Open Access
Translator Disclaimer
May, 1983 A New Proof of the Hartman-Wintner Law of the Iterated Logarithm
Alejandro de Acosta
Ann. Probab. 11(2): 270-276 (May, 1983). DOI: 10.1214/aop/1176993596

Abstract

A new proof of the Hartman-Wintner law of the iterated logarithm is given. The main new ingredient is a simple exponential inequality. The same method gives a new, simpler proof of a basic result of Kuelbs on the LIL in the Banach space setting.

Citation

Download Citation

Alejandro de Acosta. "A New Proof of the Hartman-Wintner Law of the Iterated Logarithm." Ann. Probab. 11 (2) 270 - 276, May, 1983. https://doi.org/10.1214/aop/1176993596

Information

Published: May, 1983
First available in Project Euclid: 19 April 2007

zbMATH: 0512.60014
MathSciNet: MR690128
Digital Object Identifier: 10.1214/aop/1176993596

Subjects:
Primary: 60B05
Secondary: 60F05 , 60F10 , 60F15

Keywords: cluster set , Exponential inequality , Hartman-Wintner law of the iterated logarithm , law of the iterated logarithm in Banach spaces

Rights: Copyright © 1983 Institute of Mathematical Statistics

JOURNAL ARTICLE
7 PAGES


SHARE
Vol.11 • No. 2 • May, 1983
Back to Top