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MULTIPLE COMPARISON OF REGRESSION FUNCTIONS!

By EMIL SPI¢TVOLL
University of Oslo

1. Introduction. The situation discussed under the heading “Regression
Analysis”, treated in many textbooks, is that we have an n x 1 random variable
y which is N(X’ 8, ¢*I), where X’ is a known n X p matrix, 8 is an unknown
p X 1 vector parameter and ¢° is an unknown variance. The statistical problems
are to estimate parameters and to test hypotheses concerning the parameters.

In practice, however, the situation is not so simple in most cases. Often the
true form of the expectation of y is not known, but one has some variables
which one suspects contribute to Ey in some way. Let these variables be the
columns of the matrix X’. One then tries to describe Ey by X’ for some §.
But one cannot be sure, even with a large number p of variables that the state-
ment “Ey is equal to X’ for some f” is true. If y and the p variables of X’
have a joint multinormal distribution, the above statement will be true condi-
tionally given the p variables of X’. This argument cannot be used in many
situations. In some, it can easily be seen' that some of the variables in X’ do
not have a normal distribution, or maybe both a transform of a variable and
the variable itself occur in X’. It is, however, possible (as remarked by a
referee) that conditionally Ey = X’ even if y and the variables in X’ do not
have a joint multinormal distribution.

Since usually too many variables are included in X’, procedures have been
developed for excluding variables which do not contribute to Ey; see, for ex-
ample, Beale, Kendall and Mann (1967), and Draper and Smith (1966). An
important class of such procedures are so-called stepwise regression methods.
A description of some of these can be found in Draper and Smith (1966). It
seems to be commonly accepted that stepwise regression methods lack justifica-
tion by statistical theory. In particular the fact that different stepwise regres-
sion methods often give different results is confusing, see Hamaker (1962), and
Draper and Smith (1966).

What one often ends up with is several regression functions which seem to be
good candidates for the regression function to be used. Some of these regression
functions might have been obtained by use of a stepwise procedure, some might
have been obtained because the statistician has looked at some particular
combination of variables. Lately, efficient computer procedures have been
developed for computing all possible regression functions or certain subsets
containing the “best” regression function; see [8] and [10]. The statistician,
therefore, is faced with the problem of choosing among a (usually) large number

Received May 1, 1969; revised October 18, 1971.
! This paper was written while the author was visiting at the University of California,
Berkeley, and revised at the University of Wisconsin and the University of Oslo.

1076

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IMNOIS

d ®
www.jstor.org



MULTIPLE COMPARISON OF REGRESSION FUNCTIONS 1077

of regression functions.

The aim of the present paper is to develop a technique for choosing among all
possible regression functions in a given set. The technique is one of multiple
comparison, and is analogous to, and can be applied in a way similar to, the
S-method and T-method (see Scheffé (1959)) in the analysis of variance. Similar
problems have been treated in [2], [7], [9], [12].

2. Assumptions and problems. We will assume that the n x 1 random vector
y is N(n, o*I), where 7 is unknown. Suppose we try to describe » by X’ 8 where
X’ is a known n X p matrix of rank p, and 8 is an unknown p X 1 vector.
Estimation of 8 by least squares gives the estimate § = (XX’)~' Xy, with Ef =
(XX")~*X7n. Using this estimate of 8 we estimate » by
(2.1) H=Xp=XXX)'Xy.
We have Ej) = X'(XX’)"'X7. The estimate 7 is the projection of y on C(X’)
(we use the notation C(4) to denote the space spanned by the columns of a
matrix A4), and E7 is the projection of 7 on the same space. The latter is equal
to 7 if and only if y € C(X”). From the above it follows that if we try to write
the expectation of y in the form X’8, and estimate § by least squares, then we
are estimating the projection of Ey on C(X’).

The usual estimate of ¢* is

(2:2) =@ =00 —=D/r—-p.

Here (n — p)s*/o® has a chi-square distribution with n — p degrees of freedom,
and is statistically independent of 7. It is a central chi-square distribution if
n e C(X’), if not, it is noncentral with noncentrality parameter o=*7'(I —
X'(XX")"'X)y. It follows that

(2.3) Es* = ¢* + 9'(I — X' (XX')' X)p/(n — p) .

Suppose we have to choose between two regression functions X’ 8, and X,’ 8,
where X’ is a known n X p, matrix of rank p;, and C(X;") c C(X"), i =1, 2.
The estimates of 7 are 7; = X/(X;X;))7'X,y, i = 1,2, with expected values
n; = X/ (X; X)) X;n, i =1,2. As a measure of the goodness of fit of the
regression function X;’ 8 we can use the squared length of the difference between
n; and 7, smaller values indicating better fit. This is found to be

1 —7) (1 —m) =0'n — 0 X (X X)Xy
Alternatively we could use the cosine of the angle between 7 and »;, which is
cos (7, 7:) = (7' n)H(0' X' (X, XJ') ' Xam)t

larger values indicating better fit. It is seen that both these measures are
equivalent to

2.4) 70 =0 X/ (X, X)) Xoy
larger values indicating better fit. (2.4) is the squared length of the projection
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of » on C(X;'). Our definition of goodness will now be based upon (2.4). If we
have two (or more) regression functions, the function with the largest »,’», will
be said to be best.

In Section 5 simultaneous comparison of functions of the form (2.4) will be
considered. Of course the maximum value of (2.4) is obtained for X’ = X’,
but some matrix X;” with fewer than p columns may be equally good in the
sense that 7./, also is equal to the maximum value of (2.4), and in that case we
prefer to use X;’. In some situations one is not interested in all possible matrices
X, but for example only matrices with a given number k < p of columns,
e.g., see Hamaker (1962). Then (2.4) can be used to compare these. The above
criterion of goodness of a regression function is, of course, one of many possible
criteria.

3. Multiple comparisons of quadratic functions. Let ¢ = (f,, ---, ¢,) be a
random vector with distribution N(gfz, o’ B) where ¢ = (¢,, -- -, ¢,) and ¢* are
unknown parameters, and B is a known positive definite matrix. Let s* be an
estimate of ¢* independent of ¢ such that vs?/¢® has a chi-square distribution
with v degrees of freedom. In Scheffé ((1959) page 69) simultaneous confidence
intervals for all linear functions of ¢ are given; i. e. functions of the form #'¢
where h is some given coefficient vector. The purpose of this section is to find
simultaneous confidence intervals for all quadratic functions of ¢ i. e. functions
of the form ¢’C¢ where C is some given symmetric ¢ X ¢ matrix. Equation
(2.4) indicates why we are interested in quadratic functions of the unknown
parameters, and the application to problems in regression analysis will be
studied in more detail in Section 5.

Before stating the main theorem of this section, we will give a lemma, which
is quite trivial, but which exhibits clearly the technique used in the proof of the
theorem.

LEMMA 1. Let the distribution of X depend upon parameters (0, &), and let {S(x)}
be a family of 1 — a confidence sets for 0. Let F be a family of functions of 0.
Then a family of simultaneous 1 — « confidence sets for the values of the functions
in F is given by {f(S(x))}, f€ F, i. e. Py {f(0) € f(S(X)) forallfe F} = 1 — a.

Proor. We prove the lemma by proving that for all fe F, {x: 6 € S(x)} C
{x: f(0) e f(S(x))}. Suppose x,€ {x: 6 € S(x)}, then 6 € S(x,), and hence f(f) e
f(S(x,)), for all feF.

This lemma gives us an easy way to find confidence sets for functions of
parameters for which we already have a confidence set. We need only find the
maps of S(x) by the functions f for each x.

In the present problem (¢ — @) B-}(¢ — ¢)/gs* has an F-distribution with ¢
and v degrees of freedom. Hence

CRY Pl(¢ — @)Y BY — ) S ¢5°F, ] =1 —
where F, , , is the upper a-point of the F-distribution with ¢ and v degrees of
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freedom. Hence for observed values of ¢ and s* we have a confidence set for
¢. We shall apply Lemma 1 with § = ¢, and F equal to the family of all
quadratic functions ¢’ C¢, where C varies over all symmetric matrices with real
elements. Hence for each C we have to find the set of possible values of ¢’ C¢
when ¢ is contained in the ellipsoid (¢ — ¢) B~ (¢ — §) < ¢s*F, , .

For a given matrix C there exists a nonsingular ¢ X ¢ matrix P so that
P'B-'P = I and P'CP = D, where D is a diagonal matrix with real diagonal
elements d,, - - -, d, equal to the roots of |C — dB~'| =0 (see, e.g., [1] pages
341-342). Define the vector 7 = (7, - - -, 7,)’ by 7 = P'¢. Then the problem
above is equivalent to that of finding the set of possible values of y’Dy where y
is in the sphere (y — 7)'(r — 7) = ¢5°F,,..-

Let 2, and 4., be the minimum and maximum root, respectively, of
(3-2) 1,417 )(di — 27 = ¢8°F,

'S

Let @ = —min (min; d;, 2,,;,) and b = max (max; d;, 4,,,,). Then we have the
following result.

THEOREM 1. With the above assumptions and notation the probability is at least
1 — a that simultaneously for all quadratic functions ¢’ C we have

4, =9'CY =< 4,
where
A, = a( Xl diil(a + d) — q5°F, )
and
4, = b, di7 /(b — d) + ¢5°F,,.)
with exception of the following cases:
A, =0 ifal d;=0 and 3,07’ = 95F.,.,
and
A, =0 ifal d;<0 and %, . 7’=4qsF,,,.

ReMARK 1. Note that #, D, 1., and 2_,, depend upon the particular matrix
C. Hence for each C we have to calculate anew the values of these variables.

REMARK 2. Note that we can write
A, = 21,473 (1 + djja) — ags’F, ,,
and
4, = D di7 (1 — difb) + bgs’F, ., .

Hence if d;/a and d,/b are small in absolute values, the confidence intervals are
approximately of the form

[Zi.di7? — aqs’F, ., 2io di7d + bgs’F, ],

which is intuitively reasonable.
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Proor. By the remarks preceding the theorem our problem is to determine

the minimum and maximum of

I(r) = Ziadiri?
subject to (y — 7)'(r — 7) < ¢* where ¢* = ¢s°F, ,,. We shall now consider the
problem of finding the minimum (the problem of finding the maximum is
analogous).

First consider the case when all d; = 0 and },,,7* < ¢*. Since the d; are
nonnegative T(y) is always = 0. But in this case the value 0 is attained by
setting y; = O for the indexes i with d; > 0 and y; = #; for indexes i with d; = 0.

Next consider the case when all d; =0 and },..,7%> ¢® Then also

i, 7.4 > ¢*. Hence the sphere (y — 7)'(y — 7) < ¢* does not contain the origin.
The ellipsoid 7(y) = 3.7, d;r;* is centered at the origin. The minimum of 7(y)
when 7 is in the sphere is obtained by expanding the ellipsoid until it touches
the sphere. The minimum is therefore obtained at some point satisfying
r=0'G—7=c

Finally, consider the case when not all d; = 0. We can write

I(y) = X< di(ri — 7o+ 1) + 2ia;>0 diri®.
Any value of T(y) with (y — 7)'(y — 7) < ¢* can be decreased by increasing
|y; — 7:| for some y; with d; < 0 and letting y, — 7, have the same sign as 7,.
Hence the minimum takes place for a y on the sphere (y — #)'(y — 7) = .
Similarly, it can be shown that, apart from the exception in the theorem,
the maximum of 7{(y) is also attained for (y — 7)'(y — 7) =
The solution to the problem of finding the minimum and maximum of /Dy
subject to (y — 7)'(y — 7) = ¢* can be found from the results in a paper by
Forsythe and Golub (1965). They consider the problem of finding all stationary
points of ®(x) = (x — b)’A(x — b) subject to x’x = 1. Our problem can be
transformed to theirs by making the correspondence x = (y — 7)/c, b = —7/c,
D = 4, ®(x) = T(y)/c*. The characteristic roots 4, - - -, 4, of A correspond to
d,, ---,d,. From Theorem (4.1) and Equation (3.10) of Forsythe and Golub
we obtain the expressions 4, and 4, in our theorem. This completes the proof.
It may be of interest to see the form of the confidence interval given in
Theorem 1 in the case when ¢’ C¢ = ¢?, where ¢ = a’¢ is a linear function of
¢. In this case, we will directly construct the variables y and 7 used in the proof

of the theorem. Let 7, = (a’ Ba)"ta’J, and adjoin #,, - - -, 7, so that they are all
independent with variance ¢®. We have jy, = (a’Ba)"tp, d, =a Ba and
d, =---=d, = 0. By using Theorem 1 we get the interval

dy(max (0, |7,| — ¢))* = ¢* < dy(|}] + ),
where the form of the left member of the inequality reflects the possibility of

~ the exception in the theorem. Let ¢ = a’¢). An estimate of Var ¢ is d,s* call
this ¢;>. With this notation the above confidence interval can be written

(3-3) (max (0, || — 65(qFe,0 )" = ¢ = (19] + 05(qF0.)?) -
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The confidence interval for ¢ obtained by Scheffé’s S-method of multiple com-
parison is

(34) go—aq,(q aq») §D<S0+ago(q aqv)‘

It is easily seen that the interval (3.3) consists of those ¢ for which ¢ is in the
interval (3.4). Note that we cannot deduce (3.4) from (3.3), since ¢ is not a
one-one function of ¢.

If for a particular problem we are interested in both quadratic and linear
functions at the same time, we can use the S-method for linear functions, and
the method given in Theorem 1 for quadratic functions. The probability that
all confidence intervals cover the true values would be 1 — a. This follows
from Lemma 1. The following two inequalities can be helpful when one has
to determine 4,,;, and 2,,,, numerically.

Let F be the set of indexes i for which 7, = 0. We have

(35) maxzei‘ 3 < zmax S ma'x’belv d + (Zz =1 1.2 i2/c2)% ’
and
(3.6) m 1eF 1, (Zz 1 z Aiz/cz)% é 'lmm S mlnzel«’dﬂu .

To prove this we can compare (3.5) and

(3'7) z 1 ’b rzz/(ma‘xzei' CR '2)2 =c

As a function of 2 the left member of (3.7) is always at least as large as the left
member of (3.2) when 2 > max,, ,d;. Hence the solution of (3.7) with respect
to 2 with 2 > max;,,d; is greater than the corresponding solution of (3.2)
which is 4,,,. The solution of (3.7) with 2 > max, ,d; is max;.,d; +
(224, d27 /et This proves (3.5). (3.6) is proved in a similar way.

Scheffé’s method of multiple comparison of all linear functions is such that
the set of points ¢ satisfying all confidence statements about the linear functions
is equal to the set of points satisfying (¢ — ¢)’ B-(¢ — ) < ¢*. Hence the two
sets have the same probability 1 — . The next theorem gives the corresponding
result for the above multiple comparison method of quadratic functions.

THEOREM 2. The probability that all the confidence statements in Theorem 1 are

true simultaneously is P{((¢ — §) B¢ — §) < ¢*°F, , ) U (¢ + $)B (¢ + ¢) <
gs*F, , ))}. This is greater than 1 — a if ¢ + 0, and equal to 1 — a if § = 0.

a,q,v
ProoF. We prove the theorem by showing that the set of ¢ and ¢ satisfying

all the inequalities of the confidence sets in Theorem I is equal to the set of all
¢ and ¢ satisfying

(3-8) (¢ — §Y B¢ — §) < q5°F,,,
or
(3.9) (¢ + ¢y BN + @) < q5°F,,,

If ¢ and ¢ satisfy (3.8) then it is shown in Theorem 1 that ¢ and ¢ satisfy all
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the confidence statements. The same is true if ¢ and ¢ satisfy (3.9) since
changing the sign of ¢ or ¢ will not change the confidence statements.

Conversely, if all the inequalities of the confidence statements are satisfied,
it follows that (3.3) is satisfied for all linear functions ¢. (3.3) implies

¢ — Gp(qF, S ¢ = ¢+ Gy(qF,,.)}

or

¢ - 6(,;(qFa,q,u)é é — é ¢ + &g?)(qFa,q,u)% .
Since this is true for all linear functions ¢, it follows by the equivalence of the
F-test and the S-method (see Scheffé 1959)) that either (3.8) or (3.9) are satisfied.

4. Multiple testing. From the results of Section 3 we can derive simultaneous
tests of hypotheses

H:¢'C)=0
for any set of symmetric matrices C. We reject the hypothesis ¢’ C¢ = 0 if and
only if the confidence interval for ¢’ C¢ given in Theorem 1 does not cover the
point 0. The overall significance level of these simultaneous tests is < «, since
if we reject one of the hypotheses falsely, then the corresponding confidence

interval does not cover the true parameter value (which is 0). The probability
of this is < a by Theorem 2, hence the probability of false rejections is < a.

S. Multiple comparison of regression functions. We now return to the problem
of Section 2. Assume that the most comprehensive regression function is X’ 8.
Our estimate of § is § = (XX’)~'Xy which is N(8, (XX’)~'¢?) where by definition
we have 8 = (XX’)"'Xy. We have

(5.1 P{(B— BYXX'(B— p) S pSF,pui} 2 1 — a,

where s* is given by (2.2). Equality holds in (5.1) if Ey = X’8. If Ey + X'§,
then (n — p)s®/o* has a noncentral chi-square distribution. To prove that (5.1)
also holds in that case we can use the technique of a proof in Scheffé (1959)
pages 136-137.

Consider the problem of comparing two regression functions Xy’ 8, and X,’8,
where C(X;") c C(X’), rank X; = p,, i = 1,2. The goodness of fit of X,/ g, is
measured by 7' X;/(X; X;")~' X;n, which is the squared length of the projection
X' (X;X:")~' X;7n of » on C(X;'). This projection can also be written in the form
X/(X; X)X, X'(XX")~* X7 since C(X,') C C(X"), and X'(XX")~' Xy is the projec-
tion of » on C(X’). Using the last expression for the projection of » on C(X;’)
we find that the goodness is measured by g'XX/(X;X,/)*X;X’8. Hence the
difference of goodness between the two regression functions is

(5.2) BXX, (X, X)) X, X' — XX,/ (X, X)X, X")B .

When we compare all possible regression functions with the column space
contained in C(X’), we have by (5.2) a problem of multiple comparison of
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functions of the form B’ CB where a confidence region for 8 is given in (5.1).
A solution to this problem is given in Theorem 1 in Section 3, where § cor-
responds to ¢ and (5.1) corresponds to (3.1). In Section 3 it was required that
vs’/o® has a central chi-square distribution. In this section this chi-square
distribution might be noncentral, in which case we have strict inequality in
(5.1). Theorem 1 still holds, since what was important in the proof was that
the probability (3.1) is 1 — a or greater.
The equation for determining the roots d; is

(5.3) XX, (X, X, X, X' — XX/ (X, X)X, X' — dXX'| = 0.

We shall now derive a lemma stating that many of the roots are 0 or 1. Sup-
pose without loss of generality that p, < p,. Let p, be the dimension of the
intersection of C(X;') and C(Xy,’). :

LEmMMA 2. In(5.3) p — p, — p, + 2p, roots are equal to 0, p, — p, roots are equal

to 1 and the remaining 2(p, — p,) roots occur in pairs of the form +d;, i=1, ...,
Pr — Do
PROOF. Let @, 5y 415« *» @y 1pp D an orthonormal basis for the inter-

section. Choose vectors ay, - -, @, , 5, SO that a,, -~ a, 0, ., 500
pitpg-p, COMStitute an orthonormal basis for C(X)) and a, _, .1 -+,
constitute an orthonormal basis for C(X,’). Adjoin orthonormal vectors
@y tpgpyits " Uy orthogonal to the p, + p, — p, first vectors so that the set of
all the vectors span C(X’). The vectors can be chosen so that a;/a; =0,
i=1 - p—poj=2p =29+ L, -, p+ P, — 2P

Define matrices Q,, 0, and Q, by O, =(ay «++, a'pl-po), 0, = (a'pl—poﬂ’ tety
Ay —2p) ANA Q5 = (Agp 11> - - > @,). Wehave 00, =1,i=1,2,3,0/0,=0,
i=1,2. (If p = p,, the matrices Q, and Q, do not exist. We shall return to
that case in Section 6(a)). Define the vector 6 = (6,, ---,6,) by 6, = a,'y,
i=1,...,p. Wecan also write

ce,a

X +p3—mg

(5‘4) 0= [QleQa],v .
In terms of 4, (5.2) can be written
(5.5 T 02 — Y6 = 6'Go
where the equality (5.5) defines the matrix G.
Define 4 by
(5.6) 0=10,00]y-
The covariance matrix of 8 is As® where
I 0/0, 0
(5.7) A=|0/0, T 0
0 0 I

Since f is a nonsingular linear transform of §, (5.3) can be written |G — dA™!| = 0.
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Using (5.5) and (5.7) we find that (5.3) reduces to

ot lene, %L

Hence we immediately obtain p — p, — p, 4 2p, roots d; equal to 0, and p, — p,
roots equal to 1.
After multiplying (5.8) by the determinant of the matrix

Lovo, 1]

we find that the equation for the remaining roots of (5.8) becomes
(5.9) —(I+dl -0/0,

2’0, (I1—-dJ
The determinant in (5.9) can be evaluated as (see e. g. Anderson (1957) page
344),

(5.8) (1 — d)yrePrdpr—r1rat2ro —0.

[(1 - d)ll [_(1 + d)1+ (1 - d)_lQ1,Q2Q2,Q1| .
Hence (5.9) can be written
(5.10) 10/0,0,/0, — (1 —d)’1| =0.
It follows that if e, - - -, e, _, are the characteristic roots of the positive definite
matrix 0,’0,0,’ Q,, then the remaining 2(p, — p,) roots of (5.3) are given by
d=+(1—e)t i=1,..., p,— p,. Hence instead of p unknown roots in (5.3),
there are only p, — p, unknown. This completes the proof of the lemma.

As for the vector 7 used in Theorem 1 it is not necessary to determine the 7;
corresponding to d; = 0 since for these 7; we have d;7, = 0, and they will not
contribute to the values of 4, and 4, in Theorem 1. The #; corresponding to
d; = 1 can be chosen equal to 0, i= 2p, — 2py+ 1, -+, pr 4+ p — 2p,.

It can be instructive to relate some of the quantities introduced above to the
residual sums of squares. The residual sum of squares using a certain regression
equation X' B; is

SS(X/)=(y — X/ B)(y — X/’ B:) -
In particular we have SS(X’) = (n — p)s’. We can write SS(X,") =)'y —
(X; B,y (Xi' B;). Hence SS(X,') is the squared length of y minus the squared
length of the projection of y on C(X;'). Consider now two functions X’ ; and
X, B,. In terms of 6 we get
(5.11) SS(X/) — SS(X,') = DR 62 — Nagn 07

This can be regarded as an estimate of (5.2) and (5.5). It is not unbiased,
unless p, = p,, since we have

E(SS(X)) — SS(Xy)) = Z:i:fz;:ﬁ-ol 0 — 2P 032 + (pr — pi)o’.

We conclude this section with some remarks. In some cases we have some
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variables which we want to include in each regression equation. Suppose that
we have p — p* of these variables and p* other variables. A regression function
X' can then be written in the form X% 8° 4 X*' 8*, where X% 3 refers to the
variables always included, X*’ * refers to the other p* variables, and C(X") |
C(X*'). In that case we can start with

P{(B* — Py X X¥(B* — B*) < Sp* Fppa ) 21 —a,

instead of (5.1), and apply our multiple comparison procedure with §* and §*
instead of 8 and f§, and the projection of 7 on C(X*’) instead of the projection
on C(X").

Application of the above multiple comparison method will not usually give
a unique best regression equation, but a set of many equations none of which
gives a “significantly better” fit than any other on the basis of the statistical
criterion adopted here. It seems to the present author that this is the most we
can hope for when he compares it with the S-method and T-method in the
analysis of variance [11].

6. Some special cases. (a) p, = p,. This means that the regression equation
X,' B, is obtained from X' B, by adding p, — p, independent variables.

In this case the difference (5.5) is Y;727716,% the matrices Q, and Q, do not
exist; all p, — p, nonzero solutions of (5.8) are equal to 1; and, the covariance
rpatrix of § is the identity matrix times o> As §;, ---,7,,_, We can use

mp-pe EQuation (3.2) is 37237 62/(1 — 2 = ¢, with solutions

6, ---,0
Toin = 1 — (Spm 02 and 2o, = 1+ (S 02)e
Using Theorem 1 we find the confidence interval for ¥ 727716 to be
(max (0, (N5 02} — o) < Trm 02 < (U(Zfz;ﬁ 62t + ¢y

The confidence interval does not cover O if and only if ;727 mhr> =
s*pF,. . . ,. Only in that case we say that X,’'f, is better that X,'$,. In the
particular case p, = p, + 1, we get the inequality |0, > S(PF,,, ._,)} If we had
used the usual t-test for judging whether the additional variable should be
included, we would have included the new variable if and only if |0, >
S(F,.1.n_,)t. We shall discuss this further in Section 7. From (5.11) we have

Sl = SS(XY) — SS(XY) .

(b) p, — p, = 1. This case includes the situation where at a certain step we
want to choose between several single additional independent variables. (Also,
in that case, p, — p, = 1.) This special case where p, — p, = 1 is particularly
important, since it refers to the kind of decision problem one has to face
repeatedly with most stepwise regression methods. The vectors a; and a,, which
are all we need, are easily determined. The difference (5.5)is Y 72,71+ 0.2 — 67,
and the product Q/Q, is a scalar a, say. Equation (5.10) has two nonzero
solutions d, = —(1 — @®? and d, = (1 — a?)}. Besides we have the root d =1
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of multiplicity p, — p,.

(c) Q/Q, = 0. In this case the column vectors of X,’ and X, which do not
belong to C(X,") N C(X,') are orthogonal. This is a situation which is not likely
to occur very often, but the computations are simple in this case. The
covariance matrix (5.7) of @ is Is?, and (5.8) has nonzero roots d = 1 with
multiplicity P -—po,Aand d = —1 with multiplicity p, — p,. AS 71, -+, 7, 1py-2p,
wecanused,, ---,0, ., ,,; equation (3.2) is

Taan 02)(1 + ) + DI 001 — 2 = ¢

7. An example. The following example is taken from [6]. The problem is to
study the deflection d of a metal rod of length L under a constant load of 400
grams. The observations are

L 55 60 65 70 75 80 85 90 cm
d 1.165 1.518 1.948 2.428 2.965 3.610 4.242 5.010 mm.

First the data were analysed by using orthogonal polynomials. Only the first
three terms in the polynominal were significant, and the resulting regression
equation is '
7.1) 6 = (143.350 — 0.74896L + 0.127281%10-?,

where 0 is the estimate of E(d). The corresponding residual sum of squares is
SS(X,') = 0.0011. Thereafter the data were analysed by a stepwise procedure.
As possible candidates were considered the constant term, L, L?, L? L'. The
variable L* was taken into the regression equation first, since it gives the smallest
residual sum of squares. After that, when L? is already in the regression equa-
tion, L* reduces the residual sum of squares most, and finally L? is taken into
the equation. No one of the others gives additional significant contribution to
the regression equation. The resulting equation is

(7.2) 6 = (—1.6659L* 4+ 0.12059L* — 0.000372L*)10~*,

and the corresponding residual sum of squares is SS(X,’) = 0.0011.
By the theory of elasticity, however, the deflection should vary as L. If we
use only L® we get the regression equation

(7.3) 6 = 0.69586.10-°L*,

with residual sum of squares SS(X;") = 0.0113.

The results of the above analysis are used in [6] as a warning against indis-
criminate use of orthogonal polynomials. The discrepancy between (7.2) and
(7.3) could be caused by imperfection in the experiment, or the fact that the
physical law is not holding exactly.

Let us now compare the regression equation (7.3) with (7.1) and (7.2) by the
method developed in this paper. In the example n =8 and p = 5. We will
use @ = 0.05. To compare (7.2) and (7.3) is particularly easy, since this is a



MULTIPLE COMPARISON OF REGRESSION FUNCTIONS 1087

case with p, = p, = 1. We have p, = 3. By (a) of Section 6 we shall reject the
hypothesis that the equations are equally good if }rm 2 > s°pF, . .. The
right member of this inequality is (0.0011/3) - 5. 9.01 = 0.0165, while from
(5.11) the left member is 0.0113 — 0.0011 = 0.0102. Hence we cannot claim
that (7.2) is an improvement over (7.3).

When comparing (7.1) and (7.3) we have situation (b) in Section 6. The
confidence interval is found to be [—0.0098, 0.0537]. It covers zero, hence it
cannot be claimed that (7.1) is better than (7.3).

One of the defects of the stepwise procedure is well illustrated by the
reasoning that led to (7.2). First L* was introduced into the regression equation.
With L? in the regression equation it was determined which of the variables
Lo, L, I* L* gave the largest reduction in the residual sum of squares. This
reduction in the residual sum of squares, call it S, is then compared with the
total residual mean square, s The significance of the contribution is judged by
comparing S,/s* and the upper a-point of the F-distribution with 1 and n — p
(or n — 2 if one uses only the two variables introduced so far) d. f.. ButS,/s®
does not have an F-distribution, because S, is the maximum of four different
sums of squares.

The weakness of the method presented in this paper is that it will give rather
wide confidence intervals. The main reason for this is that we are constructing
simultaneous confidence intervals for a very broad class of quadratic functions.
The class is much larger than the class of quadratic functions we would ordinarily
wish to consider. From what is found in Sections 3 and 6(a), the lengths of
the intervals should be comparable to those obtained with Scheffé’s S-method.
The lengths of the intervals increase with p (or p*). We should therefore be
careful when selecting variables to be tried in the regression equation.

In the above example it seems reasonable a priori to exclude the constant
term from the regression equation. Furthermore, from the theory of elasticity,
L* should be a member of all regression equations. Hence we should work with
p =4 and p* = 3. The additional reduction of the residual sum of squares
obtained by introducing L* when L® already is included is 0.0079. This should
be compared with s*p*F,. ., , = (0.0011/3)3 . 6.59 = 0.0073. Hence by this
analysis L' is significant. But it is found that no other terms should be included.
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