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The elements of an arbitrary max-stable sequence are exhibited as
functionals of a 2-dimensional Poisson point process. The result is extended

to a continuous time max-stable process that is continuous in probability. We
define an analogue of a stochastic integral appropriate for this context.

Introduction. A well known and useful tool in studying stationary Gaussian
processes is the spectral representation. It clarifies the structure of the process
and makes prediction possible. A similar spectral representation is known for
symmetric stable processes, i.e. processes for which each finite-dimensional
marginal distribution is symmetric stable (Kuelbs 1973, page 269). Both repre-
sentations are stochastic integrals with respect to an independent increment
stable process. The proof of the representation uses the theory of L,-spaces
O<a=2).

Now an independent increment symmetric stable process with all marginals
of the same type is, at least for 0 < a < 1, equivalent to the (Poisson) point
process of its jumps. Hence the above mentioned integrals can also be considered
as weighted sums of these jumps. This interpretation of the spectral representa-
tion of symmetric stable processes indicates the possibility of obtaining an
analogous spectral representation for max-stable processes which we consider
now.

DEFINITION. A stochastic process {Y}.cr is called a max-stable process if the
following property holds:

If {Yﬁi)}ter, i=1,2,--.,r, are independent copies of the process then the process
{max,<, Y{"},cr has the same distribution as {rY®"},er.

A consequence of the definition is that all one-dimensional marginal distri-
bution functions are of the form exp(—c(t)/x), x > 0 (for some c(t) = 0), i.e. they
are of type ®; which is one of the extreme-value distributions. All n-dimensional
marginal distribution functions of the process satisfy: for 0 < t;, <t < --- <,
€ Twitht:= (t;, tp, ---, t,) and x;,20,i=1,2, ---, n,

(1) PY, =xy, -+, Yy, S x,} =0 Fy(xy, -+, %) = Fi(ra, - -+, rx,)
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MAX-STABLE PROCESSES 1195

from which it follows (de Haan and Resnick, 1977)

Fy(xy, -+, %) = exp(— J; (maxlsisn %)U;(dal, dan))

with U, some finite measure on
Q= {((11, -.-,an)|ai20,i= 1,2, ---, n, er.;lal?___ 1}.

Max-stable processes can be obtained as weak limits as follows. Let {Q.(t)}:er
be independent copies of some stochastic process on T and define ,(t) :=
max,<,Qr(t) for t € T. If for some sequence {C,} of positive constants
{CilWn(t)}er converges weakly to a stochastic process {Y.}.r, then for some
a > 0 the process {Y?},er is a max-stable process according to our definition.

ExXAMPLE. Consider a Poisson point process on R, X [0, 1] with intensity
measure (dx/x%)dt. With probability one there are denumerably many points in
the point process. Let { X, Ti}%-1be an enumeration of the points in the process.

Consider now a family of nonnegative functions {f;(x)}.cr defined on [0, 1].
Suppose for fixed ¢t € T the function f,(-) is measurable and

1
f fe(x) dx < oo,
0

We claim that the family of random variables (t € T')
Y, := supe=1f(Th) - Xi

form a max-stable process.
Clearly it is sufficient to show that foranyn=1,2, --- and 0 < t; <t < - --
< t, € T the joint distribution function of (Y., - -, Y, ) satisfies (1). Now

Pr{Y:,S"yh R} Yt,,sryn}
=Pr{ft,~(Tk) : stryiyi=1, "',n;k=172, }

- T. in-. —yi = oo
P <|le < r min;<, 7T fork=1, 2, }

= P{there are no points of the point process above the graph of the
function g: [0, 1] — R, defined by g(s) := r min;<,y/f.(s)}

e[ [ o))
- lexP —>£ -[>rminisnyi//z,-(s) x? as I
_ {exp(- J; (r‘lmaxiSn f-‘%) ds)}r = exp<—- J; (max,sn %?) ds)

=PY, Sy, Y, < ¥}

Our aim is to give a spectral representation for max-stable processes. It will
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be shown that basically any max-stable process can be obtained as in the example
above.

The outline of the paper is as follows. We consider a max-stable sequence, i.e.
a max-stable process with T' = N, and we identify the distribution of this max-
stable sequence with a finite measure on the set {(x;, x2, --:)|x; = O,
i=1,2, ...} in a similar way as it has been done in de Haan and Resnick (1977)
for the case when the index set T' is finite (Section 1). Next we prove a
representation theorem for max-stable sequences (Section 2), which is subse-
quently extended to max-stable processes with T'= R (Section 3). The represen-
tation involves a certain functional of a point process that can be considered as
the analogue in the present setting of a stochastic integral. Finally an example
is considered.

1. Identification of max-stable sequences. Suppose Y;, Y,, --- is a
max-stable sequence. Here, as in the next section, I try to follow the line of
Kuelbs’ paper (1973). However the proof is quite different.

THEOREM 1. There exists a finite measure U on the set S = R, X R, X ---
with its Borel sets such that forn=1,2, -.- and y;>0,i=1, ---,n

P{Yl = Y1, * Yn = yn} = exp<_L (maxisn :_")U(d.X)>.

PROOF. From (1) it follows that for any y, - - -, y, as above
PHY1 < ky,, -+, Yo < ky,}
does not depend on k. Hence
—log P{Y1 <y, -+, Yo < ¥} = limpo — k log P{Y: < ky,, ---, Y, < ky,}
= limp_kP{(Y: < ky1, - -+, Y. < ky,)}.

The superscript ¢ indicates the complement of the set.

Since the right-hand side is the distribution function of a measure for all &,
the limit must be a distribution function too. Hence for n = 1, 2, ... and
inO,i= ]_’ e, n

P{Yl = Yiy 00y Yn = yn} = exP(_V{([O’ yI] X ..o X [Oy yn])c})
where v is a measure on R, X R, X ... (with its Borel sets) such that for &> 0,
n=12 ...andy;>0,i=1,---,n
”{([Oi y1] X ..o X [Oy yn])c} <o
and (by max-stability)
(*) kV{k([Of yl] X ..o X [O’ yn])c} = V{([()’ y1] X ..o X [09 yn])c}'

It follows that k - v(kB) = »(B) for k > 0 and any Borel set B C R, X R, X
---. We wish to give a representation for ». First recall that P{Y; < yj
= exp(—c?/y;) for y; > 0, where c; is some finite constant (i = 1, 2, --.). Since
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EYY*<owfori=1,2, ---, there are positive numbers a; (i =1, 2, - - -) such that
E supiz10;Y}’ < E Tizm ;Y1 <,
hence
v{(x1, %2, - - ) | SUPiz1a}x; = o} = —log P{supiz1afY; < 0} = 0.
Using the transformation L

— 2
W = SUP;=1 A;i X;

2 = x/w if w>0
k 0 if w=0

(k=1,2, ---) mapping S into [0, ©] X S, we get forc>0,n=1,2, ---, up>0,
u=200=1,2,.--,n).

c - v{(xy, X, ++) |wW>cuo, 21 S Uy, ¢ -y 20 S Un)
= vf(c™ 21, ¢y - --) WS> CUo, 21 S Uy, -0 0y 20 S Un)
= vf(x1, X, -+) | W> Up, 21 S Uy, -0,y 20 S Un}

< v{(x1, X2, -+ ) | SUP=187%; > U} = —log P{supi=1a?Y: < u} < oo.
With uo = 1 this gives (with z; := 0 for all i if w = »)
v{(x1, X, ) WS> €21 S UL+ 0y 20 S Uy}
=ct.pf(xy, %o, ) WS L zi S U, -0y 20 S Un)

i.e. the transformed measure p := »L*" is a product measure u = u; X up on [0, ]
X8.Forn=1,2,...,y:>0,i=1,2, ---, nthis gives with

Sl = {(w’ 21, 22, "')lwzisyh i= 19 2, M) n}
= {(w, 21, 22, -+ -) | w < min;<, y:/z}
that
P{Ylsyl’ %y YnSyn}

d d
exp(_ S§ El;—) ﬂ2(dg)) = exp(_J; <‘[’>minisn(ys/2.') w_u;)l-%(dZ))
2
exp<— f (maX.'Sn —)uz(dz)>
S yi

where pu, is a finite measure on S. Hence the represenfation of the theorem is
true with U = p,. Note that u, is concentrated on the “rectangle” {(2i, 25, ---) €
S | supi=1a?z; = 1}.

REMARK. Note that conversely any finite measure U on S with [ x;U(dx) <
o fori=1,2, --- corresponds to a probability measure P on S (via the identity
in the statement of the theorem) for which P’{rB} = P{B} for r > 0 and every
Borel set BC S.
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ExXAMPLE. If U is concentrated on the set
Ry X {0} X {0} X --- U0} X R X {0} X --- U .-,

then Y;, Y;, - - - are independent. If U is concentrated on the set x; = x; = x3 =
..,then Y1=Y,=Y3= ... as.

2. Spectral representation of a max-stable sequence. In order to get
a spectral representation for a max-stable sequence Yi, Y,, - -- we again follow
the line of Kuelbs’ paper.

THEOREM 2. There exists a finite measure p on [0, 1] such that, if (X, T%) is
an enumeration of points in the Poisson process on R, X [0, 1] with intensity
measure (dx/x?) X p(dt), then the random variables

Z, = max{f.(T:) - Xi| (X, T:) € the point process}

n=1,2, ... with suitable L,-functions f, = 0, have the same finite dimensional
distributions as the {Y,}.

PROOF. First remark that it is sufficient to prove the result for those max-
stable sequences for which the measure U from Theorem 1 is a probability
measure: this only involves multiplying the entire process by a constant. So in
the rest of the proof we shall assume that U(S) = 1. Let D = {d;, ds, - - -} be the
set of atoms of U. Since U has no atoms in S\ D, there exists a U-null set S, C
S\D, a Lebesgue-null set N, C [¥i; U(d), 1] and a map L: [¥i2; U(dy), 11\No —
S\(D U S,) which is one-to-one and such that (Royden, 1963, Chapter 15)

(1) both L and its inverse L take Borel sets into Borel sets (this is called
Borel equivalence) and

(2) UL(B) = \(B) for every Borel set B C [Y % U(d:), 1]\N, with A Lebesgue
measure.

We extend L to a function on the whole of [0, 1]\ N, by defining
L(s) = dp if s€[TE Ud), T Ud)] (k=1,2,--.).

Now L, as a set function, is a one-to-one mapping of Ay, the o-field generated by
(36 Ud)), T U(d))]}e-1 and the Borel sets of [Yi; U(d;), 1]\ N, to the family
of Borel sets of S\S,. It is clear that the measure p := UL is just the Lebesgue-
measure restricted to Ao. Write L(s) = (f1(s), fo(s), -+ -) € S for 0 = s = 1. Define
the point process {(Xi, T%)}i-1 as in the theorem with p = UL. We now check
that the {Z,} have the same finite-dimensional distributions as the {Y,}. For n =
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1,2,"',3’:'20,1::1,2,“',"
P{leyh""znsyn}
=P{f(T) - Xp=y,i=1,---n;k=1,2, ...}

= P{Xk < min;<, ﬁ(Tk) fork=1,2, .. }

= P{there are no points in the point process above the graph of
min;<,y./f:(s)}

= exp( f max;<, — f i(s ) (ds)) = exp( f max,s,.——: . U(di))

l

in accordance with Theorem 1.
3. Representation of a continuous time max-stable process.

THEOREM 3. Let {Y(t)}:ier be a max-stable process. If {Y(t)} is continuous in
probability, there exists a finite measure p on [0, 1] such that, if (X., T:) is an
enumeration of the points in the Poisson process on Ry X [0, 1] with intensity
measure (dx/x%) X p(ds), then the random variables

Z; = maxpz1fi(Th) - Xp
with suitable L;-functions f; = 0, have the same finite-dimensional distributions as
the {Y(t)}.

PROOF. Apply the previous theorem to {Y(r,)}.ew where {r,} is an enumera-
tion of the rationals. The result then follows from Lemma 2 below.

For convenience we introduce some notation that is suggestive of the analogy
to the stochastic integral (cf. the second remark after Lemma 2 below).

DEFINITION. Let {(X;, T%)}5-1 be an enumeration of the points of the Poisson
point process P = P, on R, X [0, 1] with intensity measure (dx/x%) X p(dt) where
p is finite and let the nonnegative function f on [0, 1] be in L;(p). We write

VM
J; f(t)P(dt) := maxe=1f(Tk) - X
= max{f(T:) - X | (X, T:) € the point process}.

Since f € L, V[§ f is finite a.s. (see the proof of Theorem 2). For a Borel set
A C [0, 1] one has

\% \ 1
f f(OP(dt) = f f(®) xa(®)P(dt)
A 0

= max{f(Tr) Xy| (X, T:) € the point process and T, € A}.
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Some simple properties are the following:

1. Vfaf=a."[ ffora>0.

2. f<gae A="'[,f<'[fsgas.

3. max(Vf f, V[ g) = V[ max(f, g) a.s.

4. dv=gdu(g=0)="[fdP,="{ fg dP, a.s. with an obvious interpretation.
5. ANB=@="[,fand V(5 g are independent and V[, 5 f =

max(“[4f, V[af) as.
6. V[ fand V[ g are independent < fg =0 p — a.e. (cf. Schilder, 1970).

f=8 ae fo=vfg as.

PrOOF. Define A := {t| f(t) > g(t)}. Now

(S T L Ll £
- Iv£f>max<vL¢f, Vng, ng>}
Lo )
~{ Lrml [0 [L0)- [ o

by 2, 3 and the definition of A.
So by 5 (remark that P{Y [ f < x} = exp(—(1/x) I8 f(t)p(dt)) for x > 0)

P{vff>vfg}f=lwexp<—-lej;cgdp>dexp<—-31;‘£fdp>
) - Jafdp
" fafdo+ facgdp

v \
P{ff> fg]f>0 if and only if p(A4) > 0.

LEMMA 2. f, converges in L, < [ f, converges in probability. Moreover

v v
lim, e f fn= f lim, .

LEMMA 1.

and hence
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PROOF. Suppose lim,_.»f, = f in L,. Define A := {t| f(t) = 0}. By looking at
Xafn» and x a¢f, it is clear that it is sufficient to consider the cases f = 0 (which is
trivial) and f > 0. In the latter case V[ f > 0 a.s. and (from (#))

v v
1 — Jt>taeo fn dp
P{ ffn > ff(l + e)J' = Toastfo 0T ) 3

and this tends to zero as n — o since

f fndp — f fdp
fn>f(1+e) fa>f(1+e)

n n

slfa=fli—0

and

f fdpsf fdp58"1~f|fn-f|dp—>0 (n — o).
(A n=fI>fe

n

Similarly P{V[ f. < V[ f(1 — ¢)} > 0 (n — ). It now follows from 1 that
log V[ f. converges in probability to log V[ f and hence V[ f, converges in
probability to V[ f.

Next suppose Y[ f, converges in probability. The sequence then converges
in distribution, hence [ f, dp converges to a finite value ¢ (n — ). It follows
P{lim,_... V[ f, =0} = 0 or 1. We only consider the case P{lim, .. V[ f, = 0} =0,
the other case being obvious. It follows that log V[ f, converges in probability.
Observe that

v v ' Jt>ta+e) fn dp
0= hm,,,,,,_,mP{ ff,, > ffm(l + e)}’ = lim, ;s T max(fu, full + 0)) dp”

Since the denominator is bounded,
limy, s fndp = 0.
frn>fm(1+e)
Similarly

limy, s fm dp = 0.
(A=e)fm>fn

Now
[ it o

<[ stder [ vmder [ f=fulde
fa>fm(1+e) A=) n>fn 1fa—i mlszfm

n~Im

Since the limit (n, m — ®) of the latter term is O(e) (¢ | 0), {f.} is a Cauchy
sequence in L;.
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REMARK. Note that we did not and could not use the linear structure of L.

REMARK. It can be proved that

v v
lim inf, .. f fnz f lim inf, ..f, a.s.;

f» — f monotonically a.e. = V[ f, = V[ f < ® monotonically a.s.;
\ v
f.fae. and f, = g € L, = lim sup,_.» f fon= f lim sup,—. f» a.s.

EXAMPLE. Take p Lebesgue measure and for ¢t > 0
_J1 if s=st
fls) = {0 if s>t
Then {¥[ fi}i>o is a so-called extremal process (Dwass, Lamperti 1964).

EXTENSION. Note that it is easy to extend the above results to cover processes
for which the marginal distributions are one of the other extreme-value distri-
butions: The processes {Y*}cr, {log Y(t)}er and {—Y;Y*},er with {Y}.er the
max-stable process treated above are “max-stable” processes (with an adapted
definition) based on ®,, A and ¥,, respectively. Their properties are easily
derived from the properties of {Y.er. Also one can introduce “min-stable”
processes: a stochastic process is called a min-stable process if the following
property holds:

If {Yier, i = 1, 2, --., r, are independent copies then the process
{minj; Y{?},er has the same distribution as {r=' Y{},cr. Obviously, if {Z}.r is
any max-stable process from the previous paragraph, then {—Z},cr is a min-
stable processes. From this connection the properties of min-stable processes are
derived easily.

4. Example. One is tempted to consider the analogue of the stochastic
integral, introduced above, as a functional of the extremal process rather than of
the point process, in the same way as for the stochastic integral itself. I shall
now show that this is not possible, the difference being that in the extremal case
much information from the sample is lost in the limiting procedure.

Consider the following model: Let Xy, Xi1, Xio, --- be iid. ®; and take
Y, := maxi=oe "X, forn=0,+1,+2, .... Thenfork=1,2, ---

1 Y, = max(e *Y,—, e * VX0 ts1, -, Xp)

where the random variables at the right-hand side are independent. So the
probability that Y, = e*Y,_, (i.e. the process has no jump between the epochs
n — k and n) given Y, is

exp(—(1/Y,-w)e + e + ... + ef}).
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We are going to give a continuous time analogue of the sequence {Y,}, similar
to the Ornstein-Uhlenbeck process in the partial sum set-up. Consider the
sequence of processes {Y,(t)}~o given by (compare with (1) for & = n)

(2 Ya(t) == e"'max(Yo, maxi<ssnn~'e""X;)
with Y, € &, independent of the Xy’s. Now the probability that Y, = e™*Y, (no
jump) given Y, is

exp(— (1/Yo){ZhA n~'e*")) .

Since the sequence of point processes (X/n, k/n), converges (n — ) to a Poisson
point process on R, X R, with intensity measure (dx/x?) X dt (see e.g. Adler,
1978), we get by the invariance principle that the sequence of processes {Y,.(t)}:o0
converges (n — ®) to (with A Lebesgue measure)

VvV ot
3) Y(@¢) = e“max(Yo, J; e“Px(du))

and the probability of no jump before time ¢ given Y, is exp(—(1/Yo) [6 e* du).
The process Y(t) of course is Markov and stationary; it decreases in an exponen-
tial way except for jumps. The representation (3) for the process { Y(t)} is actually
too fancy since by 4 of Section 3 (with »[0, u] =e* —1)

v t v t
{max(Yo, j; e“Px(du))} =y {max(Yo, J; P,,(du))} =4 {M(e")}:=0

t=0
where {M(t)}:=o is an extremal process based on ®,. So
{Y(®)}ezo =a {e™"M(e)}s20.

This is also an easy way to extend {Y}} to a process with t € R.
As a byproduct we get the

t=0

PROPOSITION.
{maXOsssze _SM(es) ’t>0 =d {M(t)}»o-

PROOF. From (2) we get
MaXos,=: Yn(S) = MaXos,<Maxi<i<ne *max(Y,, n7'e*"X,).
= MAaX<nMaXj/nss<te “max(Yo, n'e*"X,)
= maxe<n:(e"*"Y,, n71X,) = max(e~V"Y,, maxy<,.n"X).
Taking n — o we get the result.

It is now clear that it is not possible to exhibit {Y(¢)} as a functional of {M(t)}
using some invariance principle as above since the jump structure is different
and can be compared only using a time transformation.
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