Translator Disclaimer
September 2020 A sharp square function estimate for the cone in $\mathbb{R}^3$
Larry Guth, Hong Wang, Ruixiang Zhang
Author Affiliations +
Ann. of Math. (2) 192(2): 551-581 (September 2020). DOI: 10.4007/annals.2020.192.2.6

Abstract

We prove a sharp square function estimate for the cone in $\mathbb{R}^3$ and consequently the local smoothing conjecture for the wave equation in $2+1$ dimensions.

Citation

Download Citation

Larry Guth. Hong Wang. Ruixiang Zhang. "A sharp square function estimate for the cone in $\mathbb{R}^3$." Ann. of Math. (2) 192 (2) 551 - 581, September 2020. https://doi.org/10.4007/annals.2020.192.2.6

Information

Published: September 2020
First available in Project Euclid: 21 December 2021

Digital Object Identifier: 10.4007/annals.2020.192.2.6

Subjects:
Primary: 35L05 , 42B15
Secondary: 42B20 , 42B25

Keywords: incidence estimate , local smoothing , square function estimate , wave equation

Rights: Copyright © 2020 Department of Mathematics, Princeton University

JOURNAL ARTICLE
31 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.192 • No. 2 • September 2020
Back to Top