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0. Summary. This paper is concerned with the determination of whether
two multivariate normal mean vectors differ by a multiplicative factor or by
a multiplicative factor plus a displacement along a specified direction. These
considerations arise, for example, in the evaluation of drugs, where two drugs
affecting the same symptoms are considered equivalent if they can be made
equal by a change in dosage. Maximum likelihood estimators and likelihood
ratio tests for the relevant parameters are considered.

1. Introduction. The model considered stems from an evaluation of drugs,
in which x, denotes the effect of a drug on symptom i, i=1, ..., p. Two
drugs with measurements (x,, - - -, x,) and (y,, - - -, y,) can be considered to be
equivalent if Ex, = cEy,, i = 1,.. ., p, since by a change of dosage the effects
may be made equal. In some cases, equivalence may be defined by Ex; =
cEy, +d, i=1,...,p. The parameters ¢ and d are called magnitude and
displacement parameters, respectively. The basic problem is to estimate the
relevant parameters, and to determine whether two drugs are equivalent.

Models which contain magnitude and displacement may be generated in
various ways. We may view x and y as arising from a model in which x,, =
ot s Vs =Y + 04 i=1,-c.ppa=1....N, =1 ..., N, Here
(€100 * + *» €,0) @nd (dy5, - - -, J,5) are independently distributed having a common
multivariate normal distribution with means 0 and covariance matrix . The
¢’s and §’s denote measurement error and are from different subjects. Thus
the model becomes /" (x,,, +++, X,0) = | (112 2), / (Pr3s ++*» Vps) = -] (¥, Z),
and we wish to test H,: ¢ = cv or H,: f = cv + de, where e = (1, - -+, 1),
versus the alternative hypothesis that ;2 and v are unrestricted. When the sub-
jects are the same, the x’s and y’s are correlated, and a more complicated
model is required to take this dependence into account. Alternatively, we
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may suspect that the y’s behave as the x’s, except for a multiplicative factor,
ie., v (x)= - (cy). Consequently, we may wish to test H: y = cv, X, =
¢*Z,, where now X, (or X,) is the covariance matrix of x (or y), against general
alternatives. Our concern in the present paper is with the former model.
Likelihood ratio tests (LRT) for various hypotheses and maximum likelihood
estimators (MLE) of the parameters when the hypotheses prevail are derived.

In the case of a single bivariate distribution, Paulson (1942) obtained a confi-
dence interval for the ratio of means. This type of problem arises in sampling
theory when using ratio estimates. The model considered has a closer connec-
tion with classification procedures, as indicated in Section 2.

Cochran (1943) provides a comprehensive study of the comparison of different
scales of measurement. In the above context his concern is with testing that
scales are (a) equivalent, (b) differ by a constant, or are (c) linearly related,
ie, @y, =v, (b)yy, =v, +d, (c) ap, + Bv, = d. Tests for each case are
discussed in some detail. However it should be noted that this model assumes
repeated measurements on the same set of subjects. The models we consider
—though quite similar—complement those of Cochran (1943); the testing
procedures will follow along similar lines, though the development is quite
different. In the present paper the emphasis is, to a great extent, on estimating
the parameters of the model, which was not considered for (a)-(c).

If we define M = (), then the hypothesis y = cv is equivalent to the hy-
pothesis that the rank of M is one. This problem has been considered in detail
by Anderson (1951), who provided the LRT of this hypothesis. Note that the
hypothesis ¢, = cv; + d (1 < i < p) is not a hypothesis on the rank of M.

2. Preliminaries. If the two p-variate normal populations are denoted by
.} (¢, Z)yand _ / (v, Z), the hypotheses of interest are

Hiipy=cvy-oop, =0y,

HZZ/’ZIZCDI—’—dv "'a/’lp:CDp+d’
where ¢ and d are unknown numbers. In each case the alternatives are
H: —co <y, < o0, —0 <y, < o0, i=1,...,p. We are also concerned
with testing H, against H,.

In order to apply the results of Wald (1943) to obtain asymptotic distribu-
tions, it is convenient to make the following assumptions on the families of
populations {. / (x, Z)},{. / (v,Z)}. Forsomee, B,0 <e< B< oco,andy < 1,

(a)0<8<0ii<37 iZla""pv

(b) |0ij| < U(Uii”jj)ﬁ ) L7,

(¢) |v,| >eforH, |v,—v, || >cfor Hyand ¢, < B, |v,| < B, i=1,---,p,

where 2 = (g,)).
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In practice the implications of these conditions are that none of the variances
and not all of the means v, (not all of the differences v; — v,) be too close to
zero and that no two of the variables be (linearly) redundant.

Independent samples of size N, and N, are taken from populations 1 and 2.
Let X = (x;,): p X Ny and Y = (y,;): p X N, denote the matrices of observa-
tions, and define x = (x,, -- -, %,), J = (J;, - - -, J,) to be the vectors of means,
S = (s%), and $” = (s{?) the product moment matrices, and § = S 8@,
Then (x, 7, S) is a sufficient statistic for (g, v, £). Thus we have the reduction
to the model: X, y, S are independently distributed with

(E)=. (e, ZINY) . s (P)=. 1 (v, ZINy), (S) = 7 pony,
wheren =N — 2, N = N, + N,, and 7 (Z; p, n) denotes the Wishart distri-
bution with n degrees of freedom and parameters p and ES = nZ. The joint
density of x, , S is
(21)  p(RJ. St v A) = KS) AP exp—3[Ny(x — A% — g1y

+ Ny — v)A(J — v) + tr AS],
where A = 71, K(S) = [S|n =0 (2r)r2miigro-vs {2 T((n — i + 1)/2)]"
Note that the problem of testing 1 = cv against general alternatives is left

invariant under the transformation (%, y, S) — (¥4, jA, A’SA), for nonsingular
matrices 4. The maximal invariant under this group is
(tus by 1) = (XSTX, ST, xS7Y)

In the classification problem in which there are two multivariate normal popu-
lations . / (p, Z) and . / (v, ), the classification statistics of Wald and of An-
derson are functions of the maximal invariant. The joint distribution of these
statistics has been obtained by Sitgreaves (1952) under the hypothesis that the two
mean vectors are proportional, i.e., y = ¢,0, v = ¢,6. Thus, we could use the
joint distribution of (#,,, ,, t,,) to obtain the LRT. However, it appears to be
more troublesome to start at this stage rather than with the original variables.

3. MLE of the magnitude and displacement parameters. When p;, = ¢v; 4 d,

i=1, ..., p, the joint density (2.1) becomes
px,p,S;c,d, v, N)
3.1 = K(S)|A[" " exp—L[Ny(X — cv — de)A(x — cv — de)
+ Ny(J — v)A(F — v) + tr AS],
where e = (1, - .., 1). To obtain the MLE, first maximize with respect to v.

Setting the derivative of (3.1) equal to zero yields the vector equation
cN(X — cv —de)A + Ny(j —v)A =0.

Since the logarithm of (3.1) is a strictly concave function of v, the maximizer is
Y = (¢cN,X + N,y — N,cde)/(c*N, + N,) .



458 CHARLES H. KRAFT, INGRAM OLKIN AND CONSTANCE VAN EEDEN

A direct substitution of v in (3.1) yields
(3.2) maxp(x, p, S;¢c,d, v, A)

— K(S)|A|N/2 exp 1 [—N NZ(X _ Cy — de)A(x - Cy — de)/ + tr AS]
N, + N,

Maximization of (3.2) with respect to A > 0 yields (e.g., see Anderson (1958),
Lemma 3.2.2)

A= N(S + Ny Ny(x — ¢y — de)'(x — ¢y — de2>—1
CZNI + N2
[ MNE — cf — de)'(x — cj — de)S™ >_1,
CZN[ + N2

— NS“’<

so that

(3.3) max, , p(¥, 7, S; ¢, d, v, A)
K(S)|NS~!|Vi2etry

{1 + [N, Ny(x — cJ — de)S(x — cj — de)']/(N, + N)}“’2

In this form we need to minimize

3.4 d) = (X —cy —de)S™'(x — ¢j — de)’
(3.4) a(c. d) TN

with respect to ¢ and d if both the magnitude and displacement parameters are
present. When only the magnitude parameter is present we consider g(c, 0).
Although in the present context ¢ > 0, so that we have to maximize over a
restricted range, we do not take account of this restriction in the derivation of
the tests. The reason for this is that the procedures become quite complicated,
whereas if ¢ were negative, we would wish to reexamine the basic model.

3.1. MLE of the magnitude parameter. For simplicity of notation, set
6.9 ro (b Wy (BE ISy
Ly Iy )_)S_])-CI yS‘—])_)I
so that we have to minimize

g(C, 0) 11 - 2Ct12 +c t22 .
(¢*N, + N,)
Setting ¢’ = 0 yields N,t,,¢* + (N,t, — N,t,)c — N,t,, — 0. Because t, #0
with probability I, there are two roots:
Nltll — N2t22 =+ [(Nltll - N2t22)2 + 4]\11]\/2&2]7é .
2N, t,

Since ¢ = +oco is not a solution, and L(é*N, + N,)¢"(¢) = N,t,, — N, t,, +
201, N, = £[(Nyty, — Nyty,)* + 4N, N, 23], it follows that the upper sign must
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hold, namely,

(3,6) ¢ = ]~Y1t11 _ Nztzz + [(Nltu - N2t22)2 + 4N1N2t122]2' .
2N t,
For later reference we note that
(3'7) NIN2g(5’ 0) = N2t22 - 5'27]\',2'
¢

= % {N]tll + Nztzz - [(Nltll - N2t22)2 + 4N1N2t%2]£} .

3.2. Asymptotic distribution of the MLE of the magnitude parameter. We first
obtain the joint asymptotic distribution of ¢,,, #,, t,,, from which it is relatively
straightforward to obtain the asymptotic distribution of ¢.

Recall from (3.5) that 7= T(x, 7, S) so that T evaluated at the mean
T(y, v, nZ) is

(3.8) . <f,1 2'12> _ </¢Z“// ,aZ"lz/>.

Tiy  Tas ) Mty V) YV
To obtain the covariance matrix of the asymptotic distribution we note that
N,Cov(x) = N,Cov(y) = Z, Cov (s, 81) = n(0;,0; + 0,0,,) .

If g, and g, are functions of X, 7, and S, then the covariance of the asymptotic
distribution is given by

Cov (9:, 9,)

a9, 0 99, 99 7
= Zs gt 5 OOV 8) + Ty 5t 50 CoviRa 7

(3.9) b Y 2999 Coy s,

0s;; 08y,
= (5w Gr) + (G5 (55)

o ()28 2).

where, for/ = 1, 2,

15 Skl

<agl>_<agl agz) <agz>_<agz 3g£>

0% 0%, 0% oy ap, "oy,

?Q;) - <agl > 99.* _ 09, 99" _ 4 99 |
<as s, 5s;  ds.'  os, 2 os, E#J)

and where all derivatives are evaluated at the means p, v and »nZ for x, y and
S. In particular, t; = t(x, 3, S), so0 that we need to evaluate the following
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derivatives (evaluated at the means):

Oy _ 2pZ7 Ot Oy _ V37 0t

3)'6 - n ’ ax > ax n ’ a)_). - s
@.00)  Oh L 2ET Oty pET oty B 7prn

ay n oy n S n >

% . _E—lvlvz—l _at_lz _ _E‘l(y'v + v';z)E“l

s n? ’ S ' :

Using (3.10) with (3.9) yields the covariances of the asymptotic distribution:

Var(t,) = 2r,,(2n + N,z,)/n’N,,
Var (t,) = 27,,(2n + N,t,)/n'N, ,
(3.11) Var (t;) = [0(Ny7y + N,7y) + Ny Ny(73y + 74,750) /BN, N, ,
Cov (1, ty) = 2t4/n*,
Cov (ty,, t,) = 215(n + Ny7y)/WN,,
CoV (ty, t,) = 274(n + N,7,,)/m°N, .

We recapitulate by stating the following theorem.

THEOREM 1. If F(%) = A (1, ZIN), L(F) = A (v, EIN,), A(S) =
A (Z; p, n), %, §, S independent, and

= xS7x', Ly = )-)S—l)-’, s ty, = xs_ly' s

then as N, — co, N, — co with N[N, fixed, (t,,, t,,, t,,) is asymptotically normally
distributed, with mean (t,,, 7y, 7,,) given by (3.8), and covariances given by (3.11).

From (3.9) we find that the variance of the asymptotic distribution of ¢ =
h(t,1, ty, 1,,), is given by

Voey= (2, 0k Oy, ok oh ohy
=T \oe, ot oty ot ot ot,/)

where the derivatives are evaluated at the means p, v and nZ and where ¢ is
the covariance matrix of the asymptotic distribution of (¢,;, t,, #,,). A tedious
but direct computation yields

(@_, ok ‘L”) =" (N, —Ny,¢,N, — N,¢?).
oty 0t,, 0ty Tu(N:¢* 4+ N,)

Consequently, we obtain the

COROLLARY 2. The asymptotic distribution of ¢ is normal with mean c and vari-
ance (N,c* + N,)/N,N,t,,.

Approximate confidence bounds for ¢ may be obtained from the Corollary
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by solving a quadratic equation. Alternatively, we may use the variance stabi-
lizing transformation

A(c) = N~tarcsinh N,"tNic,

in which case

A(é) —»dN<A(c), . ! )

14V3 Tay

Since p lim t,,/n = 7,,, we have that
(N Nofm)[A(E) — A(c)]ty, —,4 N(O, 1) .

Because A(c) is a monotonically increasing function of ¢, confidence bounds
for A(c) may easily be converted to confidence bounds for c.

3.3. MLE of displacement and magnitude parameters. From (3.4) we need to
minimize g(c, d) with respect to ¢ and d. Since g(c, d) is quadratic in d, it is
straightforward to find the minimizer, d, with respect to d, namely,

(3.12) d—eS % —ceSTY _ eSTN(x — cp)

- s

eS¢ eS~le

from which, after some simplification,

jy _ (5 = DA — cgy
3.13 dy = =) ,
&1 A Vi
where
(3.14) A= g1 SeeS
eS¢

The minimizer of g(c, d) with respect to ¢ is now obtained as in Section 3.1
to be

(3.15) o= MEAY = NoJAY 4 [(NZAX — N,JAV) + 4N, Ny(GAT))!
2% A7 N,

After considerable algebra, we find that

(3-16)  2N\N,g(¢.d) = Nty + Nyt — [(N, 5, — Nyt + 4NNy t5t]?

where
th = xA7'x' ty = XAy, th = yA~Y .
Following the method of Section 3.2, we now prove
THEOREM 3. If %, 7, and S are independently distributed with *x)=.1 (ev+

de,ZIN)), 7 (§) =. | (v, ZIN,), ~ (S)= 7 (Z; p.n),n= N, + N, — 2, then
as Ny — oo, N, — co with N,/N, fixed, (¢, d) is asymptotically normally distributed
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with mean vector (c, d) and covariance matrix
( V.(é) Cov_(é, J)) _ N, + Ne? < elle  —eX7l )
Cov, (¢, d) V.(d) N,N,A \—yZ-te 5y )’
where A = (eZ7'e)(VIZV') — (eZ~W).
Proor. For simplicity of notation, define

7y = (%Ax')(eS7'e) = (XSTX')(eSTe) — (XS71)?,

Zp = (JAV')(eSTIe) = (JSTY')(eSTIe) — (§S¢)’,

z, = (XAY')(eSTe') = (XS )(eSe') — (xSl )(ySTe),
so that

Nz, — Nyzyy + [(Vy 2, — N,2,,)" + 4N, N, Zz]& 0 .
2N, z, 2le12

The z;; evaluated at the means Ex = cv -+ de, Ey = v, ES = nX, and denoted
by a superscript 0, are:

2 = c*A/n?, 25, = Aln?, 20, = cA/n?.

A
C =

Thus it is easily checked that &° = cand d° = d. Note also that Q° = 2N, c?A/n?.

For the covariances, we need
)3 Gs) + e (55)=(56) =)

v =(5) 5 G + 5
) Go) e (55) = (39) =],
od

o
o

°’|
S
2l

!&.
)
2,

i = (35 G + G

as
. o (36\ T [ad\  (68\ T /odY 36\ ¢ (3d
coved) = (30) 5 (5) + G5) . (55) + 2w [ (35) = (55) =]
oV, ) = <3x 1<ax +<6y <8y Tt (Gs)* s

where the derivatives are evaluated at the means. We now show that

z
z

3¢ 3¢ ¢ 3¢
3.17 <_>:i, < _ (96) o,
G-17) ax/ A 3y> A (as)

ad ad c ad
3.18 _>:f11, <_ = _ <_ —o0,
(3.18) <ax A ay) A as)
where

= (eZ7e I — (eZW)eX !, ' g, = (vE7W)eZ ! — (eZ~W)WET!,
from which the variances and covariances follow easily.
To evaluate the terms in (3.17), first note

92y _ 2¢q, 02y _ ¢ 02y _
0% nt x n ox ’
2u _g, Om_cq 0 _ 2,

. = -

ay y p  m
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After some simplification in each step,

A (35) _ 130z,

n* \ox/ ~ 2N,c 9%  ox
- 1 [lc%+2N2%] 0z, _ 41
N, ¢ + N, % % ox  mw
Ay 1 oo o,
n\dy/  2N,c 0y 3y
- 1 _[_M azmHNazlz}_%::&,
N,c® + N, d oy oy n

Define
W= —(Z W) el — (eZ1)Z I 4 (vI )T} (ev + vie)Z .

A direct but cumbersome computation then yields

()= (T W ()W
oS n oS n’ s/  m’

and
0z 0z 0z
ch—N< 11_NJ2> 4N, N, ¢ 2“1z
2 00 _ 3211 _ N 0z +( ' AR vos) T MG
oS as ' oS N, + N,
= 2N, W .
Hence

A<ae>: 1 9Q 9z, _

oS/ " 2N,c S S

which completes the derivation of (3.17).
The derivation of (3.18) may now be carried out in a fairly direct form:

% 1 [ez_ (eZ™1') _3_5] = b [ez—l _ (eZ"ly’)ql]
ox  eX-le 0% eXte! A

= (I W)eE — (Wl pE ] = &2,
Lipzwert — poeps) = &

od 1 , B 17w ncq
5= e e 5] = e - @) P
__C’_q
=5 %
_ai: 1 [an-}-dZ le e ]
S eX-e' L as

where Q, = eS7'x’ — ceS7'y’. After some algebra, one obtains 9Q,/0S =
—dZ l¢’eZ!, which completes the proof. []
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In order to obtain a confidence region for (c, d), we may use Theorem 3 as

follows:
(N, N,)¥¢é — ¢,d — d) ~ N(O, G),
where
G — ,N%A,,v< eS¢ —eS“ﬁ’)“% .
" N,& + N, —yS-te’ YA A ’
R = (eS7e)(S7) — (eST)

4. Testing for magnitude and direction. The main hypotheses of interest are
H :p=cv, Hy: p = cv + de, where ¢ and d are unknown. The MLE for
unrestricted g, v, and A are

f=%, p=7, A = NS,
so that
(4.1) P, = max#,w\p(i,y, S5 ¢y v, Ay = K(S)|NS—|V2eme¥iz
From (3.16) combined with (3.3),
(4.2) P, =max, ..\, p(%, 7, S; p, v, A)
_ K(S)|NS e 42"
{1 + %[Nl t11 + N2t22 - [(Nl tu - ]\/2t22)2 + 4]\/1]\]2t%2]§]}‘\7/2

from (3.3), (3.13) and (3.15), we have

>

(4'3) Pw2 = max;l:cv+de;A>0p(X’ )-)» S; ﬂa Y, A)

_ K(S)|NS~|1te- o™

i +4{N,x A%+ N,JAY —[(NRAX' — N,JAJ )+ 4N, Ny(XAp')* ]}V
where 4 is defined by (3.14).

From (4.1) and (4.2) the LRT for testing H;:p =cv, —o0 < ¢ < oo,
—oo L y; < oo versus H: —oco < p; < oo, —0o <y, oo, j=1,..-,pis
then given by: reject H, if 4, is small, where
(4.4) A7V =1 4 N, xS7'% + N,ySy

— [(NMxST%" — N, pS7Ip")* + 4N, Ny(xS7')"]} .

This test is obtained by Anderson (1951, Section 7) in a more general con-
text, and the right-hand side of (4.4) is 1 + ¢ where ¢ is the smallest root of

the matrix
( Nl tll (N1N2)5t12> .
(Nl N2)%t12 N2 t22

(Also see Cochran (1943).) As an approximate test we have that when H, is
true, —2log4, has a % , distribution. Under the alternative hypothesis
—2log 4, has an asymptotic distribution which is non-central chi-square with
p — 1 degrees of freedom and non-centrality parameter as given in Section 5.1.
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From (4.1) and (4.2), the LRT for testing H,: pt = cv + de, —co < ¢,d <
o0, —oo < y; < oo versus H is given by: reject H, if 4, is small, where

7Y =1 4 YN, A% 4 N,jAy — [(NxA%' — N,JAJ')* 4+ 4N, Ny(xA47')*]}} .

To carry out the test we use the fact that when hypothesis H, is true,
—2log 4, has an asymptotic y*-distribution with p — 2 degrees of freedom.
Under the alternative hypothesis, —2log 4, has an asymptotic distribution
which is non-central chi-square with p — 2 degrees of freedom and non-
centrality parameter as given in Section 5.2.

Finally, suppose p; = cv, +d, 1 <i < P, and we wish to test that 4 = 0.
The LRT is then given by the ratio of (4.2) to (4.3), namely
14+ 3N XSTI%' + N, JST'F' + [(N, XS 7%’ — N, S5+ 4N, Ny(xS~15")]#}

1+ 3{N,xA%" + N,jAY + [(N,%AX' — N,jAV)* + 4N, Ny(XAP' )]t}

2/[N __
4 =

When the hypothesis = cv is true, the asymptotic distribution of —2 log 4,,
is x* with 1 degree of freedom, and under the alternative the asymptotic distri-
bution of —2log 4,, is a non-central y* distribution with 1 degree of freedom
and non-centrality parameter as given in Section 5.3.

S. Asymptotic distribution for the non-central case. Given the density function
p(x; 0y, - -+, 0,) we wish to test H:§,(f) = --- = £,(0) = 0 against general
alternatives. If certain regularity conditions are satisfied, Wald (1943) showed
that under the alternative hypothesis —2 log 2, where 2 is the likelihood ratio
statistic, approaches a non-central chi-squared distribution with r degrees of
freedom and non-centrality parameter given as follows. Define c, =
—Ed*log p[00,06;,i,j=1,---,land C = (¢;;): I X I; &;; = 3€,/00,, i =1, - -,
nj=1,-- LE=():rxLE&E=(&,---,&,), §; = §,(¢). The non-centrality
parameter is the quadratic form ¢ = §(EC18)~¢".

As our starting point we have the joint density
(5.1) p(x, 7, S) = K(S)|[A|"? exp —3[(X — cv — de)A(X — cv — de)

+ (= AP —») + trAS].
5.1. Test for magnitude. Given the joint density (5.1) withd = 0, we wish
to test
H:lal_&"'l: l:/’lp—-l_&vp—IZO
p lJp
against general alternatives. Here we use the parametrization &, = p, — (/v )vis
i=1,.--.,p—1(r=p—1). If we partition
E=(8,8,8),

where

sn o a=(G) w=(G) w=(3)
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with A = (4,4), we see that E; = 0. In order to determine C, we have

azlogpzazlogp__l“ 3210gp_0
op, op; 0y, 0y, B v op; 0y, -
Eazlogpzo’ E82logp:O,
Op; 04, 0y, 04,

so that C = diag(A, A, Cy). Because E, = 0, the value of C is not required.
Letv = (v, -+, v,,), then

P » » p

and hence

o AN 2
BEC-1E =EB,38/ 4 5,58, = <1, _L> ) (1, _L> <1 + _F‘LJ .

pl’ DP ”P

If we write gt = (py, - -+, ¢,_,), then the non-centrality parameter becomes

(-220-2)T
. . ’ v ’ v . .
0= (/”l_ ypp/yp) £ L (nu - ylup/”p), :

1+ (p,%v,0)

5.2. Test for magnitude and displacement. Given the joint density (5.1) with
d = 0, we wish to test

Hié=p —p— P "o _yy=0, j=1,...,p—2.
v, — Y,
For convenience, we write
Ny = F; = P> Ty =Y = Vg j=1-p.

Partition & = (2, &,, B;) as in (5.2), and further

E‘l = (E'u’ E'IZ’ ':'13) s Sy = (‘:'21’ Sggs ‘:‘23) )
- €. . - 0§, - 0¢,
g, = t, ]:1,"',]7_2’ ‘:‘12:a : ) .:,13:3@,
alu:i Hp Hyp
- 0§, . - 0§, - 0§,
\521281, ]:1,...’p__2’ .:,22281 , d%:az,
v, . Vo v,
A direct computation yields
’ ’
—_- T T
85 o= ([, — , —e —+ )
Tp—1 Tp—1
’
- T T —1 =
‘:'2 = ____7]1:——1 <I, - 1) '_'e’ + > = — np ! ‘:‘1 ’
Tp—1 Tp—1 Tp—*l Tp—1

where r = (7, - -, 7,_,). WithCasinSection 5.1, the non-centrality parameter
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[(1, _“ , —e + T—’)Z<I, 7 , —e' + —T,—>]_l
T T T T

p—1 p—1 p—1

1+ (75-/75-0)

is given by

(7 — Ty]p—]/rp—l)

X (7 — pafTp)
where p = (7, -+, 7,_,).

5.3. Test for direction in the presence of a magnitude change. We are now
given the joint density (5.1), and we wish to test H:d = 0. It is straightfor-
ward to verify that

c— vAe' vAY cvAA 0
T leAe Ay (14 AHA 0

0 0 0 L

where the diagonal elements are the expectations of the derivatives of log p
with respect to d, ¢, v, and A, respectively. Since ¢ is a single element equal
tod, 8 = (1,0), so that EC'E’ = ¢", where ¢! is found from
l/c” — eAe’ — (eAv’, ceA) <)JA))’ cvA )—1<eAy/>
cAv' (1 4 )N/ \cAe
_eAev Ay — (eAV')?,
- (1 4+ Ay ’

consequently, the non-centrality parameter is d?/c''.
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