Abstract
Let $x_1, x_2,\cdots$ be independent and positive random variables with the common distribution function $F$. We show that if $\int^1_0|F(x) - x/b| \times x^{-2}dx < \infty$ for some $0 < b < \infty$, then $\sum^n_{k=1} \min(x_1,\cdots, x_k)$ is asymptotically normal with expectation $b \log n$ and variance $b^2 2 \log n$.
Citation
Thomas Hoglund. "Asymptotic Normality of Sums of Minima of Random Variables." Ann. Math. Statist. 43 (1) 351 - 353, February, 1972. https://doi.org/10.1214/aoms/1177692730
Information