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ASYMPTOTIC BEHAVIOR OF THE LOCAL TIME
OF A RECURRENT RANDOM WALK!

BY NAREsSH C. JAIN AND WiLLIAM E. PRUITT

University of Minnesota

Let (Sj) be a lattice random walk, i.e. S; = X; + ... + X where X;, X,,
... are independent random variables with values in the integer lattice and
common nondegenerate distribution F, and let L.(x) =Y 7=} 14 (S;), the local
time of the random walk at x before time n. Define G(x) = P{| X;|> x}, K(x)
=x7% f|1==)’ dF (y), @(x) = G(x) + K(x) for x > 0. @ is continuous, strictly
decreasing for large x, and tends to zero. Thus a, may be defined by @ (a,) =
y~! for large y and then we let ¢, = @n/ioglog». The basic assumption is that
lim sup:-.G(x)/K(x) <1 and EX; = 0. We prove that there exist positive
constants 6, 6, such that lim sup,.«c.n'L.(x) = 6 as. for all x,
lim Sups—«Supxcant ~*Ln(x) = 6; a.s. Furthermore

lims—,olim SUP»— w0 SUP|x—y|<5c,Crl | Ln (%) — La(y)| =0 a.s.
One of the main tools is an estimate for the “absolute potential kernel”:
Yr-o| P{Sn =2} = P{Sp =z + x}| = C(|x|Q(|x])”"

assuming strong aperiodicity.

1. Introduction. Let X;, X, --- be independent, identically distributed,
nondegenerate random variables taking values in the one dimensional integer
lattice Z. With So =0and S, = X; + .- + X,,, n = 1, we define the local time at

x before time n to be the number of visits to x before time n:

1.1) L.(x) =Y 11(S), x€Z, n=1.

Our goal in the present paper is to find the rate of growth of the large values of

L, (x) for fixed x and also for sup.L.(x).

In order to state the results, we must introduce a little notation. Let X be a
random variable with the same distribution as X; and F its distribution function.

For x > 0 define

G(x) = P{|X|>x}, K(x)= x‘ZJ y? dF(y),

==

(1.2)
Qx) =G(x) + K(x) = E(x7'|X| A1)
Our basic assumption throughout will be
G(x)

(A)) lim supx_,wm <1 and EX=0.
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LOCAL TIME FOR RANDOM WALK 65

If X is in the domain of attraction of a stable law of index a then

i G(x) 2-a
et <O

so that we are including all distributions in the domain of attraction of a stable
law of index a > 1 which have zero mean. But the class of distributions we are
considering is clearly much larger than this. We should note here that if the
random walk is transient, then L,(x) is bounded in n; we will only consider
recurrent random walks. The first part of (A;) implies that E | X| <  so that the
second part (EX = 0) is just to ensure recurrence. Those random walks which are
recurrent and in the domain of attraction of a Cauchy distribution are among
those excluded by (A;). We expect their behavior to be quite different and hope
to deal with it in a future paper.

The function @ defined in (1.2) is continuous and strictly decreasing for x = xo
where

xo = sup{x: P{| X| =< x} = 0}.
Thus we can define a, by
Q(ay) = (1/y) for y>yo

where yo = 1/Q(1). We will make the convention that a, = 1 for y € [0, y0]. Note

that @, 1 ®. The sequence {a,} will play the role of the normalizing sequence for

weak convergence of S,.; even though there is no weak convergence result outside

the domain of attraction setting it is still the case that under (A;) the sequence

{a»'S,} is tight and there is an approximate version of the local limit theorem

for this sequence [7]. This result then leads to the needed probability estimates.
Now we define

Cp = an/loglogn fOI‘ n= 3.

We may now state our results. To avoid needlessly complicating the statements
we assume that

S ={x € Z:P{S,=x} >0 forsomen} =Z.

Since X is a subgroup of Z in the recurrent case (see pages 15 and 19 of [13]) this
really amounts to relabeling the state space. Also recall that we are assuming
(Ay).

THEOREM 1. There exists 0, € (0, ©) such that for all x € Z
lim sup,—(c./n)L.(x) = 6, a.s.
THEOREM 2. Given ¢ > 0, there exists 8§ > 0 such that

lim Supn-—)oosuptx—ylsscn(cn/n) ILn(x) - Ln(y) | <e as.

THEOREM 3. There exists 6; € (0, ) such that

lim sup,_.« supx(cr/n)L.(x) = 6> a.s.



66 N.C. JAIN AND W.E. PRUITT

In this generality we do not yet know whether 6, = 6.. However, for X in the
domain of attraction of a stable law G we can show that 6, = 6, = 6z where 0¢ is
the constant for the analogous problem for the stable process corresponding to G.
This problem has been studied by Donsker and Varadhan [3] and they even
evaluated 6¢ for the symmetric stable processes. We obtain an invariance principle
and some of its consequences in the domain of attraction setting in [9] using
techniques and results from [3] and [8]. Theorem 2 is used in proving Theorem
3 and is also a basic tool in [9]. Theorems 1 and 3 are due to Kesten [11] in the
classical setting of mean zero and finite variance for X.

The required probability estimates are in the next section. They depend
heavily on the approximate local limit theorem results mentioned above that
have been derived in [7] in collaboration with Philip Griffin. His ideas are also
involved in the proofs of several of the lemmas. The techniques of Donsker and
Varadhan [3] will also be apparent. Incidentally, these estimates show that
{a,n"'L.(x)} is stochastically compact, i.e. tight and no subsequence converges
to a degenerate limit. Darling and Kac [2] have necessary and sufficient conditions
for weak convergence of {a,n"'L.(x)} and have shown that the limit must be a
Mittag-Leffler distribution. It would be of interest to determine the class of
subsequential limits of {a,n™'L,(x)} for random walks satisfying (A.).

One lemma that should be mentioned here since it should have many uses is
Lemma 7 which asserts that under (A;) and an aperiodicity assumption

w 1
Yoo | P{Sn=2} — P{Sa=x+ 2} | O(leQ(lxl)).
In the stable case the bound is | x |*! which is of the right order for z = 0. For the
classical case of summands having finite variance, Spitzer [13, page 354] shows
the sum without absolute values behaves like a constant times |x| as |x| — o
when z = 0. We believe the bound to be fairly sharp for z = 0 in general but we
have not tried to find a lower bound since we do not need it. Although Spitzer
has shown [13, page 352] that the potential kernel converges for general recurrent
random walk, the question of absolute convergence in general is still open.

Once the probability estimates are obtained in Section 2, the proofs of the
theorems are fairly standard Borel Cantelli arguments. These appear in Section
3.

Bert Fristedt has pointed out to us that the inverse of the local time at x is an
increasing random walk and therefore the results of [5] imply that there will be
a result like Theorem 1 for any recurrent random walk. The advantage of
Theorem 1 is that the normalization is obtained explicitly and can be easily
computed from the distribution of X.

Results analogous to Theorems 1-3 can be proved by essentially the same
techniques for general (i.e. non-lattice) recurrent random walks satisfying (A;) if
one replaces L, (x) by

Ln(x) = 2;‘;1 l(x—s,x-hs](s_j) X E Rl, n=1.

Of course, in the lattice case one wants § = %.
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2. Probability estimates. This section will consist of a sequence of lemmas
which will lead to the desired probability estimates for the upper tail of the
distribution of n'¢,L,(x). We will assume throughout that (A;) holds. A useful
consequence of (A;) is that there exists a A > 1 and an x, such that

2.1) 2Q(x)| for x=x

(see Lemma 2.4 of [12]). It then follows trivially that there is a ¢ such that
(2.2) Q) =cy'Q(y) for wl=sx=<y.

It is clear that

(2.3) x’Q (x)1

and then it is a consequence of (2.1), (2.3), and the fact that a,] that
(2.4) Yan<an<y"%a, for y=<1, ynlarge.

We also need to discuss the periodicity of the random walk a bit. Since we
have assumed that = = Z we know that ¢ (1) = 1 iff u = 27k for some k € Z where
¢ is the characteristic function of X. But the symmetrized random walk may live
on a subgroup pZ of Z for some integer p > 1 and then p is the time period of the
original random walk. It is determined by | ¢ (x)| = 1 iff u = 27kp~" for some &
€ Z. The periodic structure of the random walk is that S,, € pZ for all n = 0 and
for each & € [1, p — 1], {Syp+z, n = 0} will be contained in one of the p — 1 cosets
pZ + j j =1 -.., p — 1. For example, simple random walk has
p = 2. For a discussion of these facts see pages 42-43 of [13]. We will use p
throughout to represent this period.

First we will quote four results from [6] and [7] that provide the basis for the
later lemmas. We adopt the usual practice of using ¢, C for constants that depend
only on the distribution of X and may change from line to line. Recall that (A;)
is assumed throughout.

LEMMA 1. (Theorem 2.10 of [6]) There is a positive c such that
le@|=1-cQ(ul|™, 0<|u|=ap™.
Here ¢ is the characteristic function of X and @ is defined in (1.2).

LEMMA 2. (Theorems 1 and 3 of [7]) There is a C such that
(2.5) P{S,=x} = ag forall x€2Z, n=1.
Furthermore, for any M, there is a ¢ and an no such that

c
P{S,=x}= -

n

for all n = no and | x| = Ma, provided x is in the coset of pZ visited by S, at time
n.
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LEMMA 3. (Theorems 1 and 3 of [7]) There is a C such that
P{maxi<t<.|Si| = Ma,} =CM™ forall n, M=]1,
where A is as in (2.1).

Proor. To put in the max, use Skorokhod’s inequality.

LEMMA 4. (Theorem 4 of [7]) There is a C such that
|y — x|
2

n

(2.6) |P{S, =y} — P{S.=2a}|=C
for all x, y provided y — x € pZ, n = 1.
Next we need a technical lemma concerning integration.

LEMMA 5. Let H be a monotone nondecreasing right continuous function
defined on [0, ) with H(0) = 0. Then

dH (y) 1
=< , 0<a<l,
0,a] H (y) 1
and
dH ( y) 1 1
H"‘(y) —— {H(a)} , a>1.

(a,»)

Proor. These are trivial to prove (with equality) if H is continuous and H ()
= oo, For a general H write

dH(y) _ J’ j
- pr ® dH(y)
(a,b] H (y) (a,b] H(y) Ee

and use Fubini. Letting x (y, 2) = 1{(y, 2): 2 = H(y)} we have

dH(y) _ J J
= x(y, 2) dH (y)
(a,b] H (y) (0,00) ¥ (a,b]

H®) ©
SaJ' (z — H(a)) a+1+aJ’ (H(b) — H(a)) =51 a+1

H(a) H (b)

1
=—— (H'"(b) — H"*(a)).
l1—a
Letting a — 0 gives the first result and & — o the second.

Now we will prove the lemmas required for our probability estimates.
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LEMMA 6. Suppose that b,| and Y=} b, < Cnb,. Then
Yrelnn [[i-1 by, < (4Cmbm)” forall n,r=1,
wherem = [nr']1 + 1 and
Inry={k=(k, - - k) EZ :ki=0, Y- ki< n}.

REMARK. We will use the lemma with b, = a;'. The second hypothesis is
valid since by (2.2)

k 1/A n 1/A
ar = (c ;) a, sothat bp=< (c“ Z) b, k=1

Proor. We first block the interval of summation for %; into blocks of length
m. For any j; = 0, we have

(J, +1)m—1
k{=.;‘.y2tm bki S Cmbm

by hypothesis. Thus, if we expand I(n, r) to include all of these cubes of side
m which intersect it we obtain the bound N (n, r)(Cmb,,)” where N (n, r) is the
number of cubes intersecting I(n, r). Now if the cube with edges jim < k; <
i+ 1)m,i=1, ..., r, intersects I(n, r) we must have

Yiciim<n sothat Yi-iji<(n/m)<r.

Now the number of ways of choosing the j; to give a sum less than r is (2r : 1)
(see [4, page 38]) so that

N, r) =< <2rr_ 1) =4

Next we obtain the estimate for the “absolute potential kernel”. The appro-
priate analogue for x &€ pZ is in the corollary that follows.

LEMMA 7. There is a C such that for x € pZ, z € Z,
Cc

n=o |P{Sp=2} - P{Sp=x+2}|=——F~—.
2ie |5 =2} = P =TTe0=D

REMARK. If one assumes in addition to (A;) that x°@(x)1 for some p < 2,
then this follows easily from (2.5) and (2.6).

Proor. We are going to simplify the writing a little by assuming that z = 0.
The general case may be deduced from this easily by waiting until the random
time when {S,} hits the two point set {z, x + 2} and then starting over. Recall
that P{S, = 0} and P{S, = x} are both zero unless n € pZ so we shall assume
that n € pZ. This means that ¢"(u) will have period 27p " since for such n, S,



70 N.C. JAIN AND W.E. PRUITT

takes its value in pZ. By the inversion formula,
1 (7 .
P{S,=0} —P{S,.=x} = %J’ (1—-e™)p™(u) du

(/D)
== (1-e™)p"(w) du
2T )/
so that

| P{S, =0} — P{S, = x} |

(7/p)

(2.7) (7/p) p
S_J' (1—cosxu)|<p(u)|"du+—J | sin xu Im ¢"(v) | du.
n 0 T 0

We fix a § € (0, xo") with xo as in (2.1). Then since maxs<u<.;» | @ (1) | = s < 1, we
get a trivial bound of 3s” for the sum of both integrals over [, #/p]. This sums to
3(1 — s)™" which is acceptable since (2.1) implies that |x|Q(|x|) = 0 as |x]| —
o, Thus we will only be concerned with these integrals over [0, §]. For the first
one, we have by Lemma 1, (2.1), and (2.3)

é
Z?f=oj (1 — cos xu) |@w) |" du
0

8
= J (1-cosxu)(1—|p@)|) " du
0

8

J|=?
<c! J 22 Q™M) tdu + ¢t f 2Qw ™) du
0 |

x|_]

1e * dv . o dqy
=c x jlxl—v4Q(v)+2c . 700

1 " dv 2 1 = dy
+

2—A

<cl——— | =+2¢
Q(lx)) J, v* lx'Q(x|) J,, v

<c! 1 <1+ 2 )
x| Q(x]) A-1

Now we must deal with the second integral in (2.7) which is more complicated.
Since

(2.8) lo™(w) — Re o))" |=n|Im o) ||pw)|**
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we have
(2.9) [Im @™(w) | = n|Im @(u) || ) "~

Now EX = 0 so that

Im ¢ (u) = J sin uy dF (y) = f (sin uy — wy) dF(y),

luy P dF (y) + 2 j | yu| dF ().

|uy|>1

(2.10) | Im p(u) | = j

luyl=1

Using (2.9) and Lemma 1 we now bound the second term in (2.7):

8 8
Z;‘;;of |sinqum<p"(u)|dusj |sin xu Im @) | ¥r-o 2| W) |" " du
0 0 ’
8
=j |sin xu Im @ (&) | (1 — |@(w)|) 2 du
0

3
= c'zj |sin xu||Im @ (u) | (@ (™)) ? du.
0

Now we will bound | sin xu | by | xu| A 1, | Im ¢ () | by (2.10) and then change the
order of integration. In carrying out the u integration, there will be two cases: (1)
ly|>]x|and 2) |y|=|x]

CasE (1). In this case |y|™ < |x|™" and the u integral will be split into three
parts. First by (2.3)

0

|lyI71 , e , dv
C1y-2 gy = _dv
J; |xu||uy |2(Qw ™))™ du = | xy?| e
- x| Tdv x| .
“1y1Q%y) ), v ¥Ry

I

On the middle term we will need to use both (2.2) and (2.3); there will be no harm
in assuming that | x| = 1 since the lemma is trivial for x = 0. Thus we have for
lx|=v=|y|

vQ%(v) = QN *QW)* M NV = (c|¥|*Q(|y N (**Q(| x]))* v Y
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and then

(£ i 17 dv
flyl"’ |xu||uy | (™) du = |xy| ., 70%0)

|71

< (Cz\lxls—ZA(Q(lxl))z—/\lylz\z—l(Q(lyl)))\)—lJ v—/\(2—)\) dv

I

=c A =D PPQU My QUM T

The final term will not be needed if | x| < §; otherwise

8 M dw |¥| W v
—1)\—2
J; luyl(Q(u )) du = Iyl LO stZ(v) = |x|2}\Q2(|x|) JJ;O v3—2>\

I—l

-1 4
T2 1) x2Q%(|x])’

Now we have three terms to integrate with respect to dF(y) over the set |y| >
| x |. For the first two we introduce the monotone function H (x) = Jiyi==x y2 dF(y)
= x2K (x). Then by Lemma 5, we have for large | x|

1 dH (y)
- dF(y) =
=] Y*Q*(|y1) ()= 1]

cay [ W
(] x],0) y4Q2(y) (|x),00) Hz(y)

|y1>] x|

|x] 1 1

< = =C )
H(lx]) |x|K(|x]) |x|Q(|x])

where we have used (A;) at the last step. Of course, this also shows that the
integral converges and this is enough for small | x |. Similarly

dF(y)
FIRRCIEINA

|x|2)\—3(Q(|xl)))\—2 J

171>

dH(y) _|x|*(@(x[)*™
o DT (A= DHY(|x])

=|x|*7Q(|x )

EIRCIEIN 1
A—-DEMY(x])~  [x1Q(x])"

For the final term, we have using an integration by parts (see, e.g. Lemma 2.2 in
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[12])
1 (-]
©'Q (le) i1l y1dF) =3 Q*(|x|) (Jm GOy dy+ lle(lxl))
___1____ ’ A A
5x2Q2(|x|) <J|'x| YQ(y)y™dy+ |x|Q(|x|))

=25+ 1) mra
x=1")TalR(=n

Thus we have completed the proof for the terms arising from case (1).

Cask (2). In this case |y|™ = |x|™". The first integral will be

00

dv

fof
3 -1y)—2 —_ 3 —_—
J; | xue||uy P(QW™) % du = | xy°| ) Q)

ly|? Tdv_ |y

STeP@xD ), v - F @)

For the middle integral we introduce n = (A — 1)/(2 — A). Thenfor xo < |y| = v
= |x| (we assume here that A < 3/2s00<n<1)

v2Q%(v) = (V*Q))*"(W2Q (W) ™ = (|x|*Q(| x| (¥*Q(|y ) v?
and then for |y | = xo

)

Iy~
3 —1\\—2 . 3 —_—
J; |uy| (Q(u )) du = |y| j stZ(v)

<! 171

= (|« *@Ux Ny 7@y )™~
Finally,

8 s d 17l |y| (B4 dU
lel_ |uy | (@(u™)) u=|y| j 3Q O Iylz)\Qz(lyl) )
1 1
= .
20 —1) |y Q%*yD

If | ¥| < xo, this last term will not be needed since then [y [~ > §. Now we must
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carry out the integration with respect to dF(y) over |y| <|x|. The first term is

3
f _P apy =
| 7=l

2 dF
20%([x]) y ()

[7I= =l

_ 1
|x["@*(| )

__K(x) _ 1
|21 Q%(xD ~ |x|@(x])"

For the middle term we use the function H and Lemma 5:

| x| 2 (Q(| x|) = J’ ly1(@(y )" dF (y)

|yl=lx|
=< |x|—)\(1+n)(Q(|x|))—(l+n) _‘11{{:1&}'_)_
o) H ()
1 H(|x|) 1 1

< <

T2 PO@(x ) 1 (%@

The final term is only needed if | y | = xo. In that case we will use that for xo <y
=|x|

YRy = QNN = (|x*Q([x ) "(¥*Q(y)' ™
and then

1 dH(y)
———dF(y) = f Bk UL
2 32
J|y|s|x| I1Q(ly1) o @)
- - dH(y)
< |x| )‘(H")(Q(|x|)) (1+49) =
oren 2 )
1 1
S o ———
n|x|Q(x])
as above. This completes the proof of the lemma.
CorOLLARY. There is a positive C such that
o -1 _ _ — 1
2n=0 | X220 (P{Snpsr = 2} — P{Sppsr = x + 2}) | < C—IxIQ(IxI) .

REMARK. Note that for x & pZ, if one sums the absolute differences as in
Lemma 7, the series will diverge since there is no cancellation.
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Proor. We take /€ [0, p — 1] so that the random walk visits the coset
containing z at times congruent to ¢ (mod p), and without loss of generality we
assume it visits the coset containing x + z at times congruent to £+ j (mod p)
with 7+ j € [0, p — 1] and j = 0. Then

Yol X85 (P{Snp+r = 2} — P{Snpsr = x + 2})|
= Yn=o| P{Snp+e=2} — P{Snps¢+;=x + 2} |
= Ya=0| Tw P{Sj = w}(P{Snp+¢= 2} = P{Siprc=x+ 2z — w}) |
= YwP{S; = w} ¥i-o| P{Snp+¢=2} — P{Smpre=x+ z — w}|
C
|lx —w|Q(|x —w])

by Lemma 7 since P{S; = w} > 0 only if x — w € pZ. Now we break the sum into
two parts; for |x —w|<|x| we use the bound |x —w|Q(|x —w|)=¢c|x|Q(| x]|)
which is a consequence of (2.2) and for |x — w|=|x| weuse |x — w [*Q (| x — w])
= | x *Q (| x |) which follows from (2.3). This leads to the bound °
C Clx—w
2(w:0<|w—x|s|x|)P{Sj = w} —_— 2(w:|w—x|>|x|)P{Sj = w} g

|x|Q(x]) lx*Q(|x])
The first sum clearly leads to the desired bound; for the second we use
Ywlx — w|P{S; = w} = Yu| P{S; = w} + Yu|x| P{S; = w}
=E|S;j|+|x|=pE|X|+ |x]|=C|x].

Now we are ready to derive the probability estimates for the upper tail of the
distribution of c,n'L,(x). These will be given in the next five lemmas.

< Yuxx P{S; = w}

LEMMA 8. There is a C such that

P{% L,(x) = Ce"} = forall x,n,y.

e
(log n)”
Proor. We start with
E(L.(x))"=E 3} im0 I(S;, = %) --- 1(S), = x)
<= rE Yo<ji<...<jnl(Sj, = X) « -+ 1(S;, = x)
= ri¥ketnnP{ S, = x}P{Ss, = 0} - -- P{S,, =0}

where I(n, r) is defined in Lemma 6 and we have made the substitution &; = j;
— Ji-1. Now Lemmas 2 and 6 yield (with m as in Lemma 6)

(2.11) E (La(x))" < r!(Cimay")".

Now we take r = [log log n] which makes a., = ¢, so that

E(fﬁ Ln(x)) < r!(fﬁ) (Cimai) < C”
n n
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and so

P{% L.(x) = Ce"} = C"e‘*’E(En2 Ln(x)> =e " =e'(logn)™.

LEMMA 9. There is a C such that if | x — y| < ncn, then with A as in (2.2),

1 )o\ —1)2-llogy~!

Cn _ (A-1)/4 —(A-1)/2
P{n |Ln(x) Ln(y)l =Cn } =17 (log n

foralln, 0<n<1.

ProoF. We first give the proof assuming that x, y are in the same coset and
then explain the modifications necessary if x and y are in different cosets at the
end. Fix x and y and let ¥(2) = 1(x)(2) — 1(5)(2). Then we have

E(Ln(x) — La(y))* = T30 jam0 EY(S)) -+ ¥(8},).

We will first estimate Ey(S;) --- ¥(S;,). Without loss of generality, we may
assume that j; < j» < -+ < 5 and then we will let k; = j; — ji—1. This leads to

EY(S;) -+ W(8y) = ey, [0 W(2)P{ Sk, = 2i — 2i1)

with zo = 0. Now we carry out the sum over the z’s having even subscripts. This
is easy since each z is only involved in two consecutive factors. We obtain

EY(S;) + - ¥(S;,) = Yepzge-emwms [Lim Y(22i-) P{Sk, = 20} [[i-1 A, 2201, 22i4)
wherefor1=i<r-1
h(, u, v) = P{Sk, = x — u}P{S,,, =v—x} — P{S,, =y — u}P{S,, =v—1y}
and
h(r,u,v) = P{Sy, =x —u} — P{(S, =y — u}.

At this point we have obtained the essential cancellation and we may put on
absolute values. For i < r, we have by Lemma 2

Ih(i’ u, v)ISP{Sk2i=x_u}|P{Sk2;+1=v_x} _P{Skziﬁ =v—y}|

+ P{Sk,,, =V —y} | P{Sh, = x —u} — P{S,, =y — u}|

C
<= | P(Sh,., = v — 2} = P(Sk., = v =3}

k2l
c

kit

+

| P{Sk,, = x — u} — P{Sh,, =y — u}|.
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Thus
E(Ln(x) = La(3))” =< (2r)! Sretman | EY(S;) -+ - ¥(S;,) |
= (2r)! 2k€l(n,2r) Zzl,za,.n,zz,-_l H;:=1 | Y(22i-1) I Ca;ll
C
= (5: | P{Sk,,, = 22is1 = 2} = P{Sh,,, = 22is1 — J} |
20

C
koi+1

+ | P{Sk, = x — z2r-1} — P{Sk,, =y — 22r1} |.

+ |P{Sk2,< =X - zZi—l} - P{Skg,' = y - z2i—1} |)

Now we are going to sum next over k& € I(n, 2r). Since I(n, 2r) is defined
symmetrically in terms of k2;, k2;+1 and these are only involved in one factor in
the product we may interchange ks;, k2:+1 in the first terms of each factor so that
the two terms will each contain ay,.,. Now we sum over the k/’s having even
subscripts and increase the domain of summation by letting these go all the way
to infinity while still requiring &, + %3 + --- + k.1 < n. Finally, we relabel the
remaining &’s as k&, - - - , k, to simplify the notation. We obtain

E(Ln(x) = La(9)” = (21! Y25 s [Li-1| ¥ (22i-1) | Trerinn C7 [[i-1 @

1 r
. 2r—lcr
(Ix —yIQ(Ix—yI))
=@2n!C"(ma)" (|x—y|Q(x—y|) 7,

where we have used Lemma 6 and the fact that there are only 2" values of (21, z3,
«++, 22,—1) that give a non-zero summand. Now since | x — y| < nc. we have by
(2.2) that

lx—y1"Q(|x —y]) = cchQ(cx) so that
lx—y|Q(x—y|) = en~*e.n"log log n.
Using this in the above bound and again letting r = [log log n] leads to

2r 2r r r
E(% (Ln(x) _ Ln(y))) = Cr(zr)2r (ﬁ) (ﬁ) (_n____) nr()\—l) < Crnr()\—l).

n an/ \ciloglogn

We now use Markov’s inequality as above to complete the proof.

If x, y are in different cosets, we proceed as before except that before putting
on the absolute values we must sum over all the &; within blocks of length p.
Thus, for example, if we sum the term P{Sy, = x — u}P{Ss,,, = v — x} that
appears in h(i, u, v) over a block of length p for both k,; and %2:+1 we will obtain
only one non-zero term. Then we put on absolute values and continue as before.
When we sum over k2;, instead of having

2;2i=0|P{Sk2i =X = u} - P{Skzi =y - u}l’
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for example, which would diverge, we will have
Ym0l 2520 (P{Sr,pts = x — u} — P{Spprs =y — u})|

and we may use the corollary to Lemma 7 to estimate this. Since the last block
in the sum may be incomplete, however, one of the non-zero terms may be
missing from that block; we will bound the sum over the incomplete block by
one. Thus we are led to a bound for the sum over ks; of

c G
=@z oD 12-71Q(x -]
since u@ () is bounded above for |u| = 1 by (2.2). Since this is the same bound

as in the original proof (with a different constant) the remainder of the proof is
as before.

LEMMA 10. There is a C such that if | x — y| < ncn, then with A as in (2.2),

(A —=1)2"llogn !
1 ) &1

P{maxn<k<2n —| Li(x) — Li(y)| = Cn*~ "/“} = Cyn~ A7V 2(
logn

foralln,0<n<%%.

Proor. The proof is as for Lévy’s inequality. First choose no so that the
probability estimate in Lemma 9 is at most % for all n € (0, %) if n = no (no =
exp(exp(l + 2/(A — 1))) will suffice) and so that c,n™'] for n = no (to see this,
xQ (x)| for large x by (2.1); use this with x = c,). Next, with C as in Lemma 9, for
n<~k=<2n;let

Ay = {%l Lu(x) — La(y)| = 3Cn ‘*“’/‘}, T = ASAS+ -+ Af-1As.
By Lemma 9, we have with {/(2) = 1(x(2) — 1(,3(2) and £ < 2n — no

{Fk, |25 4(S)| = Cno“”/“}

= EQP{F;Z, S = E}P{%IZ?'LB" -1 ',l/(S, + g)l > C,q(A—l)/4}

<% YP{Tx, S =&} = % P(I'4),

since % = n implies that 2n — k& < & so that ca,—x(2n — k)™ = cx&~". Thus, letting
m=2n — ny

PUFpT) = Y in P(TR) =2 Y7 P{Fk, %| YIEY(S)| < C"'Io‘_l)/4}
= 2P<U7;‘.,,{Fk, —| IS (S)| < C,,,o\—lm})

=< 2P{% | Lan(x) — Lan(y)| = 2Cn“‘”/“}.
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Finally, by (2.3)

c3.Q(can) = c2Q(cn) and so &< (

9 log log 2n Ve Con
n

loglogn 2n
so that ¢,n™" =< 2¢2.(2n) " for large n. Thus we can apply Lemma 9 to obtain the

required bound for P(UZ-.T":). For the remaining no values of &, we simply use no
times the bound in Lemma 9.

LEMMA 11. Given ¢ > 0, there is a 6 > 0 and a C such that

c
P{maank52nSup|x—y|58cn Zk| Liy(x) — Li(y)| = e} = Togn for all n.
Proor. By Lemma 3, we have
P{L:,(x) #0 forsome |x|= (log®n)as} =< .
log®*n

Thus we may restrict our attention to those x, y in the interval [—y», y.] where
v» = (log’n)as. + c, since we will take § < 1. Now we will split the interval [—y.,
¥»] into shorter intervals of length &c.. Then any pair x, y with | x — y| =< 8¢y, x,
¥ € [—¥n; yn), will either be in a common interval or in adjacent intervals. Since
the probability to be estimated is monotone in §, there is no loss of generality in
assuming that 8¢, = 2/ for some j € Z. Then, if

iScn <x =< (i + 1)8c, <y = (i + 2)8cn
we will use
| Li(x) — La(y)| < | La(x) — Lx(i8cn)|
+ | Le((i + 1)8cn) — Lr(iScn) | + | La(y) — La((i + 1)8cn)|.

Therefore, it will suffice to estimate
c
P{maxnsks2n1'naX0<xssc,. -I;k| Lx(0) — Lp(x)| = 8}

and multiply by the number of short intervals since the estimate will be inde-
pendent of the location of the interval. Now if 0 < x < §c, = 2’ we may write x
= YJ=0 xi2' where each x; = 0 or 1. Then if xn = }}-m x:2' we write

Li(0) — Li(x) = Ym0 (La(Xm+1) — La(x))

where xj+1 = 0. Now if we let x vary we see that there is only one increment
possible for m = j and 2/ 7™~ possible ones that may arise for m < j depending on
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the location of x. Thus, by Lemma 10,

P{maxnsksz’nmaxkaSCn %ILk(O) = Li(x)| = 8}

(2.12) =Yi-o 2j_mP{maxnsks2n %k | Lx(0) — Ly(2™ | =€ y/ ™1 — Y)}

1 ) (A —1)2"Nlog(2/~m§—1)

= Shmo 297mC (27 8) "0 -"/2(-——10g -

if we take 7 = 278 and let y = 27*~Y/4 and choose 8 < % (which makes 7 < %)
and also so that C§*P* < ¢(1 — y) where C is the constant in Lemma 10.
Collecting the terms in 2/™ leads to

2(j—ni)(l+()\—1)(1—lognlogn)/2)

so that for n sufficiently large this will give a convergent geometric series in m.
Thus the probability in (2.12) is bounded by

1 (A—=1)2"llogs !
—(A-1)/2
Cs <——log n) .

Now 8 may be chosen to give any desired positive power on the 1/log n term. It
remains to estimate the number of short intervals. For this we have

2
i 1) = of temon)
dcn Cn
and by (2.4) for large n

(2.13) az, < (2 log log n)*c,.

This is sufficient since we could choose § above to make the power on the
1/log n term equal to 5 in the probability estimate.

The final lemma will give a lower bound for the tail of the distribution of L, to
complement the upper bound obtained in Lemma 8.

LEmMA 12. For any n > 0, there is a positive ¢ such that

n
P{ﬁLn(x)20}2< 1 ), | x| < an,
n logn

for all sufficiently large n.

Proor. Let m = yn/log log n where y will be chosen later but we note that
there is no harm is choosing it so that m will be an integer. We will use the
inequality
(EZ)?

(2.14) P(ZzcEZ)= (1~ 7
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which holds for any nonnegative random variable Z (see page 6 of [10].) Now for
| 2| = 2an, we have for m sufficiently large

EL.(2) = Y70 P{Sj =2} = Y7 s P{S; = 2} = cmay!

by Lemma 2 and (2.4). Thus taking ¢ = % and using (2.11) with r = 2 in (2.14)
leads to

P{L,,,(z) = cﬂ} =c foral |z|=2an.
Am
Now, by Lemma 3, we may choose M so that
P{Lm(z) = cgz_, | S | SMam} =c forall |z|=2am.
Using Lemma 2 again, we have

m
P{Lm(z—y)ZC——, | Som + y|=< am}ZC forall |z|=< am, |y|=< anm.
a

m

Iterating this i times leads to

P{L2im(2) = cﬂ} =c' forall |z|=<an.

am

Now we use Lemma 2 one more time with /= [n/2] to obtain
a
P{|S;— x|<am} = czﬁ for all |x|=< @..
n

—-1/A

Now cana,' = ci(log log n)™* as in (2.13). Thus we have

(2.15) P{Lﬁz,-m(x) =c ;ﬂ} = cic‘(loglog n)™'* forall |x|=< a..

m

We take i = [log log n/4v] so that /+ 2im < n, and for y = 1 and n large

m_nf_ 4 ) _1 >y AL,
an 4 loglogn cayA Cn

and since c is independent of y we have

ci = eilogc > e(loglogn)(logc)/4y = lOg n(l°g°)/47.

Thus by choosing y large enough so that (log ¢)/4y > —n, we see that (2.15) is
sufficient to give the lemma.

3. The main results. We are now ready to prove the theorems stated in the
introduction. The proofs are quite easy now that we have the required probability
estimates.

PrROOF OF THEOREM 1. Let n, = 2% and choose y > 1. By Lemma 8 we have

lim supy < L, (x) < Ce.
ng
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We may easily extend this result to the entire sequence by increasing the constant
since L,(x) is monotone in n and since

3.1) Con = Cn = 27 con

for large n by (2.1).
For the lower bound we use n; = [exp(k®)] for some p > 2, and let m;. = n; —
n,—; and

Cm -
Ax = {_k Ey&”}z—l l(x)(Sj) = C}
me
where c is as in Lemma 12 with n = p~". Then for % large

P(Ar) =Y ,P{Sn,_, = y}P{%"f Lp(x—y) = c}
(3.2)

1Y c
= <10gmk) P{|S”k—1 —xIS amk} Zz

by Lemmas 12 and 3. Next we fix M > 1, suppose that 2 < /— 1 and let
Cm n,—~ne—1
= = — T 1 X S + 2 .
Ty =Ty { . Ljemren, L5+ ) c}

Then we have
P(ArA,)

(3.3)
= ZyP(Ak’ Snk = y)P(Py) = ZlylsM’a,,kP(Ak, Sn,, = y)P(I‘y) + CM—*

where we have used Lemma 3 to estimate P{|S,,|= M‘x,}. Now we choose y;
and y, to maximize and minimize P(I',) for |y| < M‘a,, and y in the coset for
which (S, =y) > 0:

P, = P(,) <P(T,) forall |y|=M‘%.,, suchthat P(S,,=y) >0.
Then
P(TYy,) — P(I}y,)

= 22(1:,{Sn,_,—n,e =2 yl}

= P{Sy -m=2- yz})P{c—m’ Ln,(x—2)= c}
(3.4) me

= lelsm/an/_‘—nk | P{ Sn/—l_nk =2z yl}

— P{S\,_-n, = 2 — y2}| + 2CM ™,
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where we have used Lemma 3 and the fact that | z| = 2M ‘@, ,—», implies that
|z -y|=2M%.,,, ,, — Mea,,=Ma,,, _,

since 2n; < 2n,-; < n,, for /= 2. Now we estimate the sum in (3.4) by using
Lemma 4. Since yy, y: are in the same coset, y1 — y: € pZ, and

P(T,) - P(T) =< 4Mea,, . + D=2l L oonr-oc aare_ O | soppo.
n/-1—n; L7 e (7%

Now we need to estimate P(T’,,). We have
P(A;) = ¥y P{Ss, =y} P(Ty) = ¥ y=pta,, P{Sn, = y} P(Ty,)
= P{|Sn,| = an}P[T,,) = cPT),).
Putting this in the previous estimate leads to

PT,) = CP(A,) + CM*— 2 4 e,

Now, recalling (3.3) we have

35) P(ArAy) = P(AR)PTy) + CM~?

< CP(Ax)P(A,) + CM**—2_p(A,) + CM-,

n/i-1—ne

This estimate is good enough to allow us to use a generalized Borel Cantelli
Lemma (see page 317 of [13]) because the first term on the right hand side causes
no trouble and

an an an
2(21&2 M2t’ 'k < CZ&’zk+2 MZJ 'k < CM2k+4 ‘3 < C
ny-yne a"/—l a"k+1

where we have compared the series to a geometric one since

1/2
M2t’+2 a Ny
e M2 (22) So
an, M ne

and for the final estimate used

1/2
Mo G _ ke (ﬂ) < 2M*Hexp((k — (k + 1)°)/2)

Qn,,, Nr+1
< 2M***exp(—pk*~/2} — 0

since p > 2. Thus the middle term in (3.5) leads to CP(A:) when summed on ¢
while the last term will give CM~***? which is still summable on k. Finally we
simply use P(ArAr+1) < P(A:). Now the sum of the lower estimates for P (A )
in (3.2) diverges so we have P(A i.0.) = 1 by the generalized Borel Cantelli
lemma and the Hewitt-Savage zero-one law. To complete the proof we simply
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observe that

Cny Cmy, Crmy, Crmy, -1
. L, (x) = P L, (x) ~ o Ly, (x) = o ¥ L (S)).

The lim sup is constant a.s. by the Hewitt-Savage zero-one law since cx/k — 0 as
k — . The reason that 8, is independent of x is that for fixed x, y

L.(y)

L.(x)

This follows from the strong law of large numbers and the fact that the expected
number of visits to y between visits to x is one (see Corollary 2 on page 49 of

[1D.

PrOOF OF THEOREM 2. Use n; = 2* in Lemma 11 after dividing & by 2'*
(recall (3.1)) and Borel Cantelli.

(3.6) —1 as.

ProoF oF THEOREM 3. The lower bound is a consequence of Theorem 1.
The upper bound will follow easily from Theorem 2. Fix ¢ > 0 and ‘obtain the
corresponding 8 from Theorem 2. Choose x, so that max,L.(x) = Lx(x»). Then
by Theorem 2, for large n,

Cn = ZJ’ % L"(y) = Z(y:ly—x,.lsSc,.) % (Ln(xn) + Ln(y) - Ln(xn))

> <-C-"- La(xa) — a>8cn
n
or
Cn .
—L,(xn)<6"+¢
n
which is sufficient.
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