Open Access
February, 1972 Asymptotic Normality of Sums of Minima of Random Variables
Thomas Hoglund
Ann. Math. Statist. 43(1): 351-353 (February, 1972). DOI: 10.1214/aoms/1177692730

Abstract

Let $x_1, x_2,\cdots$ be independent and positive random variables with the common distribution function $F$. We show that if $\int^1_0|F(x) - x/b| \times x^{-2}dx < \infty$ for some $0 < b < \infty$, then $\sum^n_{k=1} \min(x_1,\cdots, x_k)$ is asymptotically normal with expectation $b \log n$ and variance $b^2 2 \log n$.

Citation

Download Citation

Thomas Hoglund. "Asymptotic Normality of Sums of Minima of Random Variables." Ann. Math. Statist. 43 (1) 351 - 353, February, 1972. https://doi.org/10.1214/aoms/1177692730

Information

Published: February, 1972
First available in Project Euclid: 27 April 2007

zbMATH: 0238.60016
MathSciNet: MR298736
Digital Object Identifier: 10.1214/aoms/1177692730

Rights: Copyright © 1972 Institute of Mathematical Statistics

Vol.43 • No. 1 • February, 1972
Back to Top