BAD RATES OF CONVERGENCE FOR THE CENTRAL LIMIT THEOREM IN HILBERT SPACE

By WanSoo Rhee and Michel Talagrand

Ohio State University and Université Paris VI

We show that one can smoothly renorm the Hilbert space H such that the rate of convergence in the central limit theorem becomes very bad. More precisely, let us fix a sequence $\xi_n \to 0$ and $\varepsilon > 0$. We can then construct a norm $N(\cdot)$ on the Hilbert space, and a bounded random variable X on H with the following properties:

- (a) The norm $N(\cdot)$ is $(1+\epsilon)$ equivalent to the usual norm. It is infinitely many times differentiable, and each differential is bounded on the unit sphere.
- (b) If (X_i) denotes independent copies of X, and if γ is the Gaussian measure with the same covariance as X, then the inequality

$$\sup_{t>0} |P\{N(n^{-1/2} \sum_{i=1}^{n} X_i) \le t\} - \gamma\{x; N(x) \le t\}| \ge \xi_n$$

occurs for infinitely many n.

1. Introduction. Let X be a random variable (r.v.) valued in a Banach space E. Assume X has a second moment, EX = 0 and that there is a Gaussian measure γ on E with the same covariance as X, i.e.,

$$E(x^*(X)y^*(X)) = \int_E x^*(x)y^*(x) \ d\gamma(x)$$
 for $x^*, y^* \in E^*$.

Let (X_i) be a sequence of independent r.v. distributed as X. A way to estimate the rate of convergence in the central limit theorem is by the quantity

$$\Delta_n = \sup_{t \ge 0} |P\{ \| n^{-1/2} \sum_{i=1}^n X_i \| \le t \} - \gamma \{x; \| x \| \le t \} |.$$

It has been shown by Kuelbs and Kurtz [2] that if the norm of E is three times differentiable with a third differential bounded on the unit sphere, if X has moments of order 7/2 and if moreover the following condition holds,

(*)
$$\forall 0 \le s < t, \ \gamma \{x; \ s \le \|x\| \le t\} \le C(t-s)$$

for a constant C, then $\Delta_n = O(n^{-1/6})$. V. Paulauskas [3] reduced the moment assumption to moments of order 3.

In Hilbert space, condition (*) is always satisfied for the usual norm [2]. If moreover X has moments of order 6, then $\Delta_n = O(n^{-1/2})$ [1].

The estimate (Δ_n) depends on the precise choice of the norm. It will in particular follow from the result presented here that a small change of norm can dramatically change Δ_n . We shall prove the following:

THEOREM A. Let $\varepsilon > 0$ and a sequence $\xi_n \to 0$. Then there is a norm $N(\cdot)$ on

Received September 1982; revised September 1983.

AMS 1980 subject classifications. Primary 60B12, secondary 28C20, 46B20.

Key words and phrases. Central limit theorem, rate of convergence, renorming the Hilbert space.

the standard Hilbert space H and a bounded r.v. X such that the following hold.

- (a) $\forall x \in H$, $(1 \varepsilon) ||x|| \le N(x) \le ||x||$
- (b) $N(\cdot)$ is infinitely many times differentiable, and each of its differentials is bounded on the unit sphere.
- (c) For infinitely many values of n, we have

$$\Delta'_n = \sup_{t \ge 0} |P\{N(n^{-1/2} \sum_{i=1}^n X_i) \le t\} - \gamma\{x; N(x) < t\}| \ge \xi_n.$$

In particular Kuelbs and Kurtz' result implies that the norm $N(\cdot)$ fails condition (*). So a norm can fail condition (*) even when the Banach space E is very smooth (isomorphic to H) and the norm is very smooth. Weaker examples for which condition (*) fails were previously obtained by the authors [4] (on the space ℓ^p with $p \in \mathbb{N}$, $p \geq 2$ and a norm p times differentiable) and Paulauskas (on c_0 with the sup norm).

Moreover, even if X is bounded, if E is very regular and if the norm is very smooth, no rate of convergence can be given for Δ_n without further assumptions of the type (*).

2. Methods. The construction will use finite-dimensional blocks which we shall patch together. So we start with elementary observations. Let ℓ_n^2 denote the *n*-dimensional Hilbert space. Let $(e_i)_{i \le n}$ be the canonical basis of ℓ_n^2 . So for $x \in \ell_n^2$ we have $x = \sum_{i \le n} x_i e_i$. Let γ_n be the canonical Gaussian measure on ℓ_n^2 , i.e. the measure such that the distribution of the functionals $x \to x_i$ are standard normal and independent.

OBSERVATION 1. The variables x_i^2 are equidistributed. Their expectation is one. The one dimensional central limit theorem asserts that for n large, the distribution of $||x||^2 = \sum x_i^2$ is approximately $N(n, \sqrt{3n})$, (since the variance of x_i^2 is 3). In particular, $\gamma_n \{||x|| < \sqrt{n}\} > \frac{1}{3}$ for n large. Moreover, the distribution of $n^{-1} ||x||^2$ becomes very concentrated around 1.

OBSERVATION 2. Let Y_n be a r.v. valued in ℓ_n^2 , such that for $i \in \{1, \dots, n\}$ and $j \in \{-1, 1\}$ it takes the value $jn^{1/2}e_i$ with probability $\frac{1}{2}n$. Let $(Y_{n,i})$ be an independent sequence distributed like Y_n . Then for $q \leq n$, with probability $\prod_{i=1}^q (1-i/n) \geq (1-q/n)^q$ the r.v. $S_{n,q} = q^{-1/2} \sum_{i=1}^q Y_{n,i}$ takes values of the type $\sum_{i \in I} a_i e_i$, where card I = q and $|a_i| = n^{1/2}q^{-1/2}$. So, with the same probability, we have $||S_{n,q}|| = n^{1/2}$. It follows that for any given q, we have

$$\lim_{n\to\infty} P\{\|S_{n,q}\| = n^{1/2}\} = 1.$$

For two integers m, n, we identify ℓ_{m+n}^2 with the spaces $\ell_m^2 \times \ell_n^2$ and $\ell_m^2 \oplus \ell_n^2$.

3. An auxiliary norm. We shall use an auxiliary norm on $\ell^2 = \ell^2(\mathbb{N})$.

PROPOSITION. Let $\varepsilon > 0$. Then there is a norm N^0 on ℓ^2 which has the following properties

$$(3.1) \forall x \in \ell^2, (1 - \varepsilon) ||x|| \le N^0(x) \le ||x||$$

- (3.2) N^0 is infinitely many times differentiable, and each of its derivatives is bounded on the unit sphere.
- (3.3) If there exists n_0 such that $\sum_{n\neq n_0} x_n^2 \leq \varepsilon/10 \ x_{n_0}^2$ then $N^0(x) = |x_{n_0}|$. Moreover, if x and y have disjoint support, $N^0(x+y) \geq N^0(x)$.

PROOF. We fix a function $f: \mathbb{R} \to \mathbb{R}$ with the following properties:

(3.4) f is infinitely many times differentiable and $t \rightarrow f(t^2)$ is convex.

$$(3.5) \qquad \forall t, |t| < \varepsilon/10, f(t) = 0; \forall t, |t| \ge \varepsilon \Longrightarrow f(t) = t$$

$$(3.6) \qquad \forall t \in \mathbb{R}^+, t - \varepsilon \le f(t) \le t.$$

The existence of such a function is elementary. We can assume $\varepsilon \le 1/100$. For $x = (x_n) \in \ell^2$, define A(x) in the following way:

First case. There is n_0 such that the following condition is satisfied:

$$P(n_0): x_{n_0}^2 > 10 \sum_{n \neq n_0} x_n^2$$

We set $A(x) = x_{n_0}^2 + f((\sum_{n \neq n_0} x_n^2)).$

Second case. The first case does not occur. We set

$$A(x) = ||x||^2 = \sum_n x_n^2$$

It follows from (3.6) that

(3.7)
$$\forall x \in \ell^2, ||x||^2 - \varepsilon \le A(x) \le ||x||^2.$$

Weset

$$N^{0}(x) = \operatorname{Inf}\{\lambda > 0; \ A(x/\lambda) \le 1\}.$$

Let us show that N^0 is a norm. It is obvious that N^0 is homogeneous. It is enough to show that if y(1), $y(2) \in \mathbb{Z}^2$ with A(y(1)), $A(y(2)) \leq 1$, then $A((y(1) + y(2))/2) \leq 1$. We have

(3.8)
$$A((y(1) + y(2))/2) \le \|(y(1) + y(2))/2\|^2$$

$$= \frac{1}{2}(\|y(1)\|^2 + \|y(2)\|^2) - \|(y(1) - y(2))/2\|^2.$$

From (3.7) it follows that it is enough to check the case $\|y(1)\|^2 \ge 1 - \varepsilon$, $\|y(2)\|^2 \ge 1 - \varepsilon$, $\|(y(1) - y(2))/2\|^2 \le \varepsilon$. We distinguish 3 cases.

CASE 1. y(1) and y(2) fail P(n) for each n. Obvious, since $A(y(i)) = ||y(i)||^2$ for i = 1, 2.

CASE 2. One of y(1), y(2) (say y(1)) satisfies $P(n_0)$, the other fails P(n) for each n.

We have $\sum_{n\neq n_0} y_n^2(2) \geq \varepsilon$, for otherwise, since y(2) fails $P(n_0)$, we would have

 $\| v(2) \|^2 \le 11\varepsilon < 1 - \varepsilon$, a contradiction. So we have in fact

$$A(y(2)) = ||y(2)||^2 = y_{n_0}^2(2) + f(\sum_{n \neq n_0} y_n^2(2))$$

and then the result follows from the convexity of $t \rightarrow f(t^2)$.

CASE 3. Both y(1), y(2) satisfy a condition of the type P(n).

But it is then clear that y(1), y(2) satisfy a condition P(n) for the same n, and the result follows as above.

We now check conditions (3.1) to (3.3).

1st step. We first check that A is infinitely differentiable on the set U, U = $\{x \in \ell^2; \|x\| \ge \frac{1}{2}\}$. This is done by checking that the definitions on f on the various parts of U patch smoothly. Let $x \in U$. For the convenience of notations, assume that $|x_1| \ge |x_2| \ge \cdots$.

If $x_1^2 > 10 \sum_{n>1} x_n^2$, then condition P(1) is still true in a neighborhood of x. In this neighborhood, $A(x) = x_1^2 + f(\sum_{n>1} x_n^2)$ is infinitely differentiable. If $x_1^2 = 10 \sum_{n>1} x_n^2$, then $||x||^2 = 11 \sum_{n>1} x_n^2 \ge \frac{1}{4}$, so $\sum_{n>1} x_n^2 \ge \frac{1}{44} > \varepsilon$. Let V be the set of all $y \in U$ for which $y_1^2 \ge 2 \sum_{n>1} y_n^2$ and $\sum_{n>1} y_n^2 > \varepsilon$. This is a neighborhood of U. Let $y \in V$. If y satisfies P(n) for some n, then n = 1. It follows that

$$A(y) = y_1^2 + f(\sum_{n>1} y_n^2) = ||y||^2$$

since f(t) = t for $t > \varepsilon$. If y fails all conditions P(n) for each n, then $A(y) = \varepsilon$ $||y||^2$. So $A(y) = ||y||^2$ in V, and hence is infinitely differentiable. If $x_1^2 < 10 \sum_{n>1} x_n^2$, then $A(y) = ||y||^2$ in a neighborhood of x.

2nd step. We show that in the domain $U' = \{x; \frac{1}{2} < ||x|| < 2\}$ all the derivatives of A are bounded. Indeed the analysis of the second step shows that each point in U' has a neighborhood on which A coincides either with $\|\cdot\|$ or with a function f_n of the type $f_n(x) = x_n^2 + f(\sum_{i \neq n} x_i^2)$. But these functions are infinitely differentiable in U', and their derivatives are bounded.

3rd step. We check (3.1). Let $x \neq 0$. The continuity of A in U' implies $A(x/N^{0}(x)) = 1$. Now (3.7) implies

$$||x/N^{0}(x)||^{2} - \varepsilon^{2} \le 1 \le ||x/N^{0}(x)||^{2}.$$

It follows that $N^0(x) \le ||x|| \le (1 + \varepsilon^2)^{1/2} N^0(x)$, which implies (3.1).

We check that for $x \in U$ we have $D_x A(x) \ge \frac{1}{3}$. If $A(y) = ||y||^2$ in a neighborhood of x, then $D_x A(x) = 2 \|x\|^2 \ge \frac{1}{2}$ from (3.1). Otherwise $A(y) = y_n^2$ $+ f(\sum_{i \neq n} y_i^2)$ in a neighborhood of x, then

$$D_x A(x) = 2(x_n^2 + \sum_{i \neq n} x_n^2 f'(\sum_{i \neq n} x_i^2)) \ge 2x_n^2.$$

But since $x_n^2 \ge 10 \sum_{i \ne n} x_i^2$, we have $||x||^2 \le \frac{11}{10} x_n^2$, so $D_x A(x) \ge \frac{20}{11} ||x||^2 \ge \frac{1}{3}$ from (3.1).

5th step. We prove (3.2). For $x \in U'$, $t \in \mathbb{R}^+$, let g(x, t) = A(x/t). The 4th step shows that the second derivative of g is nonzero. Since $g(x, N^0(x)) = 1$, the implicit function theorem (see page 67 of Henri Cartan, Calcul Differential, Hermann, Paris, 1967) shows that N^0 is differentiable on U', and we have $D_x N^0(y) = D_{\bar{x}} A(y)/D_{\bar{x}}(\bar{x})$ where $\bar{x} = x/N^0(x)$. This formula shows that N^0 is infinitely differentiable. It also shows (by induction) that the nth differential of N^0 at x is a sum of compositions of differentials of A at \bar{x} divided by quantities of the type $N^0(x)^p D_{\bar{x}}(\bar{x})^q$. Hence the 3rd and 4th steps show that these differentials are bounded on U', hence on the unit sphere.

6th step. We check (3.3). Assume that $\sum_{n\neq n_0} x_n^2 \leq \varepsilon/10 \ x_{n_0}^2$. Let $y = x/N^0(x)$. Then $\sum_{n\neq n_0} y_n^2 \leq \varepsilon/10 \ y_{n_0}^2$. It follows that $P(n_0)$ is satisfied, and hence $A(y) = y_{n_0}^2 + f(\sum_{n\neq n_0} y_n^2)$. Since A(y) = 1, we have $y_{n_0}^2 \leq 1$, so $\sum_{n\neq n_0} y_n^2 \leq \varepsilon/10$. Since f(t) = 0 for $t \leq \varepsilon/10$, we have $1 = A(y) = y_{n_0}^2 = x_{n_0}^2(N^0(x))^{-2}$ and the first assertion follows. The last one follows from the obvious fact that $N^0(x+y) = N^0(x-y)$. The proof is complete.

The essential part of the above construction is condition (3.3). It ensures that the unit ball of N^0 is absolutely flat in a neighborhood of the basic vectors.

4. Construction. By induction over p, we shall construct two sequences n(p), q(p) of integers, a sequence a(p) of numbers, and a sequence Y_p of r.v. valued in $\ell^2_{n(p)}$. Let $m(p) = n(1) + \cdots + n(p)$. With natural identifications, one can consider the r.v. X_p valued in $\ell^2_{m(p)}$ given by $X_p = Y_1 + \cdots + Y_p$. Let γ_p be the Gaussian measure on $\ell^2_{m(p)}$ with the same covariance as X_p . On $\ell^2_{m(p)} = \bigoplus_{i=1}^p \ell^2_{n(p)}$, let N_p be the norm given by $N_p(x) = N^0(\bar{x})$, where $x = (x_1, \dots, x_p)$, $x_i \in \ell^2_{n(p)}$ for $i = 1, \dots, p$, and $\bar{x} = (\|x_1\|, \|x_2\|, \dots, \|x_p\|, 0, \dots)$.

$$(4.1) \qquad \forall \omega \parallel Y_p(\omega) \parallel \leq 2^{-p}$$

$$(4.2) \gamma_p\{x; N_p(x) \le a(r)\} > 2\xi_{q(r)} \text{for } r \le p$$

The following conditions will be satisfied for all p > 1.

(4.3) If $(X_p^i)_i$ is an independent sequence distributed like X_p , for each $r \leq p$ we have $P\{N_p(q(r)^{-1/2} \sum_{i \leq q(r)} X_p^i) \leq a(r)\} < \xi_{q(r)}$.

We proceed to the first step of the construction. Let q(1) be large enough so that $\xi_{q(1)} < \frac{1}{6}$. It follows by observations 1 and 2 that there exists n(1) and an $\ell_{n(1)}^2$ —valued r.v. Y_1 with $||Y_1(\omega)|| = \frac{1}{2}$ for each ω , such that we have

$$\begin{split} \gamma_1 \{ \mid \mid x \mid \mid \ \leq \ \frac{1}{2} \} > \ \frac{1}{3} \\ P\{ \mid \mid q(1)^{-1/2} \sum_{i \leq q(1)} X_1^i \mid \mid \ < \ \frac{1}{2} \} < \xi_{q(1)}. \end{split}$$

We take $a(1) < \frac{1}{2}$ such that $\gamma_1\{x; ||x|| \le a(1)\} > \frac{1}{3}$, and this completes the first step of the construction, since $||x|| = N_1(x)$ on $\ell_{n(1)}^2$.

We now assume that the construction has been done up to rank p. There exists a positive number b so small that for each $r \le p$ we have

$$(4.4) \gamma_p\{N_p(x) \le a(r) - 2b\} > 2\xi_{q(r)} + b.$$

We can assume $b \le 2^{-p-1}$. We can now pick q(p+1) so large that

$$\gamma_p\{x; \|x\| < \varepsilon b/2\} \ge 7\xi_{q(p+1)}.$$

It follows from observations 1 and 2 and by scaling that there exists an integer n(p+1), and a r.v. Y_{p+1} , with $E(Y_{p+1})=0$, independent of X_p , valued in $\ell_{n(p+1)}^2$, and such that the following occurs:

$$\forall \omega, \parallel Y_{p+1}(\omega) \parallel = b.$$

(4.6) If ν is the Gaussian measure on $\ell^2_{n(p+1)}$ which has the same covariance as Y_{p+1} , we have

$$\nu\{x; b/2 < ||x|| < b\} > \frac{1}{3}; \nu\{x; ||x|| < 2b\} > 1 - b.$$

(4.7) If $(Y_{p+1}^i)_i$ are independent copies of Y_{p+1} , we have

$$P\{\|q(p+1)^{-1/2} \sum_{i \le q(p+1)} Y_{p+1}^i \| < b\} < \xi_{q(p+1)}.$$

We choose a(p+1) < b such that $\nu\{x; b/2 < \|x\| < a(p+1)\} > \frac{1}{3}$. Since Y_{p+1} and X_p are independent, we have $\gamma_{p+1} = \gamma_p \otimes \nu$.

Let $x \in \ell^2_{m(p)}$, and $y \in \ell^2_{n(p+1)}$. We can write $x = (x_1, x_2, \dots, x_p)$ with $x_i \in \ell^2_{n(i)}$ for $1 \le i \le p$. We hence have $N_{p+1}(x, 0) = N^0(\bar{x})$, where

$$\bar{x} = (\|x_1\|, \|x_2\|, \dots, \|x_p\|, 0, \dots).$$

So we have $N_{p+1}(x, 0) = N_p(x)$. We have $N_{p+1}(0, y) = N^0(\bar{y})$, where $\bar{y} = (0, 0, \dots, \|y\|, 0, \dots)$, $\|y\|$ being the p+1th component. This shows that \bar{y} satisfies condition P(p+1) and $A(\bar{y}) = \|y\|^2$. It follows that $N_{p+1}(0, y) = \|y\|$.

For ||y|| < 2b and $N_p(x) \le a(r) - 2b$, we have

$$N_{p+1}(x, y) \le N_{p+1}(x, 0) + N_{p+1}(0, y) \le N_p(x) + ||y|| \le a(r).$$

Let $r \leq p$. Recall that we have

$$(4.4) \gamma_{p}\{x; N_{p}(x) \le a(r) - 2b\} \ge 2\xi_{q(r)} + b$$

$$(4.5) v\{y; ||y|| \le 2b\} \ge 1 - b.$$

So, we have

$$\gamma_{p+1}\{z \in \ell_{m(p+1)}; N_{p+1}(z) \leq a(r)\} \geq (2\xi_{q(r)} + b)(1-b).$$

However if $\xi_{q(r)} \leq \frac{1}{6}$ and $b \leq \frac{1}{2}$, we have $(2\xi_{q(r)} + b)(1 - b) \geq 2\xi_{q(r)}$. This proves (4.2) for $r \leq p$.

We now check a basic fact: for $||x|| \le \varepsilon ||y||$, we have $N_{p+1}(x, y) = ||y||$, that is, the unit ball of N_{p+1} is flat in a neighborhood of (0, y). Let $x = (x_i)_{i \le p}$ where $x_i \in \mathscr{E}^2_{n(i)}$. Then $N_{p+1}(x, y) = N^0(z)$ where $Z = (||x_1||, \dots, ||x_p||, ||y||, 0, \dots)$. Since $||x||^2 = \sum_{i \le n} ||x_i||^2 \le \varepsilon^2 ||y||^2$, we have $N^0(z) = ||y||$ from (3.3).

We now check (4.2) for r = p + 1. We have

$$\gamma_{p+1}\{(x, y); N_{p+1}(x, y) \le a(p+1)\}\$$

$$\geq \int_{b/2 \leq \|y\| \leq a(p+1)} \gamma_p \{x; \, N_{p+1}(x, \, y) \leq a(p+1)\} \, \, d\nu(y).$$

For $b/2 \le ||y|| \le a(p+1)$, we have

$$\gamma_p\{x; N_{p+1}(x, y) \le a(p+1)\} \ge \gamma_p\{x; ||x|| \le \varepsilon b/2\} \ge 7\xi_{q(p+1)}.$$

So (4.6) implies (4.2) for r = p + 1. It follows from (3.4) and the definition of N_{p+1} that $N_{p+1}(x, y) \ge \sup(N_p(x), ||y||)$. Hence (4.3) follows by induction hypothesis for $r \le p$ and from (4.7) for r = p + 1. The construction is completed.

PROOF OF THEOREM A. We identify H to the Hilbertian sum $\bigoplus_{p=1}^{\infty} \mathbb{Z}_{n(p)}^2$. Under this identification, we can write $x = (x_p)$ with $x_p \in \mathbb{Z}_{n(p)}^2$. Let $N(x) = N^0(x^0)$, where $x^0 = (\|x_p\|)_p$. Then (a) and (b) are consequences of (3.1) and (3.2). Since $\|Y_p(\omega)\| \le 2^{-p}$ for each p, it follows that $X_p = \sum_{i \le p} Y_i$ converges a.e. to

Since $||Y_p(\omega)|| \leq 2^{-p}$ for each p, it follows that $X_p = \sum_{i \leq p} Y_i$ converges a.e. to a random variable X with $||X(\omega)|| \leq 2$. Since the variables Y_p are independent, the Gaussian measure on H with the same covariance as X identifies with the limit γ of the γ_p . This limit is the product measure when each $\ell_{n(p)}$ is provided with the Gaussian measure ν_p having the same covariance as Y_p .

For each r and $p \ge r$, we have $\gamma_p\{x \in H; N_p(x) \le a(r)\} > 2\xi_{q(r)}$. For each x, we have $N(x) = \lim_p N_p(x)$. For $\eta > 0$,

$${x; N(x) < a(r) + \eta} \subset \lim \sup\{x; N_p(x) < a(r) + \eta\}.$$

So, $\gamma\{x; N(x) < a(r) + \eta\} \ge 2\xi_{q(r)}$ and $\gamma\{x; N(x) \le a(r)\} \ge 2\xi_{q(r)}$. Moreover, using (3.3) and (4.7) we have

$$P\{N(q(r)^{-1/2} \sum_{i \le q(r)} X^i) \le a(r)\} \le P\{N_r(q(r)^{-1/2} \sum_{i \le q(r)} Y^i_r) \le a(r)\} \le \xi_{q(r)}$$

This proves (c) and finishes the proof.

The basic idea of the above proof is quite simple. To make it clearer, we will explain why the norm N fails condition (*) without using the theorem of Kuelbs and Kurtz. The measure ν_{p+1} on $\ell^2_{n(p+1)}$ which was chosen at the step p+1 is in fact extremely concentrated around the sphere S of radius a(p+1) and this degree of concentration can be chosen independently of a(p+1). The sphere of $\ell^2_{m(p+1)}$ of radius a(p+1) contains the points (0,y) with $\|y\|=a(p+1)$. But it is also flat at these points in the direction of $\ell^2_{m(p)}$, and in fact it contains $B(0, a(p+1)\varepsilon/10) \times S$ where $B(0, a(p+1)\varepsilon/10)$ is the ball in $\ell^2_{m(p)}$. It then follows that there is a very narrow annulus A_{p+1} ,

$$A_{p+1} = \{x; a(p+1) - \delta_p \le N_{p+1}(x) \le a(p+1) + \delta_p\},\$$

which measure is of the order of $\gamma_p(B(0, a(p+1)\varepsilon/10))$, but the width of A_{p+1} can be arbitrarily small. On the further steps of the construction, the measures $\gamma_q, q \geq p$ are close enough to γ_{p+1} so that

$$\gamma_q\{x \in \mathcal{E}_{n(q)}^2; \quad a(p+1) - \delta_p \le N_q(x) \le a(p+1) + \delta_p\}$$

is very close to $\gamma_{p+1}(A_{p+1})$. This is achieved by taking the sequence a(p) decreasing fast enough.

REFERENCES

[1] GOTZE, F. (1979). Asymptotic expansions for bivariate Von Mises functional. Z. Wahrsch. verw Gebiete 50 333-355.

- [2] KUELBS, J. and KURTZ, T. (1974). Berry-Esseen estimates in Hilbert space and an application to the law of iterated logarithm. Ann. Probab. 2 387-407.
- [3] PAULAUSKAS, V. (1976). On the rate of convergence in the central limit theorem in some Banach spaces. *Theory Probab. Appl.* 21 754-769.
- [4] RHEE, W. and TALAGRAND, M. (1984) Uniform bound in the central limit theorem for Banach space valued dependent random variables. J. Multivariate Anal. To appear.
- [5] SAZONOV, V. (1981) Normal approximation—some recent advances. Lecture Notes in Math. 879. Springer, Berlin.

FACULTY OF MANAGEMENT SCIENCES THE OHIO STATE UNIVERSITY COLUMBUS, OHIO 43210 Equipe d'Analyse-Tour 46 Université Paris VI 4 Place Jussieu 75230 Paris Cedex 05