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FUNCTIONAL LIMIT THEOREMS FOR EXTREME VALUES OF
ARRAYS OF INDEPENDENT RANDOM VARIABLES

BY RICHARD SERFO0ZO
Bell Telephone Laboratories, Holmdel

For an array {X,} of independent, uniformly null random variables,
several necessary and sufficient conditions are given for the convergence in
distribution of its extremal process M, = (M}, M2, -..) as n — o, where
ME(t) = kthlargest {X,.:i/n < ¢}, t> 0. It is shown that if M, converges, then
its limit is an extremal process of a Poisson process on the plane. The limit
cannot be an extremal process of a non-Poisson, infinitely divisible point
process, which is possible for certain stationary variables. A characterization
of the convergence of M,, without the uniformly null assumption, is also
given.

1. Introduction. Let X,1, X2, -+ be a sequence of independent random variables
(n = 1) that take values in the interval (xo, ) for some xo = —. The kth extremal process
of this sequence is defined by

ko . | Rthlargest {X,i:i/n <t} for t=Fk/n
(L. Mn(®) = {M,’:(k/n) for 0<t<k/n.

Denote by &, the point process on the Euclidean space S := (0, ©) X (xo, ®) with points at
locations (i/n, X,:), i = 1. The M’ can also be viewed as the kth extremal process of &,.
The kth extremal process of a point process ¢ on S with points at (7, X), { = 1, is defined
by ¢r£(t) = kth largest X; with T < ¢; see (2.1) below. Denote by D the set of nondecreasing
right-continuous, piecewise constant functions from R* := (0, ) to (xo, ®) that take a
finite number of jumps in any compact subinterval of R*. Endow D with the topology
generated by the Levy metric: ¥, — y in D if and only if y.(¢) — y(¢) for all y-continuity
points ¢; see Wichura (1974) and the M; topology in Skorohod (1956). Denote by D, the set
D endowed with Skorohod’s ¢J; topology [3, 16, 22, 29]. In this paper, I give several
necessary and sufficient conditions for the convergence in distribution of the random
elements M, := (M}, MZ, ...), n =1, in the product spaces D” and DY. I also identify the
family of possible limits of M. In particular, the results yield limits for the joint distribution
of the k-largest, £ = 1, of independent, arbitrarily distributed random variables, and for
the distributions of certain functionals of these maxima, such as their record levels and
record times.

For the case X, .= (X; — a,)/b, in which Xi, Xz, ... are independent and identically
distributed and a, and b, (b, — ®) are constants such that lim,_..P(X; < b.x + a,)" =:
G(x), x > xo, and G is continuous, it is known that ¢, —4 £ and

(1.2) M, = ($16n, $2bn, +++) >0 (1€, ¢2€, --+) in DY,

where £ is a Poisson process on S with intensity E£((0, ] X (x, ©)) = —log G(x)’, and G is
necessarily one of the three classical extreme value distributions; see Lamperti (1964),
Resnick (1975), Mori and Oodaira (1976), Weissman (1975¢) and Galambos (1978). Weiss-
man actually proves that £, —4 ¢ and (1.2) holds, if the X; are independent with arbitrary
distributions such that M. —, M in D, and G(x) := P(M(1) < x) is continuous; here £ is
necessarily a Poisson process with —log E£((0, £] X (x, ®)) = G(t’x) (8 # 0) or =
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G(x — clogt) (c = 0). Similar convergence theorems for the extremal processes of stationary
and martingale-difference sequences appear in Leadbetter (1974), Mori (1977), Adler
(1978), and Durrett and Resnick (1978). Other related references are [2, 4-12, 15, 17-20,
23-28, 301.

2. Main Results. Consider the process M, = (M1, M2, ...) as defined in (1.1). In
addition to the notation above, let .# denote the set of nonnegative measures p on S (with
its Borel o-field) such that u(¢, x) < o, (¢, x) € S, where

u(t, x) == p((0, £] X (x, ®)), t>0,x= x,

(in particular, y is finite on compacts). Endow .# with the vague topology: the smallest
topology that makes the mapping p — [s fdu continuous for any continuous real-valued
function f on S with compact support; see Kallenberg (1975). Let M., = {p € A :u(2, xo)
= o, t > 0}, and denote by .#; the set of all u € .#. such that for each line L, = {t} X (xo,
), t > 0, either u{L,} = 0 or there is exactly one x > xo such that p{(¢, x)} > 0 and p{L\(¢,
x)} = 0. Denote by ./the set of all integer-valued measures p € .4 such that u € /.., or

w(S) =00 and pu(t x%) <o, ¢t>0.

Endow .#'with the relativized vague topology. Let 4z, = #.. N A and A{ = 4 N A. Finally,
let ¢r(k = 1) denote the mapping from A"to 2 defined by

_ Jinf{x > xo:p(t, x) <k} for t>m
2-1) ounlt) = {(I)ku(n +) for 0<t=m,

where 7, ;= inf {t > 0:u(¢, x0) = k}. For any p € A with atom locations (¢, x), i = 1,
oru(t) = kth largest {x;:t; <t} for t=r.

In particular, note that M, = (ML, M2, «..) = (¢1n, d2kn, +++).

This representation of M,, was first discussed in Pickands (1971) and later used in [1, 7,
18, 21, 24-26] to prove the convergence of M, in (1.2) as a consequence of the convergence
of £, to a limit that is, with probability one, in the continuity set of each ¢, 2 = 1. Mori
and Oodaira (1976) partially describe the continuity set of these mappings. A more
complete description is as follows.

LEMMA 2.1. Suppose p, — pin N and u € Nw. Then duin — drp in D for each k = 1.
This convergence also holds in D, when p € A1.

Proor. To prove ¢pu, —¢pit in D or Dy, it suffices to prove this convergence on any
interval [a, b] where a and b are ¢,u-continuity points. Fix £ and let a@ < b be ¢ru-continuity
points. For the sake of brevity, choose a small enough so that ¢xu(a) < ¢ru(d) (here
drp(0 +) = x0 < Ppu(b)). Pick x* < ¢pu(a) and t* > b such that ¢ru(t™) = ¢pu(d) and

w(@B) =0 where B = (0, t*) X (x*, «).

Let (¢1, x1), + « +, (tm, Xm), with ¢, < . .. <, denote the locations of the atoms of y in B, and
let B;, ..., B,, denote open spherical neighborhoods of these points with diameters .
Choose ¢ small enough so that the B,’s are disjoint and in B. Since u, — p in .4 there is an
integer N such that for alln = N

pa(B) =p(B), 1=i=m, and u.(B\UZ,B)=0.
Then | prtn(b) — dapu(b)| <e, n=N,
and hence ¢ru, —¢pp in D.

Now suppose u € A1. Then, in the setting above, t; < ... < t,. Choose the ¢ <
1/2 min{¢; — ti—1} so that the B/’s are disjoint and in B. For each n = N, let (4., xx)),
1 =j =< pa(B)), denote the atom locations of p, in B;. Let A, be a mapping from [a, *] to
itself such that A.(a) = a, A.(t*) = t*, \o(t:) = min{t,,:1 <j < p(B)}, 1= i=m, and A, is
linear between these points. Then clearly
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Alt) —¢|<e and |duinn(t)) — dau(t)| e, a<t=<b,

since the discontinuity points of ¢xu in (0, b] are contained in {¢, - - -, t,}. This proves
drn — dri as functions on [a, b] in Skorohod’s /; topology, and hence this convergence
holds in D;.

Lemma 2.1 describes a subtle difference in the continuity of ¢, on the two spaces D and
D,. It is easy to construct . that converge to some p £ .41, and that for some % the ¢y,
converge to ¢pu in D but not in D;.

The following result characterizes the convergence of M,, in D*; the stronger convergence
in DY is characterized in Corollary 2.4. Here and below X1, X,2, - - - are called uniformly
null if

lim, o MaxicmnP(Xp > x) =0, x>x, and m=1.

Also, [¢] denotes the integer part of ¢.

THEOREM 2.2. For independent, uniformly null X,1, X,z, - - -, the following statements
are equivalent.
(i) M, —4 M in D> for some M.
(ii) ML —y Yin D for some Y.
(iii) Y129 P(X. > x) = A(¢, x) for each (¢, x) € S with A(3{(0, t] X (x, ©)}).= 0, for some
A E M.
(iv) & —o £ in Nfor some & € A, as.

If any one of these statements holds, then M = 5 (¢:£, ¢2€, -+ +), Y =5 ¢:£, ¢ is a Poisson
process with intensity A, and

(2.2) P(Y(t) = x) =exp —A(t, x), (tx)ES.

Hence any one of the limits A, £, M and Y determines the other three.

Proor. Clearly (i) implies (ii), and (ii) implies (iii) since under the independence and
uniformly null assumptions

PM(t) < x) =[] P(X,.; < x) = exp 3" log P(X,; < x)
=exp — (1 + o(1)) "1 P(X,; > x).

Also (iv) implies (i) by Lemma 2.1. I will finish the proof by showing that (iii) is equivalent
to (iv); the proof that (iv) implies (iii) is included in order to prove the assertions following
statement (iv). '

Suppose (iv) holds. Let £.; be the random element of .#"that has a unit mass at (i/n,
X.i). Then &, = Y2, &u. Let %(S) denote the relatively compact Borel sets of S, and let
A6 denote the set of all nonnegative integer-valued measures on S, excluding the zero
measure, that are finite on compacts. The uniformly null assumption implies that for any
B e #(S),

(2.3) sup:P(£.:(B) > 0) = maxicm.P(X,i > x) = 0(1),

where m and x are chosen such that B C (0, m] X (x, ). Then by Theorem 6.1 in [13], the
supposition £, — £ in 4 implies that
(2.4) Y P(&u(B1) = ki, -+, &ni(Bm) = km) = A{pp € Mo:u(By) = Ry, -+, w(Br) = k)

for any integers ki, - - -, k», and rectangles By, .-+, B, in #s = {B € #(S):A{u(3B) > 0}
= 0}, where A is some measure on .4; which satisfies

J (1—e™)A(dp) <o for BE %(S).

- 70

In this setting, A is concentrated on the Dirac measures in .#; (those with one atom of
unit size). To see this, first note that from (2.4) and the structure of £,,, it follows for any
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disjoint rectangles B;, - - -, B, in %, that
A{p:p(B1) >0, -, u(By) > 0}
=limu e 3i P(£u(B1) >0, -+ +, £i(Bm) >0) =0 for m=2,
(2.5) and A{p:u(B1) = 2} = limye Y P(n(B1) = 2) = 0.
Then an application of Lemma 2.2 in [13] yields
(2.6) A{p:p restricted to B is not a Dirac measure or the zero measure} = 0

for any rectangle B in %,. Since there exist rectangles B, Bs, - - - in %, such that B, 18
(A6.1 in [13]), then it follows that (2.6) holds for B = S, and so A is concentrated on the
Dirac measures in .45 as asserted.

Now let A be measured on S defined by

AB) = A{p:n(B) =1} for B € A(S).
Then from (2.4),
@7 S P € (x, 7)) = 3 Pul(s, 8] X (%, ) = 1) >A((s, £] X (x, ¥])

for any s < ¢ and x <y with A(3{(s, £] X (x, »1}) = 0. This proves the convergence statement
in (iii). From (2.5) and (2.7) it follows that ¢ (the limit of £,) is necessarily a Poisson process
with intensity A; see Corollary 7.5 of [13]. Since ¢ is Poisson, then A(4) < o if and only if
§(A) < » as. for any Borel set A in S. Consequently, ¢ € 45 a.s. is equivalent to A € .
This completes the proof that (iv) implies (iii).

Now suppose (iii) holds. This implies (2.7), and so by Corollary 7.5 of [13], ¢, —5 ¢
where £ is a Poisson process with intensity A. Moreover, £ € .4, a.s. since A € 4. Thus (iv)
holds.

This completes the proof that (i)-(iv) are equivalent statements. The arguments above
also justify the last two assertions in Theorem 2.2.

REMARK 2.3. Mori (1977) describes a stationary strongly mixing sequence X; for which
M., with X,; = (X; — @.)/b., converges to the extremal process of a certain non-Poisson,
infinitely divisible point process. This suggests, analogous to the central limit theory for
sums, that for independent uniformly null arrays, the set of possible limits of M, is the set
of extremal processes of infinitely divisible point processes. Theorem 2.2 shows, however,
that this is false. The next result, along with Theorem 2.2, shows that the set of limits of
M. is the set of extremal processes of Poisson processes with intensities in M..

PROPOSITION 24. For any \ € M., there exist independent, uniformly null X,;, X,2,
-« - that satisfy (iii) in Theorem 2.2.

PROOF. Fix A € A, and let A := U, {t::A({t} X (x, ©)) > 0}. This set is countable,
since the sets in the union are countable and nondecreasing as x | xo. Define P(X,; > x)
= min{1, H,(x)}, x > xo, { > 1, where

2.8) Hou(x) = M{(G — 1)/n, i/n)\A} X (z, ))
+ Ni* Toea M(s) X (x, ))3.([[ns], [ns] + N,]),

the N, are integers such that N, »o and n™'N,, — 0 as n — o, and §; is the Dirac measure
on R* with unit mass at i. The distributions of the X,/s are chosen so that they partition
the mass of A, with a special accounting for the atoms of A. Since A is atomless on the first
set on the right side of (2.8), one can show that the X,, are uniformly null. Furthermore,
(iii) in Theorem 2.2 holds because for n sufficiently large )

T2 P(Xoi > x) = (0, [n£]/n] X (x, »))
= Nu' Yoea AM{s} X (%, ©))min{0, N, — [nt] + [ns]},

and the last term converges to zero.
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The next result vis-a-vis Theorem 2.2 shows the differences between the convergence of
M, in D” versus D?. This result follows from Theorem 2.2; Lemma 2.1; and the facts that
convergence in D; implies convergence in D, and for ¢ Poisson, A € .4, if and only if { €
M.

COROLLARY 2.5. For independent, uniformly null X,., X2, -+, the following state-

ments are equivalent.
(i) M, —»5 M in DY for some M such that p. € M, where u(t, x) = —log PM(t) < x),

(t,x) €S.

(ii) ML —o Y in D for some Y such that p € M1, where u(t, x) = —log P(Y(t) = x),
(t, x) €S.

(iii) Y P(X,: > x) —=A(¢, x) for each (¢, x) € S with A(8{(0, ¢] X (x, ®)}) = 0, for some
A E M.

@iv) & —9 Ein N for some EEN  a.s.
The last two assertions of Theorem 2.2 and Proposition 2.4, with A € /1, also hold in this
setting; and hence p. = A.

3. Additional Results. The uniformly null assumption in the results above can be
relaxed at the expense of specifying the limit of M, as follows (this limit is initially
unspecified in Theorem 2.2 and Corollary 2.5).

COROLLARY 3.1. Let ¢ be a Poisson process on S with intensity A € M that is
atomless. For independent X1, X,2, - - -, the following statements are equivalent.
(i) M, >y (i€, ¢2€, --+) in DY,
(i) M, —o ($:€, ¢2f, -+ +) in D™
(iii) T4 P(Xn: £ (x, ¥]) = exp — A((0, £] X (x, ¥]), £ >0, xo < x <.
(iv) & >0 éin A

ProoF. By Theorem 2.2 and Corollary 2.5 the statements (i), (ii) and (iv) are equiva-
lent. Now (iv) implies (iii) since for any I = (0, ] X (x, ¥], x <y,

1" P(X,: & (x, y)) = P(&.(I) = 0) — P(¢(I) = 0) = exp —A(]).

Finally if (iii) holds, then (iv) follows by Theorem 4.7 in [13], since for U =U%Z; (s;, t;] X
(xj, y/] where si < ti < - <sp<twand x;1 <y1 < +++ < Xm < Ym,

P&(U) = 0) = [T [Tt 101 PXni € (x5, 2]
— exp — Y21 A((s5, 4] X (%, 37]) = PE(U) = 0),
and for any I = (s, £] X (x, y]
Et(I) =3 101 PXni € (x, ) = — 31 1.1 log P(Xui & (x, y]) —A(I) = E£(D).

REMARKS 3.2. The preceding results with appropriate notational changes also hold
for vector-valued, multiparameter extremal processes of the form MZ(t): = (M%(t),
oo, MEa(E) t: = (81, -+, tn) € (0, )™, where

ME,(t) = kth largest {X,£(i):i1 < [nti], -+ -, in < [nt.]}, i< €= d,

and (X,:(d), -+, Xpq(i)), i: = (i1, + -+, im) € {1, 2, .--}™, are independent vectors for each
n = 1. Here &, is a point process on the m + 2-dimensional Euclidean space with points at
@@/n, « -+, im/n, Xoe(), O1 € (1,2, - 3", £=1, ... d. An example of this is X,.:() = (X;
— @,)/b, and X,2(i) = (—X; — ¢,)/d», and so M %(t) and M %,(t) record the kth largest and
kth smallest of the sequence {X;}. The results above, and their vector analogues, can easily
be extended to include (1) randomized norming constants 7,(¢) instead of [n¢] as in Durrett
and Resnick (1978) and Galambos (1975), and (2) random (or deterministic) locations 7'
instead of i/n associated with X,; as in Westcott (1977). Limit theorems for records and
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record times can also be obtained by applying Theorem 2.2 and the continuous mapping
theorem as in Resnick (1975).

4. Acknowledgement. I am grateful to Ward Whitt for his comments on this study.
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