Open Access
August, 1982 Operator-Stable Laws: Multiple Exponents and Elliptical Symmetry
J. P. Holmes, William N. Hudson, J. David Mason
Ann. Probab. 10(3): 602-612 (August, 1982). DOI: 10.1214/aop/1176993770

Abstract

We characterize the class of linear operators on a finite dimensional inner product space which are the exponents of a full operator-stable law. This answers a question of Paulauskas [6] concerning those operator-stable laws whose characteristic functions are the exponential of quadratic forms. The symmetry group of such laws must be conjugate to the group of all orthogonal transformations on the space.

Citation

Download Citation

J. P. Holmes. William N. Hudson. J. David Mason. "Operator-Stable Laws: Multiple Exponents and Elliptical Symmetry." Ann. Probab. 10 (3) 602 - 612, August, 1982. https://doi.org/10.1214/aop/1176993770

Information

Published: August, 1982
First available in Project Euclid: 19 April 2007

zbMATH: 0488.60026
MathSciNet: MR659531
Digital Object Identifier: 10.1214/aop/1176993770

Subjects:
Primary: 60E05

Keywords: central limit theorem , multivariate stable laws , Operator-stable distributions

Rights: Copyright © 1982 Institute of Mathematical Statistics

Vol.10 • No. 3 • August, 1982
Back to Top