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BAD RATES OF CONVERGENCE FOR THE CENTRAL LIMIT
THEOREM IN HILBERT SPACE

By WANS00 RHEE AND MICHEL TALAGRAND

Ohio State University and Université Paris VI

We show that one can smoothly renorm the Hilbert space H such that
the rate of convergence in the central limit theorem becomes very bad. More
precisely, let us fix a sequence £, — 0 and ¢ > 0. We can then construct a
norm N(-) on the Hilbert space, and a bounded random variable X on H with
the following properties:

(a) The norm N(-) is (1 + ¢) equivalent to the usual norm. It is infinitely
many times differentiable, and each differential is bounded on the unit sphere.

(b) If (X;) denotes independent copies of X, and if vy is the Gaussian
measure with the same covariance as X, then the inequality

Supeso| P{N(n™2 Ty Xi) < t} — v{x; N(x) = t}| = &

occurs for infinitely many n.

1. Introduction. Let X be a random variable (r.v.) valued in a Banach
space E. Assume X has a second moment, EX = 0 and that there is a Gaussian
measure vy on E with the same covariance as X i.e.,

E(x*(X)y*(X)) = [g x*(x)y*(x) dy(x) for x* y* € E*.

Let (X;) be a sequence of independent r.v. distributed as X. A way to estimate
the rate of convergence in the central limit theorem is by the quantity

A, = Supeso| P{In™* Xy Xill = t} = vix; I xll = t}].

It has been shown by Kuelbs and Kurtz [2] that if the norm of E is three
times differentiable with a third differential bounded on the unit sphere, if X has
moments of order 7/2 and if moreover the following condition holds,

*) Voss<tylx;s<|x| st} =C(t—s)

for a constant C, then A, = O(n~V%). V. Paulauskas [3] reduced the moment
assumption to moments of order 3.

In Hilbert space, condition (*) is always satisfied for the usual norm [2]. If
moreover X has moments of order 6, then A, = O(n™/?) [1].

The estimate (A,) depends on the precise choice of the norm. It will in
particular follow from the result presented here that a small change of norm can
dramatically change A,. We shall prove the following:

'THEOREM A. Lete> 0 and a sequence £, — 0. Then there is a norm N(-) on
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844 RHEE AND TALAGRAND

the standard Hilbert space H and a bounded r.v. X such that the following hold.
(@ Vx€H, (1—-¢)|xll=N(x)=<|=x|
(b) N(-) is infinitely many times differentiable, and each of its differentials is
bounded on the unit sphere.
(¢) For infinitely many values of n, we have

A} = Supimo| PIN(R™Y2 Sy Xi) < t} = vix; N(x) < ]| = £,

In particular Kuelbs and Kurtz’ result implies that the norm N(-) fails condition
(*). So a norm can fail condition (*) even when the Banach space E is very
smooth (isomorphic to H) and the norm is very smooth. Weaker examples for
which condition (*) fails were previously obtained by the authors [4] (on the
space /° with p € N, p = 2 and a norm p times differentiable) and Paulauskas
(on ¢, with the sup norm).

Moreover, even if X is bounded, if E is very regular and if the norm is very
smooth, no rate of convergence can be given for A, without further assumptions
of the type (*).

2. Methods. The construction will use finite-dimensional blocks which we
shall patch together. So we start with elementary observations. Let #2 denote
the n-dimensional Hilbert space. Let (e;);=» be the canonical basis of #2. So for
x € /2 we have x = <, x;e;. Let v, be the canonical Gaussian measure on /2,
i.e. the measure such that the distribution of the functionals x — x; are standard
normal and independent.

OBSERVATION 1. The variables x? are equidistributed. Their expectation is
one. The one dimensional central limit theorem asserts that for n large, the
distribution of | x||2 = Y x? is approximately N(n, v3n), (since the variance of
x? is 3). In particular, v,{|| x | < vn} > % for n large. Moreover, the distribution
of n7" | x | becomes very concentrated around 1.

OBSERVATION 2. Let Y, be a r.v. valued in /2, such that fori € {1, -- -, n}
and j € {—1, 1} it takes the value jn'/%e; with probability Yzn. Let (Y, ;) be an
independent sequence distributed like Y,. Then for ¢ < n, with probability

;1 =i/n)=@1—-gq/n)?therv. S,,=q 2 3L, Y, takes values of the
type Yicra.e;, where card I = g and | a; | = n*/2qg™/% So, with the same probability,
we have || S, .|| = n'/2 It follows that for any given g, we have

limp P S| = n/%) = 1.

For two integers m, n, we identify #2,,, with the spaces /2, X /2 and /2, ® /2.
3. An auxiliary norm. We shall use an auxiliary norm on /% = Z3(N).

PROPOSITION. Let ¢ > 0. Then there is a norm N° on /% which has the
following properties

(3.1) Vxess (1-olxl =N =«
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(3.2) N°is infinitely many times differentiable, and each of its derivatives is
bounded on the unit sphere.

(3.3) If there exists no such that Y .., x2 < ¢/10 x2 then N°(x) = |x,,]|.
Moreover, if x and y have disjoint support, N°(x + y) = N°x).

PrOOF. We fix a function f: R — R with the following properties:
(3.4) fis infinitely many times differentiable and ¢t = f(t?) is convex.
(3.5) Vi, |t] <e/10,f(t) = 0; Vi, [t = e=f(t) =1t
(3.6) VEERY, t—e=<f(t) st

The existence of such a function is elementary. We can assume ¢ < Y100. For x
= (x,) € /2, define A(x) in the following way:

First case. There is ny such that the following condition is satisfied:
P(no): x2,> 10 Y nwn, %5
We set A(x) = x5, + f((Znwn, x2)).
Second case. The first case does not occur. We set
Ax) = [|x|* = Zn 27
It follows from (3.6) that
(8.7 VxEZ |x||?—e<A(x)<|x|>2
~ Weset
N%x)=Inf{A>0; A(x/\) <1}.

Let us show that N° is a norm. It is obvious that N° is homogeneous.
It is enough to show that if y(1), y(2) € /% with A(y(1)), A(y(2)) = 1,
then A((y(1) + ¥(2))/2) = 1. We have

A(y(D) + y(2)/2) = [(x(1) + ¥(2))/2]2
= %(ly) 2+ [y@ 1% = I (y(1) = y(2)/2]2

From (3.7) it follows that it is enough to check the case |y(1)[? = 1 — ¢,
ly@)12=1—¢, | (y(1) — ¥(2))/2|? < . We distinguish 3 cases.

(3.8)

CaSE 1. y(1) and y(2) fail P(n) for each n.
Obvious, since A(y(i)) = || y(i) [|*for i =1, 2.

CASE 2. One of y(1), ¥(2) (say y(1)) satisfies P(n,), the other fails P(n) for

each n.
We have Y ,..n, ¥2(2) = ¢, for otherwise, since y(2) fails P(no), we would have
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¥(2)]12 < 11e < 1 — ¢, a contradiction. So we have in fact
A©2) = y@)* = y2,(2) + f(Znwn, Y2 (2))

and then the result follows from the convexity of t — f(t2).

CaSE 3. Both y(1), y(2) satisfy a condition of the type P(n).
But it is then clear that y(1), ¥(2) satisfy a condition P(n) for the same n, and
the result follows as above.

We now check conditions (3.1) to (3.3).

1st step. We first check that A is infinitely differentiable on the set U, U =
{x € 7% | x| = %}. This is done by checking that the definitions on f on the
various parts of U patch smoothly. Let x € U. For the convenience of notations,
assume that | x| = |x2| = ---.

If x2> 10 Y ,>1 x2, then condition P(1) is still true in a neighborhood of x.
In this nelghborhood Alx) =x2 + f (Zn>1 x2) is 1nﬁnitely differentiable. If
22=10 Y ,>1 2%, then [ x[|2=11 3,1 xn Y, so Zn>1 x2 = Yas > e. Let V be the
set of all y € U for which y? = 2 ¥ ,>, ¥% and ¥ ,>1 y2 > ¢. This is a neighborhood
of U. Let y € V. If y satisfies P(n) for some n, then n = 1. It follows that

AW) =1+ fCm1y3) = llyl?

since f(t) = t for t > e. If y fails all conditions P(n) for each n, then A(y) =
ly1% So A(y) = | ¥ |2 in V, and hence is infinitely differentiable.
If <10 ¥,>; x2, then A(y) = || ¥ |? in a neighborhood of x.

2nd step. We show that in the domain U’ = {x; % < [|x|| < 2} all the
- derivatives of A are bounded. Indeed the analysis of the second step shows that
each point in U’ has a neighborhood on which A coincides either with | - | or
with a function f, of the type f.(x) = x2 + f(Tixn x?). But these functions are
infinitely differentiable in U’, and their derivatives are bounded.

3rd step. We check (3.1). Let x # 0. The continuity of A in U’ implies
A(x/N°x)) = 1. Now (3.7) implies

[x/N°(x)|I* — &* = 1 < | x/N°x)[|%
It follows that N°(x) < | x || = (1 + ¢*)2N°(x), which implies (3.1).
4th step. We check that for x € U we have D,A(x) = %. If A(y) = ||y[|®ina

neighborhood of x, then D,A(x) = 2 || x||? = ¥ from (3.1). Otherwise A(y) =
+ f(Xixn ¥?) in a neighborhood of x, then

D.A(x) = 2(x% + Tisn 2f "(Tien x1)) = 2x7.

But since x2 = 10 Yix, x7, we have || x |2 < %0 x2, so D,A(x) = 2% x| = ¥
from (3.1).
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5th step. We prove (3.2). For x € U’, t € R, let g(x, t) = A(x/t). The 4th
step shows that the second derivative of g is nonzero. Since g(x, N°(x)) = 1, the
implicit function theorem (see page 67 of Henri Cartan, Calcul Differentiel,
Hermann, Paris, 1967) shows that N° is differentiable on U’, and we have
D.N°%y) = D;A(y)/D;(x) where ¥ = x/N°(x). This formula shows that N° is
infinitely differentiable. It also shows (by induction) that the nth differential of
N° at x is a sum of compositions of differentials of A at % divided by quantities
of the type N°(x)PD;(x)?. Hence the 3rd and 4th steps show that these differen-
tials are bounded on U’, hence on the unit sphere.

6th step. We check (3.3). Assume that ¥ ,.,, x5 < ¢/10 5. Let y = x/N°(x).
Then } nxn, y2 < ¢/10 y?,o. It follows that P(n,) is satisfied, and hence A(y) =
Yao + F(Znwn, ¥2). Since A(y) = 1, we have y;, < 1,80 Y nzn, ¥a < ¢/10. Since f(¢)
= 0 for t < ¢/10, we have 1 = A(y) = y2, = x2,(N°x))~* and the first assertion
follows. The last one follows from the obvious fact that N°(x + y) = N%(x — y).
The proof is complete.

The essential part of the above construction is condition (3.3). It ensures that
the unit ball of N is absolutely flat in a neighborhood of the basic vectors.

4. Construction. By induction over p, we shall construct two sequences
n(p), q(p) of integers, a sequence a(p) of numbers, and a sequence Y, of r.v.
valued in 7% (). Let m(p) = n(1) + - - - + n(p). With natural identifications, one
can consider the r.v. X, valued in /%, given by X, = Y, + .-+ + Y. Let v, be
the Gaussian measure on /%, with the same covariance as X,. On /%, =
®~_, /2, let N, be the norm given by N,(x) = N°(x), where x = (x1, - -+, %),
xiE/?z(p) fori= ]-v ""p,andx-= (”xlllv "x2”, ) ”xp”v 0, )-

The following conditions will be satisfied for all p > 1.

(4.1) Vo | Yo < 277
(4.2) Yolx; Np(x) < a(r)} > 28,y for r=<p

(4.3) If (X});is an independent sequence distributed like X, for each r < p we
have P{N,(q(r)™? Yicqn Xb) < a(r)} < Eq0n).

We proceed to the first step of the construction. Let g(1) be large enough so
that £,0) < Y. It follows by observations 1 and 2 that there exists n(1) and an
/2 —valued r.v. Y; with || Yi(w)|| = % for each w, such that we have

Tiflxll =%} >%
P{llg(1)™2 Ficqny Xi | < %} < £q)

We take a(1) < % such that v:{x; | x| < a(1)} > %, and this completes the first
step of the construction, since | x || = N1(x) on #%.

We now assume that the comnstruction has been done up to rank p. There
exists a positive number b so small that for each r < p we have

(4.4) Yoi{Np(x) < a(r) =2b} > 2£4) + b.
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We can assume b < 27771, We can now pick g(p + 1) so large that
Yolx; x| < eb/2} = TEq(p+)

It follows from observations 1 and 2 and by scaling that there exists an integer
n(p + 1), and a r.v. Y,41, with E(Yp+1) = 0, independent of X, valued in
/% p+1), and such that the following occurs:

(4.5) Vo, | Yor(w) | = b.

(4.6) If v is the Gaussian measure on #2(,+1) which has the same covariance as
Y,+1, we have

vix; b/2 < ||x| < b} > Vs vix; | x| <2b} >1-0.
(4.7) If (Yi41); are independent copies of Y, we have
P{lg(p + 1) Ticqpsn Your | < b} < Eqipn)

We choose a(p + 1) < b such that v{x; /2 < | x || < a(p + 1)} > %. Since
Y,+1 and X, are independent, we have y,+1 = v, ® .

Let x € /m(p), and y € #2(,+1. We can write x = (x1, X3, --+, %p) with
x; € £% for 1 < i < p. We hence have N,..1(x, 0) = N°(%), where

x= ("xl"’ "x2"9 ] "xp", O, "')-

So we have Np4i(x, 0) = N,(x). We have N,.1(0, ¥) = N°y), where y =

0,0, --+, [l¥ll, 0, --+), ly|l being the p + 1th component. This shows that y

satisfies condition P(p + 1) and A(§) = | y |2 It follows that N,.1(0,y) = [y |.
For | y |l < 2b and N,(x) < a(r) — 2b, we have

Npii(x, ¥) < Npsa(x, 0) + Npu1(0, ¥) = Np(x) + [yl = a(r).
Let r < p. Recall that we have

(4.4) vpix; Np(x) < a(r) — 2b} = 2&,) + b
(4.5) viy; lyl =26} =1 - 0.
So, we have

Yp+1{2 € Zn(pr1; Npr1(2) < a(r)} = (264 + 5)(1 — D).

However if £,y < Y6 and b < %, we have (2£4) + b)(1 — b) = 2£4(». This proves
(4.2) for r < p.

We now check a basic fact: for | x| < e[|y |, we have Nyi(x, y) = |y, that
is, the unit ball of N, is flat in a neighborhood of (0, y). Let x = (x;)i=p where
Xi € /?1(1')- Then Np+1(x9 y) = No(z) where Z= (" X1 "’ ) ” Xp "’ "y"’ 09 . ')~
Since || %1% = Si<n [l %: 12 < €®[ ¥ |12 we have N°(2z) = ||y || from (3.3).

We now check (4.2) for r = p + 1. We have

7p+1{(x y)’ p+1(x, ) = a(P + 1);

= f Yoix; Np+1(x, y) < a(p + 1)} dv(y).
b/2=|lyll=a(p+1)



BAD RATES OF CONVERGENCE IN HILBERT SPACE 849

Forb/2 = ||yl < a(p + 1), we have
Yp{x; Np+1(x, ¥) < a(p + 1)} = vplx; | x || < eb/2} = TEq(p+).-

So (4.6) implies (4.2) for r = p + 1. It follows from (3.4) and the definition of
Npi1 that Npy(x, y) = sup(Ny(x), |y ). Hence (4.3) follows by induction
hypothesis for r < p and from (4.7) for r = p + 1. The construction is completed.

PrROOF OF THEOREM A. We identify H to the Hilbertian sum ©5_; /% ,).
Under this identification, we can write x = (x,) with x, € /2(,). Let N(x) =
N°(x°), where x° = (| x, [|) .. Then (a) and (b) are consequences of (3.1) and (3.2).

Since || Y,(w) || = 277 for each p, it follows that X, = Y, Y; converges a.e. to
a random variable X with || X(w)|| = 2. Since the variables Y, are independent,
the Gaussian measure on H with the same covariance as X identifies with the
limit « of the +,. This limit is the product measure when each /4, is provided
with the Gaussian measure v, having the same covariance as Y.

For each r and p = r, we have v,{x € H; N,(x) < a(r)} > 2£,). For each x, we
have N(x) = lim,N,(x). For n > 0,

{x; N(x) < a(r) + n} C lim sup{x; Ny(x) < a(r) + n}.

So, y{x; N(x) < a(r) + n} = 2£,, and y{x; N(x) < a(r)} = 2¢,). Moreover,
using (3.3) and (4.7) we have

P{J\[(q(’.)_l/2 Zisq(r) Xl) = a(r)} = P{Nr((l(r)-_l/2 zisq(r) Yﬁ) = a(r)j = Eq(r)-
This proves (c) and finishes the proof.

The basic idea of the above proof is quite simple. To make it clearer, we will
explain why the norm N fails condition (*) without using the theorem of Kuelbs
and Kurtz. The measure v,.; on #2,41) which was chosen at the step p + 1 is in
fact extremely concentrated around the sphere S of radius a(p + 1) and this
degree of concentration can be chosen independently of a(p + 1). The sphere of
/% p+1) of radius a(p + 1) contains the points (0, y) with ||y || = a(p + 1). But it
is also flat at these points in the direction of /%, and in fact it contains
B(0, a(p + 1)¢/10) X S where B(0, a(p + 1)¢/10) is the ball in #%,. It then
follows that there is a very narrow annulus A,,;,

Appi=1{x;a(p+1) =8, = Npi(x) = a(p + 1) + §,},

which measure is of the order of v,(B(0, a(p + 1)¢/10)), but the width of A,
can be arbitrarily small. On the further steps of the construction, the measures
Y4, @ = p are close enough to v,4; so that

Yolx € 220 a(p+ 1) — 8, < Ny(x) <alp + 1) + 5}
is very close to vp+1(Ap+1). This is achieved by taking the sequence a(p) decreas-
ing fast enough.
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