s, t, A)(w) = &(s, u, A)(w) when u > s, and &(s,u”, A)w) =
lim,, ,£&(s, t, A)(w) exists when u > s);

(11) a birth occurs at time ¢t > s iff x & &(s,t™, A), (x,t) € B(x, k) for
some k£ and B.(&(s,t™, A)) = b,;

a death occurs at time ¢ > s iff x € §(s, ¢~ A), (x,t) € D(x,1) for
some [/ and 8.(§(s,t7, A)) = d,.

(Note that by right continuity, births or deaths cannot occur at the initial time s.
Also, (8), (11), and (12) imply that births or deaths cannot occur simultaneously
at two different sites.)

We are now ready to define dual processes. In doing so, we will first define
certain functions which we call “[s, ¢]-paths.” These play essentially the same

(12)
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role here that paths have always played in graphical duality theory. However,
unlike the paths in previous versions of duality, they do not live in Z?. Instead,
they live in

E; = the collection of finite subsets of Z ¢ (including the empty set).

DEFINITION 1. Fix w € Q. A function 7: [s, ] — =, is called an [s, t]-path
from A to B (for w) if:

(13) « is right continuous with left limits;
(14) =(s) = A and =(¢t) = B;
(15) if s < u < v £ ¢, then §(u, v, 7(u)) D 7(v);

7 is minimal in the sense that if #: [s, t] > X, satisfies (13)-(15) and if

(16) (u) C w(u) for all u € [s, t], then 7 = 7.

We say that = is an [s, t]-path to B out of A if 7 is an [s, t]-path to B from A’
for some A’ C A. We will omit the words “for «w” in referring to [s, ¢]-paths, even
though they are always implied.

DEFINITION 2. For each B € X, and ¢ € R, the dual process with terminal
time ¢ and terminal state B is the collection ({(s, t, B), s € (— 0, t]) defined by

¢(s,t, B) = {A € E;: there exists an [ s, ¢ ]-path from A to B}.

For dual processes, time is thought of as running backwards from the terminal
time. It is easy to check that {(¢, ¢, B) = {B}, so it is only a slight abuse of
terminology to call B the terminal state. The following theorem gives the exact
relationship between the system of dual processes and the original spin system.
During the course of the proof, we will obtain much useful information about
[s, t]-paths. Since the proof is rather long, the reader may wish to first study the
statements of the theorem and the lemmas used in the proof and then skip ahead
to the discussion and examples at the end of the section before reading all the
details. In order for Theorem 1 to be true for all w as stated, one last null set may
need to be removed from Q. We will explain during the proof how this is done.

THEOREM 1. IfA € E, BE X, ands < t, then
(17) BCé(s,t, A)iff A’ € {(s, ¢, B)‘ for some A’ C A; or equivalently,
(18) B C &(s,t, A) iff there is an [s, t]-path to B out of A.

Proor. The equivalence between (17) and (18) is immediate from the defini-
tions. We will prove (18). First, let = be an [s, ¢]-path to B from A’ for
some A’ C A. By (14), n(s) = A’ and =(¢) = B. Therefore, (15) implies that
&(s, t, A’) D B. It follows from ¢6) that £(s, t, A) O B, completing the “if” part
of the proof.

Now assume that £(s, ¢, A) D B. Define #(u) = &(s, u, A) for u € [s, t]. Then
# satisfies (13) by (10) and it satisfies (15) by (5). However, in general, # is not
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E;-valued and does not satisfy (16), so # is generally not an [s, ¢]-path. We need
to “thin out” # until it is = -valued and does satisfy (16). The steps of this
procedure will be organized into the following lemmas:

LEMMA 1. If #: [s, t] = = satisfies (13) and (15), then for each u € [s, t]
and x € #(u), the following three conditions hold:
(19) if (x, u) is not a transition point, then x € #(u");
(20) if (x, u) € B(x, k), then either x € #(u~) or B(m(u™)) = by;
(21) if (x,u) € D(x,1), then x € #(u~) and 8 (F(u")) < d,.

LEmMA 2. If #: [s, t] — E satisfies (13) and (19)—(21), then for any B C #(t),
there is a function = [s, t] - E such that =(u) C #(u) for all u € [s, t] and
such that w is a minimal function which satisfies (13), (19)—(21), and the
condition =(t) O B.

LEMMA 3. If w:[s, t] = = is a minimal function which satisfies (13), (19)—(21),
and the condition w(t) O B for some B € =, then n(u) € E; for all u € [s, t].

LEmMA 4. If 7: [s,t] > E; is a minimal function which satisfies (13),
(19)-(21), and the condition m(t) O B for some B € E;, then = is an [s, t]-path
to B.

Note that if we apply Lemmas 1-4 to the function #(-) = £(s, -, A) defined
above, then we can obtain an [s, ¢]-path to B out of A, so the “only if”’ part of
Theorem 1 follows from Lemmas 1-4.

ProoF oF LEMMA 1. Let 7: [s, t] —» = satisfy (13) and (15). Choose u € [s, t]
and x € #(u). By (9) there exists u’ € (s, u) such that the space-time set
(N, U {x}) X [w, u) contains no transition points. By (11) and (12), no births or
deaths can occur on the set N, U {x} during [v’, u), so

§(w,u, #(w)) N (N U {x}) = #(u’) 0 (N, U {x}).
By (13) we can assume that u’ was chosen so that #(u’) N (N, U {x}) =
#(u~) N (N, U {x}), so
(22) ¢u,u,#(uw)) N (N, U{x}) =#(u") N (N, U {x}).
By (3) and (22),
B(&(u', u”, 7(u’))) = B(#(u")) and
Bx(g(u/’ u, 'F’(u/))) = x('ﬁ(u_))‘
By (15), #(u) C &u/, u, #(u’)), so x € &', u, #(u’)). If (x, u) is not a transition
point, then (11) and (12) imply that x € &/, u™, #(u’)), and so (19) follows from
(22). If (x, u) € B(x, k), then (11) and (12) imply either x € §(u’, u™, #(u’)) or
B.(&(u',u~, #(u'))) = b, and (20) follows from (22) and (23). Similarly, (21)
follows from (22) and (23). O

(23)
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ProoF oF LEMMA 2. Let 7,: [s,t] = = be functions which satisfy (13),
(19)-(21), and the condition =,(¢) O B such that =, (#) D 7, (u) forall u € [s, t]
and n > 1. It is easily checked that = = lim ,7, exists and satisfies (13), (19)-(21),
and the condition #(¢) D B. It follows that for each time u € [s, t] and each
finite set B’ C Z¢, we can find a function 7: [s, ] > = which satisfies (19)-(21)
and the condition #(¢) O B such that if #’ is any other such function and if
7'(v) C w(v) for all v € [s, t], then #’(u) N B’ = #(u) N B’. Since there-are only
countably many finite subsets of Z¢ a standard diagonalization procedure
implies that # can be chosen to satisfy this last condition for all rational
u € [s, t] and all finite sets B’. It follows from the continuity assumptions that «
satisfies this condition for all u € [s, t], so 7 has the desired minimality proper-
ties. O

PROOF OF LEMMA 3. We will define a collection (¢(s, ¢, B); s < ¢, B € X;) of
Z,-valued processes and then prove that if = [s, ¢] > = is a minimal function
satisfying (13), (19)-(21), and the condition 7(¢) > B for some B € =, then
m(u) C ¢(u, t, B) for all u € [s, t].

Fix B€ E; and ¢t €R. Let 7, =t If (x,7,) is a transition point for some
x € B, let x,, be the (unique) point such that (x,, 7,) is a transition point and let
B, = B U N,. Otherwise, let B, = B and let x, be an arbitrary member of B.
Now define 7,, B,, and x,, inductively for n > 1 as follows:

7, = sup{u < ¢: (x, u) is a transition point for some x € B, _,};
x, = the (unique) site x such that (x,, 7,) is a transition point;
B,=B, ,UN,.

(Note that x, exists by (8) and (9) and the fact that B,_; is finite.) Let
¢(t, t, B) = B, and ¢(u, t, B) = B, for u €[,,,,7,). Because of the way in
which the positions of transition points were determined using Poisson point
locations, it is easily checked that |¢(u, ¢, B)| is stochastically dominated by a
branching process with initial size | By| in which time runs backward from time ¢
and in which each member of the population produces | N, | offspring at rate 8 +3,
where 8 and § are the maximum birth and death rates, respectively. Thus, except
on some null set N C Q, ¢(u, ¢, B) is a well-defined finite set for all u < ¢. Since
=, is countable, this null set can be made to serve for all B € X, and all rational
t. We claim that it works for all ¢ To see this, fix ¢ € R. By (8) and (9), for each
choice of the set B € X, there exists a rational number ¢’ <t such that
B, x [t',t) contains no transition points. By definition, ¢(u,t, B) = B, =
o(t, t', B,) for all u € [t/, t]. It follows from the construction that ¢(u, ¢, B) =
o(u, t’, B,) for all u < t’, so ¢(u, t, B) is a well-defined finite set for all u < ¢’
except on the null set, as claimed. From now on, we assume that N has been
removed from Q, so that ¢(s, ¢, B) is a well-defined member of =, for all s < ¢,
Be€E and w € Q. )

Now let =: [s, t] — E satisfy the conditions of Lemma 3 for some B € =,. We
will show that 7(u) C ¢(u, ¢, B) for all u < ¢, proving the lemma. Let

0 = inf{u € [s,t]: 7(v) € ¢(v,t, B) forall v € [u, t]}.
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Note that by right continuity, 7(v) C ¢(v, ¢, B) for all v € [, t], provided that
0 € [s, t] (or in other words, provided that § # oo). We will prove eventually
that 8 = s. First we will show that 6 < ¢ by proving that #(¢) C ¢(¢, ¢, B) = B,,.
Actually we will prove that

(24) 7(t) = B.

Define #’: [s,t] = Z by letting #’(¢) = B and «'(u) = m(u) for s Su <t
Clearly 7’ satisfies (13), (19)-(21), and the condition #’(¢) D B, so by minimality,
7’ = m, proving (24) and the claim that @ < ¢. For the purpose of obtaining a
contradiction, assume that s < § < ¢. As noted above, m(8) C ¢(6, t, B). Choose
n such that 7,,, < 8 < 7,, and define 7" [s, t] > = by

Wl(u) = '”(u)’ ue [0’ t] U [S, Tn+1)’
= [n 0 ('”(U) N Bn)’ ue [Tn+1’0)'

Note that #/(z) C m(u) for all u € [s, t], that #'(¢) = B, and that #’ satisfies
(13). Clearly, =’ satisfies (19)-(21) for o & [7,,,, 0] since 7 does. Since
B, X (7,,,0) contains no transition points, it follows that #’ also satisfies
(19)—(21) for v € (7, ,, ). Furthermore, (19) implies that #(uz) N B, must be
decreasing on (7, ,,0), so #(6°) N B, = 7’(67). If (x,0) is a transition point,
then x = x,, and {x} U N, C B,, soit follows from (3) that B(7(67)) = B(7'(67))
and 8 (7(87)) = §,(’(67)). It is now easily checked that 7’ satisfies (19)-(21) for
v = 0 since 7 satisfies (19)—(21). Finally, since #'(7,,,) C 7(7,,,), it follows that
7’ also satisfies (19)—(21) at v = 7, ,. Thus, 7’ satisfies (19)-(21) on [s, ¢]. By the
minimality of #, # = #’, from which it follows that =(x) C B, = ¢(u, t, B) for
ue(r,,,,0), contradicting the definition of 6. O

Note that in the above argument, 7’ (and hence =) is constant on the interval
[, 0). The argument works for any # < 7,, so we have also proved that

a can only have discontinuities at the times 7,, and 7(u) C B,

(25) forall we[r,, ).

ProoF oF LEMMA 4. Let 7 be as in the statement of Lemma 4. By (24),
7(t) = B. Thus to show that = is an [s, ¢]-path to B, it is enough to prove (15)
and (16). Let 7, be as in the proof of Lemma 3 for n > 0. We will prove by
induction on % > O that for all n > 0,
if 7,,, > s, then £(u, v, m(w)) D m(v) forall u € [7,, 4., V 8, 7,.,] and
velr,,, Vsl
Since 1, > — o0 as n = o0, (15) follows from (26). We first take the case k£ = 0.
By (25), = is constant on [7,.,, 7,) and contained in’B,. Since B, X (7,,, 7,)
contains no transition points, it follows as in the proof of (22) that

¢(u,v,7(u)) N B, =7(u) N B,=a(v) N B, =a(v) =n(1,)
whenever 7, , < u < v < 1,, which proves (26) for v < 7,. It also shows that

(27) ¢(u, 77, m(u)) "B, =a(1,) forue([m,, ).

(26)
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We will use (27) to prove (26) for v = 7,. Choose x € w(7,) and v € [1,,, 7,)). We
must show that x € {(u, 7,, m(«)). We know that x € B,_, C B, since 7(7,) C
B, _,. If (x, 7,) is not a transition point, then (19) implies that x € #(7, ), and
thus x € &(u, 7, ,m(u)) by (27). It follows from (11) and (12) that x €
&(u, 7, m(u)). If (x,7,) is a transition point, then since x = x,, by definition,
B, o N,. Therefore by (27), B.(§(u, 7, , m(u))) = B(7=(7,)) and 8 (é(u, 7, , m(u)))
= 8 (m(7;)). Now follow an argument similar to the one used in the case when
(x, 7,) was not a transition point, this time using (20) or (21) instead of (19), to
conclude that x € {(u, 7,, m(u)).

The inductive step is easy. Choose k> 1, u€[7,,,,,V s, 7,,,) and v €
[7.+ 1> 7, ]- By the inductive hypothesis (applied twice), £{(u, 7, , 7(©)) D 7(7,,,)
and &(7,,;, v, 7(7,.,)) O 7m(v). Now apply (5) and (6) to get (26).

It is also easy to show that = satisfies (16). Let #’: [s, {] - E, satisfy (13),
(15), and the condition #’(¢) = B, and assume that #/(z) C «w(u) for all u € [s, t].
By Lemma 1, 7’ satisfies (19)-(21), so # = #’ by the minimality of #. It follows
that = satisfies (16). O

In proving Theorem 1, we have proved several other useful facts along the way
which we restate in the following lemmas for later use:

LEMMA 5.

(a) If #: [s, t] > E satisfies (13) and (19)—(21), then for all B € X such that
B C #(t) there exists an [s, t]-path = to B such that =(u) C #(u) for all
u€Es,t,)

(b) If =: [s, t] = = satisfies (13) and (15), then the conclusion is the same as in
(a).

(c) If B C (s, t, A) for some B € =, then there exists an [s, t]-path to B out of
A such that w(u) C &(s,u, A) for allu € [s, t,].

Proor.

(a) Follows from Lemmas 2-4.
(b) Follows from (a) and Lemma 1.
(c) This is what we actually proved in Theorem 1. O

LEmMMA 6. Choose B € E;. A function = is an [s, t]-path to B iff = is a
minimal function satisfying (13), (19)-(21), and the condition =(t) O B.

Proor. If 7 is an [s, t]-path to B, then 7 satisfies (13) and (15), so Lemmas
1-4 imply the existence of an [s, t]-path #’ to B which is a minimal function
satisfying (13), (19)-(21), and the condition 7’(¢) O B such that #’(u) C #(u) for
all u € [s, t,]. By (16), # = «’, proving the “only if” portion of Lemma 6. The
“if” portion follows from Lemmas 3 and 4. O
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LEMMA 7. Choose B € E,. If m is an [s, t]-path to B, then 7 satisfies (25).

ProOF. From the proof of Theorem 1 we know that # satisfies (25) if 7 is a
minimal function satisfying (13), (19)-(21), and the condition #(¢) D B. The
conclusion of Lemma 7 now follows from Lemma 6. O

LEMMA 8. For any B € E,, there are at most finitely many [ s, t]-paths to B.
In particular, {(s, t, B) is finite for all s < t and B € E,.

ProoF. There are at most finitely many functions which satisfy (25) for any
fixed s < t and B € X, so Lemma 8 follows from Lemma 7. O

LEMMA 9. A function m: s <t — =, which satisfies (13) and (14) is an
[s, t]-path to B iff for each u € [s,t], m(u") is a minimal set which satisfies
(19)-(21) for all x € w(uw).

ProoF. This is easily derived from Lemma 6. O

It will be convenient to characterize the above condition that #(u") is a
minimal set which satisfies (19)-(21) for all x € #(u). It is easily seen to be
equivalent to:

(19’) if m(u) X {u)} contains no transition points, then #(u") = =(u); -

if (x, u) € B(x, k) for some x € w(u), then m(u~) = (7w(u)\ {x}) U D,
(20’) where D is a minimal subset of N, U {x} such that either x € D or

Bd(m(u)\ {x}) U D) = by;

if (x, u) € D(x, 1) for some x € #(u), then #(u~) = m(u) U D’ where

(21) D’ is a minimal subset of N, such that § (7(u) U D’) < d,.

We next give some examples to illustrate the relationship between our dual
processes and those that have been previously defined:

ExXAMPLE 1. The contact process. Take the dimension d to be 1 and let
N, = {x — 1, x + 1}. Define 8, = 1 and

B(A)=0 iHANN, =2,
=N ifANN ={x—-1}or{x+1},
-6\ ifANN, =N,

where A > 0 and 6 > 1. This is the process studied by Durrett and Griffeath
(1983). Depending on the value of 4, three different situations are possible:

(i) 8 = 1. In this case, it is not hard to check from Lemma 9 that if B is a
singleton, then any [s, t]-path to B is singleton-valued for all u € [s, t,]. Thus,
$(s, t,{x}) is always a (possibly empty) collection of singletons for x € Z and
s < t. Under the obvious identification, we could think of {(s, ¢, {x}) as a set in =,
rather than a collection of singletons. If we take this point of view, then the
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process ({(s, ¢, {x}); s € (— o, t]) is equivalent to the usual dual process found in
Durrett and Griffeath (1983) and in many other papers.

(ii) 1 < @ < 2. In this case, an [s, ¢]-path 7 is not necessarily singleton-valued,
even when 7(t) is a singleton. Consequently, our dual processes are not equiv-
alent to dual processes that have been previously defined. The reason for this is
that in previous treatments of graphical duality theory, a different graphical
representation is used for each value of 8. The graphical representation that we
use is independent of 6. If instead, we had also used different representations for
different values of 8, then our definition of dual processes would lead to a duality
theory which is equivalent to previous versions in those cases where previous
versions existed.

(iii) @ > 2. In this case, no previous version of duality exists. Our construction
works no matter what value § takes.

ExAMPLE 2. The voter model. Change the death rates in Example 1 so that
8 (A) = B(A°). Previous versions of duality exist for this model if 2 < 8 < 3 (see
Holley and Liggett (1978) and Holley and Stroock (1979)). The reader may find it
a useful exercise to work out our version of duality for this example and compare
it with others. Our dual process has admittedly more complex behavior, but it
should be noted that even in this relatively simple example, the graphical
representation that goes with previous versions requires some cleverness to
construct (see Griffeath (1979)).

One of the main applications of duality is to the study of the asymptotic
behavior of spin systems. We will conclude this section with a general discussion
of the connection between duality and asymptotic behavior. The remainder of
the paper will be concerned with a specific application.

As in previous versions of duality, there are two special situations that are
. often singled out. We will say that {(s, ¢, B) is dead if {(s, ¢, B) = & and we
will call ¢(s, t, B) immortal if @ € {(s, ¢, B). (Note the distinction here: In the
first case, {(s, t, B) is the empty collection of subsets of Z; and no [s, ¢]-paths to
B exist; in the second case, the collection {(s, ¢, B) contains the empty set, so
there is an [s, t]-path to B from @.) It is easy to check that if {(s, £, B) is dead
or immortal, then {(r, ¢, B) is dead or immortal, respectively, for all r < s, so we
can think of “dead” and “immortal” as two absorbing states in our dual
processes, even though there is actually more than one state represented by the
term “immortal.” By Theorem 1,

(s, t, B) is dead iff £(s, ¢,Z ) does not contain B;
{(s, t, B) is immortal iff £(s, ¢, @) D B.
If we let B = {x}, it follows that £(s, ¢, @) and &(s, t,Z%) agree at a site x iff
(s, t, {x)) is either dead or immortal, so
&(s, t,Z%) N B = §(s, t, @).N B iff for each x € B, {(s, t,{x}) is either
dead or immortal.

It is well-known that for systems with attractive rates, £(s, t, @) and &(s, ¢,Z )
converge in distribution to equilibria p, and p,, respectively, as £ = co. Further-

(28)
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more, the system is ergodic (i.e., has a unique equilibrium) iff u, = u,. These facts
were first proved by Holley (1972). Since £(s, ¢, @) C &(s, t,Z%) by (6), it follows
from this and (28) that the system is ergodic iff for all x € Z9,

lim P({(s, t, {x}) is dead or immortal) = 1.
t— o0

By the translation invariance in space and time of our graphical representation
and the fact that “dead” and “immortal” are absorbing, it follows that
(29) there is a unique equilibrium iff P({(s,0, {0})) is dead or immortal for
some s < 0) = 1.

This criterion is analogous to the corresponding criterion in previous versions of
duality.

One of the most commonly studied situations is when B,(&) = 0. In this case,
@ is an absorbing state for the spin system, so p is the point mass concentrated
on &. It also follows in this case that {(s, ¢, B) cannot be immortal if B + &, so
(29) becomes
(30) if B(@) = 0, then there is a unique equilibrium iff P({(s, 0, {0}) is dead
for some s < 0) = 1.
We will be concerned with this case in the sections that follow, and it will be
convenient to restate some of the facts discussed here in terms of [ s, ¢]-paths. We
call a function 7: (— o0, t] > Z; a (— oo, t]-path to B if the restriction of 7 to
[s,t] is an [s, t]-path to B for all s € (—oo,t]. Clearly, if there exists a
(— o0, t]-path to B, then {(s, ¢, B) is not dead for any s € (— o0, ¢]. The implica-
tion also goes the other way: If {(s, t, B) is not dead for any s € (— o0, t], then
there exists a sequence of times ¢>s, >s,> .-+ such that s, > —oc0 as
n — oo and a sequence of functions =, 7, ... such that =, is an [s,, t]-path to B
for all n. For all m < n, the restriction of =, to [s,,, t]is an [s,,, t]-path. (This
follows from Lemma 9.) Since there are only finitely many [s,,, t]-paths to B by
Lemma 8, it follows that along a subsequence n,, the functions =, agree on
[s,., t]. By taking further subsequences, we can find a function # which is an
(— o0, t]-path to B. This part of the discussion has not relied on the assumption
that B.(@) = 0, so we have proved the following analogue to Theorem 1:

THEOREM 1. Fix t€R. Then B C {(s,t,Z%) for all s € (—oo,t] iff
{(s, t, B) is not dead for any s € (— o0, t] iff there is a (— o0, t]-path to B.

Analogous definitions and versions of Theorem 1’ can be made for (— oo, o0)-
paths and [s, co)-paths.
If we combine Theorem 1’ with (30), we get

(31) if B(2)=0, then p, # p, iff P(there exists a (— oo, t]-path to

(0}) > 0.
Also, since
p(é: x € ¢) = lim P(x € £(0,¢,29))
) t— o0 -
(3,2) = lim P(¢(s,0, {x}) is not dead)

= P({(s,0, {x}) is not dead for any s < 0),
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it follows from Theorems 1 and 1’ that
|P(x € £(0,£,Z)) — my(§: x € §)
= P(there exists a [0, ¢]-path to {x})
(33) — P(there exists a (— o0, 0]-path to {x})
= P(there exists a [ —¢,0]-path to {x})
— P(there exists a (— 00,0]-path to {x}), \
so for all ¢t < 0,

|P(x € £0,¢,Z2%)) — uy(§: x € §)]
(34) = P(there exists a [ —¢,0]-path to {x}
but not a (— 00, 0]-path to {x}).

We will use (34) to obtain the exponential convergence theorem mentioned in the
introduction.

3. Nearest neighbor systems on Z. In this section and throughout the rest
of the paper we consider only the one-dimensional nearest neighbor case:

(35) = all subsetsof Z and N, = {x — 1,x + 1} forall x € Z.

We will find it convenient in this case to separate all the possible death rates into
one-parameter families: Assume that 8,(Z) = 0 for all x and let

8:=40,+¢e forex0.

Because of the attractiveness assumption, any death rate can be written as §; for
some unique ¢ > 0 and 8, satisfying §,(Z) = 0. We will assume from now on that
all death rates are written this way and that when we write §, without an ¢ as a
superscript, then 8,(Z) = 0. The following facts are known concerning the ergodic
behavior of the family of systems with birth rates B, and death rates 9;:

if B(2) > 0, then the spin system with rates 8, and §; is ergodic for all
e>0;

if B(2) = 0 and B((x — D} +B{x + 1)) < 8,({x — 1)) + 8(({x + 1}),
(37) then the spin system with rates B, and & is ergodic for all & > 0 with

unique equilibrium p, = p, = the point mass at J;

if B,(2) = 0 and B,({x — 1)) + B{x + 1)) > 8,({x — 1}) + 8((x + 1}),
(38) then there exists ¢, € (0, 00) such that the system with rates B, and §; is

ergodic for £ > ¢, and nonergodic for € < ¢_;

These results are found in Gray. (1982) and Gray and Griffeath (1982). (The case
when &= 0 is trivially nonergodic if B(2) = 0; otherwise it can be made
equivalent to the cases in (37) and (38) by considering the family ((£(s, ¢, A);
s<t AEE).

(36)
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In spite of these results, there remain some unanswered questions: What is the
behavior for & = ¢,? What is the exact value of ¢? What is the speed of
convergence to equilibrium? The first two questions have not been answered for
any system. Any progress would be interesting. The third question has been
answered for certain special cases. In (36), the convergence to equilibrium is
known to be exponentially fast if ¢ and B,(@) are large enough (see Sullivan
(1974)). In (37), the convergence is always exponentially fast (this was proved for
the contact process by Griffeath (1981); the general case follows from the ideas in
Durrett (1980)). If & > ¢_ in (38), the result is the same as in (37). This leaves the
case 0 < & < ¢, in (38), which is the subject of the remainder of this paper. We
will show that £(0, ¢,Z) converges exponentially fast to p, for all e € [0, ¢,).
Durrett and Griffeath (1983) proved this result for the contact process of
Example 1 under the restriction that 6 < 2. As mentioned in Example 1, this
restriction has been needed in the past in order for previous versions of duality to
be applied. (Incidentally, the rates in Example 1 and in Durrett and Griffeath
(1983) are not parameterized in the same way that they are in this section, and
the reader should keep this in mind when comparing the results of Durrett and
Griffeath to ours.)

THEOREM 2. Let (£(s,t, A);s < t; A € E) be a spin system with rates B,
and 8 as in (38), with 0 < € < ¢, Then for all B € %, there exist constants
a, b > 0 such that

|P(£(s,t,Z) D B) — py(£: £ 2 B)| < ae®¢~9

forall t > s.

Theorem 2 has several consequences, the most important of which is that p,
must have exponentially decaying correlation functions under the above hypothe-
ses. The interested reader should consult the paper of Durrett and Griffeath,
where this and other results of this type are proved. All of these can either be
derived from Theorem 2 or proved in a similar manner. See Theorem 5 below for
another consequence of our proof.

The proof of Theorem 2, which is contained in the next two sections, follows
along the lines of that of Durrett and Griffeath, with various changes being made
to accommodate our version of duality. A key ingredient is the following result of
Durrett (1980). For A € =, let

L(A) =inf{x: x € A},  R(A) =sup{x: x € A}.

THEOREM 3 (Durrett). Let B, and 8 be as in (37) or (38). For all € 2 0,
there exist constants A\ and p in [ — o0, 00] such that for alln € Z,

L(£(0,¢,[n,)))/t > A and R(£(0, t,(— o0, n]))/t > p a.s.ast— oo.
If ‘e < ¢, then A and p are finite and p > \.

(We should point out that Durrett’s original result is more general than we
have stated it.)
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In Section 4, we will show that Theorem 2 holds if we assume in addition that
A < p, and in Section 5 we will complete the proof of Theorem 2 by showing that
this assumption always holds when 0 < € < ¢_. This second step was quite easy in
the special case considered by Durrett and Griffeath. For us it is somewhat
harder. However, the extra work needed yields a bonus: Theorem 4 below is a
new result which was not previously known even for the contact process.

4. The percolation argument. We will assume throughout this section
that the rates 8, and §; are as in (37) or (38). We will prove

if p > A, then there exist constants a and b such that P (there exists a
(39) [—¢ 0]-path to {0} but not a (—o0,0]-path to {0}) < ae % for all
t>0.

Once we also prove that p > A when ¢ < ¢, (as we will in Section 5), then
Theorem 2 follows from (34) and the translation invariance in space and time of
our spin system.

To prove (39), we will follow Durrett and Griffeath and find a certain
percolation structure within our graphical representation. The results of Durrett
and Griffeath imply certain exponential estimates for this percolation model
which can then be transformed into the bound in (39).

The building blocks of our percolation model will be certain space-time sets
which we call tubes:

DEFINITION 3. Choose 8§ > 0, T' > 0 and a space-time point (x, s). The sets
{(y,t):te[s,s+ T]and AN(t—s) - 8T <y—-x<A(t—s)+ 8T} and
{(y,t):te[s,s+ T]and p(t —s) - 8T <y—x<p(t—s)+ 8T}

are called, respectively, the A-tube and p-tube with dimension 8T X T and
location (x, s).

We imagine that there is a liquid that attempts to flow through these tubes. A
tube with dimensions 8T X T and location (x, s) is called open if there is a
nontrivial [s, s + T]-path 7 (nontrivial means #(s + T') # @) whose graph lies
in the tube. Such an [s, s + T ]-path will connect the base to the top of the tube
and will stay between the left and right edges of the tube. We only allow liquid to
flow through open tubes. Furthermore, we restrict the direction of flow to be
downward (i.e., in the direction of decreasing time). This corresponds with our
point of view that time runs backward in dual processes.

Now consider the arrangement of tubes shown in Figure 1. In this picture, the
A-tubes are shown with negative slopes and the p-tubes with positive slopes,
although in general, A and p (and hence both slopes) may have the same sign.
However, as long as p > A, tubes with dimension 87 X T can be arranged to
criss-cross in the manner shown, provided 8 is sufficiently small. Once such a
value of 8 is chosen, T is just an arbitrary scaling factor and does not affect the
picture.
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The basic unit of repetition in Figure 1 is shown shaded in. We call such a
union of four tubes a cell. The entire structure is formed by repeating a cell
periodically throughout the space-time plane. We label the cells as shown by
c(m, n), m, n € Z. The cells labeled c(n,0), n € Z, are centered on the line t = 0
and ¢(0,0) is centered at the origin. In our labeling scheme, ¢(m, n) shares a tube
with ¢(m,n + 1), c(m+ 1,n+ 1), ¢(m — 1, n — 1), and c¢(m, n — 1) as shown.
These four cells, along with ¢(m + 1, n) and ¢(m — 1, n) are called the neighbors
of ¢(m, n). Note that c¢(m, n) is disjoint from all other cells except its neighbors.

We call a cell open if all four of the tubes that form the cell are open. A
sequence of cells {c¢(m,, n)}, <z is called a percolation path if each cell ¢(m,, n)
is open and if each pair of cells ¢(m,, n) and ¢(m, . ;, n + 1) are neighbors for all
n. Note that if P is a percolation path, then there is an infinite connected route
which moves downward through the open tubes that form the cells of P. We
imagine that the presence of percolation paths allows liquid to flow or percolate
down through the entire structure. This completes our description of the percola-
tion model. We will assume from now on that § > 0 has been chosen to make the
picture in Figure 1 correct. We will leave the scaling factor 7' undetermined until
later. Define

p(T) = P(¢(m, n) is open).
Of course by translation invariance, p(7T') does not depend on m or n.

The model we have described is slightly different than the one used by Durrett
and Griffeath. However, all the essential features are the same. The important
thing is that we have an oriented percolation model in two dimensions (oriented
because we have restricted the direction of flow) in which the events {¢(m, n) is
open} and {c(m’, n’) is open} are independent if ¢(m, n) and c(m’, n’) are not
neighbors. (This independence is due to the independence built into the underly-
ing graphical representation.) The version given here was developed by the
author in cooperation with R. Durrett and T. Liggett at UCLA.
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The important property possessed by our percolation model is:

LEMMA 10. For p(T) sufficiently close to 1, there exist positive constants a’
and b’ such that P(A5; N Ay) 21— a’e N forall N =1,2,3,..., where

Ay, = {there exists a percolation path {c(m,, n)},c,

such thatmy > 0 and 3(N — m,)/2 > —nforalln <0},
Ay = {there exists a percolation path {c(m,, n)}, .,

such thatm, < 0 and 3(-N — m,) < —nforalln < 0}.

This lemma is a variation of the percolation result found in the proof of
Theorem 4 in Durrett and Griffeath (1983). We leave it to the reader to make the
minor adjustments necessary to obtain our Lemma 10. The point is that if p(T')
is close to 1, it is possible to use contour arguments to estimate the probability of
finding percolation paths with slopes which are close to the largest and smallest
values allowed by the graph. In our case, 0 < my; — m, < —n for n < 0 (since
m,, ., is always equal to m, or m, + 1), so the extreme slopes are 1 and . We
have used ; and 3 for numbers close to these extremes.

In order to get from Lemma 10 to (39), we need the following results:

LEMMA 11. p(T)—>1las T - .

LemMA 12. If P is a percolation path, then there is a (— o0, o0)-path w
whose graph is contained in the collection of tubes that make up the cells of P
such that w(t) is nonempty for all t.

LeEmMA 13. For i=1,2,3 let m; be an [s, t]-path to B;,, where L(B,) <

" L(B,) < R(B,) < R(By). Let

u = inf{u’ € [s,t]: L(m(v)) < R(my(v)) forallve [uw,¢]}.

Then there exists an [s,t]-path w© to B, such that w(v)c U?_ m(v)N
[L(7(v)), R(my(v))] for allv € [u, t]. Moreover, if u > s then w can be chosen
either so that m(v) C m(v) or so that m(v) C my(v), for all v € [s, u).

Lemma 13 can be rephrased in a less precise but more descriptive manner as
follows: Suppose 7, and m; are [s, t]-paths which cross at some time u € (s, t)
and suppose there is another [s, ¢]-path =, which is between 7, and =, at time ¢.
Then 7, can be modified into an [s, ¢]-path which stays between 7, and =, during
[«, t] and which is absorbed into either =, or 7, during [s, ©). Lemma 13 will be
used to prove Lemma 12. Before proving Lemmas 11-13, we will show how they
can be used together with Lemma 10 to prove (39).

"PROOF OF (39). Fix T sufficiently large so that p(T') is close enough to 1 to
satisfy the hypotheses of Lemma 10. This can be done by Lemma 11. Note that if
Ay and Aj occur, then there are percolation paths P* and P~ which pass the
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origin on the right and left, respectively and which cross at some level n > —6N
(i.e., if ¢(m,n) € P* and c(m’,n) € P~ and if n < —6N, then m < m’). It
follows from Lemma 12 that there exist (— o0, o0)-paths #* and #~ such that
L(7(0)) < R(7*(0)) and such that L(7~(s)) > R(w*(s)) for s < —MN, where
M is a constant which depends on our choice of T but not on N. Fix s < —MN
and let 7, and =, be, respectively, the restrictions of #~ and #* to [s, 0]. Suppose
that =, is an [s,0]-path to {0}. Then m,, m,, and =, satisfy the conditions of
Lemma 13, so there exists an [s,0]-path 7 to {0} such that #(s) C 7 (s) = 77 (s).
If we extend 7 to the interval (— o0, 0] by defining () = 7,(u) for u < s, then
it follows from Lemma 9 that « is a [«,0]-path to {0} for all ¥ <0, so 7 is a
(— 00,0]-path to {0}. We have shown that if Ay N Ay occurs and if there exists
a [ —t,0]-path to {0} for some ¢ > MN, then there exists a (— o0, 0]-path to {0}.
Lemma 10 now implies (39). O

It remains to prove Lemmas 11-13. We will prove them in reverse order.

Proor oF LEMMaA 13. For j =1 or 3, define
3
#(v) = Um(v) 0 [L(m(v)), R(m(0))] if v € [, t];
i=1

=m(v) ifve[s,u).

We will prove that #, and #, satisfy (19)-(21). Lemma 13 then follows im-

mediately from Lemma 5(a). For the remainder of the proof, fix j = 1 or 3.
First note that since =, satisfies (19)—(21), #; also satisfies (19)—(21) at least on

the interval [s, u). Thus, we can restrict our attention to v € [u, t]. To save

space, we let L(v) = L(7(v)) and R(v) = R(m(v)). We will need the following

facts concerning L(v) and R(v):

(40) L(v) < R(v) forallv € [u,t];

if (L(v),v) is not a transition point, then L(v~) = L(v), otherwise

|L(v) — L(v7)] £ 1; similar statements hold for R(v);

L and R cannot be simultaneously discontinuous at any time v € [u, £],

and L(u~) = R(u").

Right continuity of =, and 7, and the definition of u imply (40). To prove (41),
we use the fact that =, and =, satisfy (19’)-(21’). Thus, if x € 7,(v) and if (x, v)
is not a transition point, then x € «;(v ™), while if (x, v) is a transition point,
then

(41)

(42)

m(o)\ {x} c m(v") € m(v) UN..

Furthermore, since 8(2) = 0, 7 (v™) N (N, U {x}) i$ nonempty. Similar state-
ments hold for 7, and (41) can now be easily deduced, since N, = {x — 1, x + 1}.
Taken together, (40) and (41) imply (42).

We are now ready to prove that #; satisfies (19)-(21) on the interval [u, ¢].
Thus, fix v € [u, t] and x € 7(v). There are many cases to check. The proof of
(19) is easy (using (40)—(42)), and is left to the reader. We also leave the proof of
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(21) to the reader and concentrate on the slightly more difficult proof of (20).
Thus we assume that (x, v) € B(x, k) for some k. If L(v) < x < R(v), then it is
not too hard to prove (20) using (40)-(42) and the fact that =, 7,, and =, satisfy
(19)-(21). If x = L(v) and v > u, then (20) follows from (40)-(42) and from the
fact that «, satisfies (20). The case x = R(v) is similar. (We are leaving some
tedious but straightforward checking here to the reader.) We finally come to the
case in which v = © and x = L(u) or R(u). We will assume x = L(u). It follows
from (40) and (42) that R(u) = R(u~)=L(u") = L(u) +1=x+ 1. Since
L(u") e m(u") and R(u") € my(u"), it follows from the definition of # that
x + 1€ d(u"). Also, since 7, satisfies (20), it must be that b, < B(7(u") N
N,) = B({x + 1}), so b, < B(7(u")). Therefore 7; satisfies (20) in this case as
well. O

ProoF oF LEMMA 12. Let S, and S, be any two tubes in Figure 1 which
cross. Let (x, s,) and (x,, s,) be their respective locations. We will show that

if S, and S, are open, then there is a nontrivial [s,, s, + T ]-path whose
graph is contained in S, U S,.

Such a path will run from the base of S, to the top of S,. We leave it to the
reader to use this fact to form a proof by induction that if c¢(m,, n;) and
¢(m,, n,) are two (open) cells in some percolation path P with m, < m,, then
there is a nontrivial [s,, s, + T ]-path whose graph is contained in the tubes that
make up the cells of P, where (x,, s,) and (x,, s,) are the locations of tubes in
c¢(m,, n,) and c(m,, n,), respectively. We further leave it to the reader to derive
Lemma 12 from this second fact. It remains to prove (43).

If S, and S, are open, there is a nontrivial [s,, s, + T]-path #, and a
nontrivial [ s,, s, + T ]-path =, whose graphs are contained in S, and S,, respec-
tively. There are four cases, depending on whether s, < s, or s, > s, and
whether S, is a A-tube or a p-tube. We will only consider the case in which
s; < s, and S, is a A-tube, as shown in Figure 2. Let 7/ be the restriction of «, to
[sy,8,+ T] for i =1,2 and let #{ =a,. Then =/, #;, and =] satisfy the
hypotheses of Lemma 13, so there exists an [s,, s; + T ]-path 7 to 7(s, + T)
such that #(v) C 7 (v) U my(v) for v € [s,, s; + T]and such that #(s,) C 7{(s,).
Since =, satisfies (15) on [s,, s,], Lemma 5(b) implies that there exists an
[s,, sy ]-path 7’ to =(sy) out of m(s;) such that #’(v) C 7 (v) for v € [s,, s,]
Extend 7 to all of [s, s, + T'] by defining

77'(1))=7T'(U), vE [31’82]’

=m(v), wveE[s+T,s,+T]

(43)

It follows from Lemma 9 that « is an [s,, s, + T ]-path whose graph is contained
in §; U S,.0

ProoF oF LEMMA 11. Since a cell consists of four tubes, in order to show
that p(T) —» 1 as T — 0, it is enough to show that the probability that a given
A- or p-tube with dimension 87 X T is open can be made arbitrarily close to 1 by
choosing T sufficiently large. We will prove this statement for p-tubes and leave
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the analogous proof for A-tubes to the reader. By translation invariance, it is
sufficient to consider the p-tube with location (0, 0).

Let S be the p-tube with dimension 87 X T and location (0,0). Recall that S
is open if there is a nontrivial [0, 7']-path whose graph is contained in S. We will
build a sort of a space—time “funnel” which will be designed to trap just such a
path inside S. This device is shown in Figure 3, which depicts a collection of tubes
with dimension (8/10)T X T. This collection contains one p-tube and N + 2
A-tubes, where N is the largest integer less than (5(p — A)/8) — 1. (Our earlier
choice of & ensures that 8 < (p — A)/2, so N > 9.) We call the p-tube R. It has
location (0,0). The A-tubes are called S_,, S), S, ..., Sy. The location of S, is
(k8T /5,0) for —1 < k < N. The larger tube S is indicated by dotted lines. The

S-4

o

Sn R

the left
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integer N has been chosen so that Sy crosses R and so that the top of Sy is
contained in the top of S, as shown. We now define the following events:
E(T) = {the graph of R(£(0, ¢,(—0,0])) is containedin R for0 < t < T'};
E,(T) = {the graph of L(£(0, T,[n,, ))) is contained in S, for0 < ¢ < T},

where n, is the largest integer less than or equal to 28T/5 for —1 < k& < N. Let

E/(T) = E(T) n F] Ek(T)).
k=-1

We will prove that

(44) {Sisopen} > E'(T).

Since the slope of the tube R is p and the slopes of the tubes S, are all equal
to A, Theorem 3 implies that P(E'(T)) —» 1 as T = oo, so Lemma 11 follows

from (44).
Assume that E’(T) occurs. To show that S is open, we start by defining

f,.(S) =R(£(O,S,(_O0,0])), 0<sx< T;
f,(s) = L(£(0, s,[ny, 0))) fors € [0, ¢] such that
E+1<5(p—A)s/8T <k + 2.

Since E’(T) occurs, the graph of f, is contained in S for 0 < s < T, and the
graph of f, is containedin S, if k + 1 < 5(p —A)s/8T <k +2,0<s < T, and
—1 < k < N. By computing where the edges of the tubes R and S cross the
edges of the tubes S,, the reader can check that it follows from this last
statement that

. (45) fi(s) <f(s) and
{x: f(s) =x<f(s)} x {s} cS forse[0,T].

(The strict inequality in (45) is easy to show when &k + 1 # 5(p — A)s/8T. It
then follows for £ + 1 = 5(p — A)s/8T by the right continuity of f, and f,.) By
(45), we can prove that S is open if we can find a nontrivial [0, T ]-path 7 such
that f,(s) < L(w(s)) and R(w(s)) < f(s) for all s € [0, T']. By Lemma 5(a) it is
enough to show that the following function satisfies (19)—(21):

N .
#(s) = [i(O,S,(—w,O]) U kU 5(0,8,['1»00)))] N [fi(s), £.(s)].
=-1

The proof of this fact is similar to the proof that the function # defined in the
proof of Lemma 13 satisfies (19)-(21). The important points are that each of the
functions £(0, s,(— ,0]) and £(0, s,[n,, 00)) satisfies’ (19)—(21) and that the
interval [ f,(s), f(s)] satisfies properties analogous to (40)—(42). (Special care
should be taken when s satisfies & + 1 = 5(p — A)s /8T, but there is no difficulty
here since in this case, f,(s7) is always less than f,(s), so that the appropriate
analogues to (40)—(42) will hold for such s as well.) The details are left to the
reader. O
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5. The inequality p > N\ and other results. As in the previous section, we
assume throughout that 8, and 8 are as in (37) or (38). For each ¢ > 0, Theorem
3 gives us asymptotic speeds p(e¢) and A(e) for R(£(0, t,(— o0,0])) and
L(£(0, t,[0, o0))), respectively. We will prove

(46) if ¢ < £and p() is finite, then p(e) > p() + (¢ — ¢).

By Theorem 3, p(e.) = A(e,.). Furthermore, it is known that A(e) is nonde-
creasing in & (see Durrett (1980) or carry out the analogue of our proof of (46) to
show that A(e) is strictly increasing in ¢). Thus, (46) implies that p(¢) > p(e.) >
A(g,.) = A(¢), completing the proof of Theorem 2.

The key to proving (46) is Theorem 4 below, which concerns the distribution of
£(0, t,(— 00,0]) as viewed from the site R(£(0, ¢, (— o0,0])). To state it, we need
some terminology. Let & and % be =-valued random variables. We will say that
&/ contains % in distribution if there exists a probability measure = on the

measurable subsets of = X = with first and second marginals equal to the
distributions of 7 and %, respectively, such that p((¢!, £2): ¢! D £2) = 1.

THEOREM 4. Ift> 0 and 0 < m < n, then
(£(0, t, (= 0,0]) + m) N(— oo, R(£(0, t,(—00,0]))] contains
(£(0, t, (= 0,0]) + n) N(—o0, R(£(0, t,(—00,0]))] in distribution.

We could paraphrase Theorem 4 by saying that for 0 < m < n, the part of
£(0,t,(— 00,0]) that lies to the left of R(&(0, t,(— 0,0])) — m is bigger in a
certain sense than the part that lies to the left of R(£(0, t,(—00,0])) — n. As a
special case (m = 0, n = 1) we have

£(0, ¢, (— 00,0]) contains (£(0, ¢, (— o0, 0]) \ {R(4(0, ¢,(— ,0]))}) + 1 in

- (47) distribution.

Before proving Theorem 4, we will show how (47) can be used to obtain (46):

PROOF OF (46) BASED ON (47). Fix € such that 0 < € < ¢, Let (&(s, ¢, A);
s < t, A € E) be the system with rates 8, and 8}, constructed graphically as in
Section 2. Let the underlying probability space (2, %, P) be enlarged so that we
can define a sequence T, 7,, 73,... of iid exponentially distributed random vari-
ables with mean 1/(e, — ¢) which are independent of the grahpical representa-
tion. Let o, =71, + 7+ -+ +7, for n>1 and let o,=0. We will define a
process (£/(t); t 2 0) inductively on the intervals [o,, 0, ;) for n > 0. Let £/(¢t) =
£(0, t,(— 0, 0)) for ¢t € [0, 0,). Having defined £/(¢) on [0, a,,), let

&l(t) = g(on, l, gl(or:) \ {R(g’(o,:))}), te [an’ °n+1)-

The process (£/(¢); t > 0) behaves just like a process with rates 8, and 67 and
initial state {x < 0}, except that at each of the times ¢,, an additional death
occurs at the rightmost site contained in (o, ). These extra deaths occur at rate
. — & Thus, we could say that the process (£/(¢); t < 0) has birth rates 8, and
death rates 8¢ except at R(¢’(¢)), where the death rate is 8¢, with x = R(£/(t)).
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If we let (§(s, t, A); s < t, A € E) be the process with rates 8, and 8, then a
standard argument using the basic coupling shows that ¢’(¢) contains
£'(0, t,(— 00,0]) in distribution for all ¢ > 0, since 87 > §:. It follows from this
and Theorem 3 that

(48) liminf R(¢(£))/¢ 2 p(.).

We will prove inductively using (47) that for all n > 0,
(49) £(0, 0,,(—0,0]) contains ¢’(0,) + n in distribution.

Once (49) is proved, we can complete the proof of (46) as follows. By the strong
law of large numbers, n/o, — €, — € a.s. as n — co. By (48),

li[minf R(¢(o,) + n)/o, 2 p(e,) + (e.—€) as.

— 0

By Theorem 3, R(£(0, 0,,,(— ,0]))/0, = p(¢) a:s. as n = 0. It follows from (49)
that p(e) > p(e,) + (g, — ¢€), which implies (46).

We now prove (49). To save space, let £(t) = £(0, ¢, (— o0, 0]). Since £/(0) = £(0),
the case n = 0 is trivial. Assume that (49) holds for some n > 0. By the inductive
hypothesis, there exists a measure p with marginals equal to the distributions of
£(o,) and £'(0,) + n such that p((¢%,£%): £€'0¢%)=1. Let & and % be
=-valued random variables which are jointly distributed according to p, so that
& is distributed like £(0,) and Z like £'(o,) + n. By enlarging the probability
space once more, we can assume that o/ and # are independent of the original
graphical representation and of the random variables 7, 7,, 75,... . Let

nn+l =£(on’an+1"%) and nln+l =£(on’on+1"@)'

Since & is distributed like £(0,), it follows from (5) that 7, , , is distributed like
£(0,.,) = £0,0,,,,(—00,0]). Since g,,, is independent of the graphical repre-
sentation, it follows from (47) that £(o, . ,) contains (£(o,. ;)\ {R(¢é(0,. )} + 1
in distribution. Therefore, 7, , contains (n,,,; \ {R(n,.,)}) + 1 in distribution.
Since &> # as., it follows from (6) that 7,,, O 7)., as., so 7,.,; contains
(M, 41\ {R(7,+1)}) + 1 in distribution. Since 7,,,, is distributed like £(o,, ,), in
order to prove (49), it is enough to show that (v, ., \ {R(7,.1)}) + 1 is distrib-
uted like ¢’(0,,,) + n + 1. By the Markov property and the fact that ¢, and
o,,, are independent of the graphical representation, 7/, is distributed like
&(o,,0,., £'(6,) + n), which is distributed like £(o,, 0, ., £’(0,)) + n by transla-
tion invariance. By definition, £(o,,0,,,, §'(0,)) \ {R(£(0,,0,,,, §'(0,)))} =
£(0,,,). It follows that (7, ,\ {R(%,.,)}) + 1 is distributed like £¢(0,,,) +
n+1.0

It remains to prove Theorem 4. The argument will rely on the existence of
certain special dominating [s, ¢]-paths:

LEMMA 14. Let m; be an [s, t}-path to B; out of A for i = 1,2. Assume that
L(B,) < L(B,). Then there exists an [s, t]-path = to B, out of A such that
m(u) C m(u) U m(u) and L(w(u)) = max{L(w(u)), L(my(u))} for all u € [s, t].
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Proor. This is proved in the same way as Lemma 13, namely, one shows
that

#(u) = (m(u) Um(u)) N [L('”l(u))’oo) N [L('”z(u))’w)
satisfies (19)—(21). The details are omitted. O

We have a particular case of Lemma 14 in mind. Take s = 0, A = {x < 0},
and B = {R(£(0, ¢, A)}. Since B C £(0, t, A), Theorem 1 implies the existence of
at least one [0, t]-path to B out of A. By Lemma 8, there are at most finitely
many. If we apply Lemma 14 to all possible pairs of such paths, with B, = B, = B,
then it follows that there exists a [0, £]-path 7 to B out of A such that if =’ is
any other [0, t]-path to B out of A, then L(w(u)) > L(7’(w)) for all u € [0, £].
While the path 7 is not necessarily unique, the function L(7) clearly is uniquely
determined by ¢ and w, so we can define

Li(u) = L(7(u)) foru € [0, t].

The importance of the random function L! is that it behaves like a kind of a
stopping time in space-time. In order to explain this, we need some notation. If S
is a Borel subset of Z X R, define

V (o{B(x,k) nS}Ve{D(x,1) n S}).
x,k,1

This is the o-algebra generated by the birth and death points that lie in S. One of
the implications of (19)-(21) in Lemma 9 is that one can check whether a
function 7 is an [s, t]-path by looking at the birth and death points that lie in
the graph of #. Therefore, for any s < ¢,

(50) {S contains the graph of a nontrivial [ s, ¢]-path} € .

We have already used a version of this fact implicitly when we stated in Section 4
that the events {c(m, n) is open} and {c¢(m’, n’) is open} are independent if
c¢(m, n) and c(m’, n’) are not neighbors. We also used the fact that

(51) %s and Zg. are independent,

which follows from the independence properties of the Poisson point locations
that make up the graphical representation.
Let f: [0,¢t] = Z be a right continuous function with left limits and define

F = F
f {(x,s):s.€[0,t]and x = f(s)}"*
It follows from (50) and the definition of L’ that
(52) (L'2f} es.

This is the property that makes L analogous to a stopping time. (It, together
with (51) allows us to use L’ in much the same way that the rightmost path is
used in percolation theory. See Kesten (1982), Lemma 6.1, Step (b).) If we define
the “stopped o-algebra

{Jz{ EF: AN {L‘ > [} €% forall right continuous
f: [0, t] - Z with left limits}
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then it can be shown, just as with stopping times, that (52) implies
(53) L' is & “measurable.

The analogy between L’ and stopping times goes further, in that there is a
property similar to the strong Markov property. Heuristically speaking, given L’,
the part of the graphical representation which lies to the left of the graph of L’ is
independent of the part that lies to the right. To state this property more
precisely, let T = (B(x, k), D(x, 1)), 1, be the original graphical representation
and assume that I'" = (B'(x, k), D'(x, 1)), , , is a second graphical represen-
tation which is independent of and distributed identically to I'. Use I' to
determine the function L! as usual, and then define a “hybrid” graphical
representation which we call T' mod I'’ (I’ modified by I'’) as follows: Use I' to
determine the locations of all transition points at points (x, s) such that s € [0, ¢]
and x < LYs), and use T to determine the transition points in the rest of
space—time. In other words, start with I', remove those transition points that lie
to the left of the graph of L, and then fill the vacant area with transition points
from the corresponding part of I'”. Note that in this new graphical represen-
tation, the function L! remains unchanged since we have only changed transition
points that do not affect L‘. We claim that

(54) I and I’ mod I'” have the same distribution.

Unfortunately, the proof of (54) is tedious and highly technical. It relies on
(51) and (53), but matters are made difficult by the fact that the event {L* = f}
has probability 0 for all f. We will merely give a very brief sketch of one
approach. The idea is to use a discrete time approximation to the graphical
representation. The space-time graph is Z X {k/n: k € Z}, where we eventually
let n go to co. Independent choices are made at each point (x, k/n) to determine
the locations of transition points, with the probabilities appropriately scaled
according to the value of n. The process is defined using analogues to (11) and
(12). A problem arises because simultaneous births and deaths occur. This is a
nuisance, since Lemma 14 fails in general if we allow births or deaths to occur
simultaneously at the neighboring sites. One way around this is to first determine
births and deaths at even sites, then use the resulting state to determine births
and deaths at odd sites during each time unit. Once all this is carried out, the
discrete time analogue to (54) can be proved and limits can be taken as n — 0.

We are now ready for:

PrOOF OF THEOREM 4. Fix £> 0 and let T, I'’, and I' mod I'” be as above.
Fix m and n with 0 < m < n. We define yet another graphical representation
I'”” = (B”(x, k), D"(x, 1)) by shifting I’ n — m units to the right. Thus, for
example, (x, u) € B"(x, k)) iff (x — n + m,u) € B(x — n + m, k). By transla-
tion invariance and (54), the two graphical representations I'mod I’ and
I mod I'”” are identically distributed. Let £(s, ¢, A), £'(s, t, A), and £'(s, t, A) be
defined in terms of the graphical representations I', T mod I'", and T'mod I'”” as
in Section 2 for s < t and A € E. Now fix ¢ > 0 and let

¢ =¢(0,¢[0,00)) and &7 =¢7(0,¢,[0,0)).
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By (54), ¢’ and £’ are distributed like £(0, £,[0, c0)). Therefore, to prove Theo-
rem 4, it suffices to show that

(¢ + m) N (—o0, R(¢”)] contains (£ + n) N (—o0, R(¢’)] in distribution.
We have set things up so that we can actually prove the stronger statement
(55) (¢ +m) N (—c0,R(£”)] D (¢ +n)N (-0, R(¢)].

Choose x € (¢’ + n) N (— o0, R(£7)]. By Theorem 1, there is a [0, t]-path =’
to x — n out of (— 00, 0] in the graphical representation I' mod I'’. Let

#(u) =n(u) + n—m forue [0,t].

By the definition of L’ (which by construction is the same for I', I'mod I'’, and
I'mod I'”’), there is a [0, t]-path 7 to {L!(t)} out of (— c0,0] such that L{u) =
L(7(u)) for all u € [0, t]. (Note that = is a [0, ¢]-path in all three graphical
representations.) Let

7(u) = (#(u) N(-oo, LY(u)]) Um(u) forue [0,¢t].

We claim that #” satisfies (19)-(21) in the graphical representation I'mod I'”".
Note that since x < R(¢’) = LY(t) and since #(t) = #'(t) + n — m = {x — m}, it
must be that x — m € #”(t). Thus (55) follows from the claim and Lemma 5(a).

The proof of the claim is similar to the proofs of Lemmas 13 and 14. It relies
on the fact that 7 satisfies (19)—(21) in all three graphical representations and
that =’ satisfies (19)—(21) in I'mod I'’ (from which it follows that # and ="
satisfy (19)—(21) in I'mod I'”’, at least at space-time points that lie to the
left of the graph of L!—some special checking is needed at points of the form
(L(u) — 1, u)). We omit the details. O

We conclude the paper with one last result which follows relatively easily from
the work done up to this point. It gives two alternative ways of characterizing
the critical value ¢, A similar result was obtained for the contact process by
Durrett and Griffeath.

THEOREM 5. Let B, and 8; be as in (38). Then
5y~ P MO <0(0)

56
) = sup{e: P(¢(0, ¢, A) is nonempty for all t > 0) > 0 for some finite A} .

Proor. If e <e, then A(e) < p(e) by (46) and the argument that follows
(46). On the other hand, if A(¢) < p(e), then Lemmas 10-12 apply, from which it
is not hard to show that a (— o0, 0]-path to {0} exists with positive probability. It
follows from (31) that p, # p,, so € < &, proving the first equality in (56).

To prove the second equality in (56), assume first that A(e) < p(e). Then as
before, Lemmas 10-12 apply, from which it can be easily shown that for some N,
there exists with positive probability a [0, c0)-path 7 such that #(0) C [- N, N]
and 7(t) is nonempty for all ¢ > 0. It follows from (15) that

(57) P(£(0,t,[ — N, N]) is nonempty for all ¢ > 0) > 0.



396 L. GRAY

On the other hand, if ¢ is chosen so that
P(£(0,t, A) is nonempty for all ¢ > 0) > 0

for some finite A, then (57) holds for some N by (6). For all w such that the event
in (57) occurs,

A(e)

lim L(£(0, £,[~ N, 0)))/¢ < lim L((0, ¢, [~ N, N1)/t

lim R(£(0, ¢t,[ - N, N1))/t < lim R(£(0, ¢,(— o0, N])) /¢

A

= p(e).

Since — oo < A(g) and p(e) < oo for all ¢, it follows that A(e) and p(¢) are finite,
with A(e) < p(e). Now apply (46) and the fact that A(¢) is nondecreasing in ¢ to
obtain the second equality in (56). O
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