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SOME CHARACTERISTICS OF PAGE’S TWO-SIDED PROCEDURE
FOR DETECTING A CHANGE IN A LOCATION PARAMETER

By JACK NADLER' AND Naomi B. ROBBINS
Bell Telephone Laboratories

We study a two-sided procedure proposed by E. S. Page for detecting a
change in the location of the distribution of a sequence of independent
observations which are ordered in time. We approximate the null distribu-
tion of Page’s statistic and the power of his test for finite sequences. When
the procedure is applied to an infinite sequence we approximate the average
run length. In order to obtain these approximations we find the distribution
function of the range of a Wiener process with drift and the Laplace trans-
form of the time at which the range first exceeds some given value.

1. Introduction. In many applications of statistics, including areas as diverse as
quality control and tracking an object following a ballistic trajectory, we are
interested in detecting a change in the location of the distribution of a sequence of
independent observations which are ordered in time. E. S. Page (1954) introduced
a control chart procedure for quality control applications which is based on
cumulative sums. Cumulative sum procedures have been applied widely (see
Barnard (1959), Ewan (1963), Ewan and Kemp (1960), Freund (1962), Page (1961),
Traux (1961), and others) and have many advantages including simplicity, ease of
visual interpretation, and speed of detection. However, since not all of the prop-
erties of these procedures have been evaluated there has been little basis for the
choice of control limits. Barnard (1959) suggested the use of cumulative sum charts,
rejecting whenever the plotted points fall outside the edges of a V-mask, the par-
ameters of which he chooses empirically by cut-and-try methods. Goldsmith
and Whitfield (1961) choose the parameters of the V-mask on the basis of simu-
lations. Johnson (1961) has provided simple though nonprecise approximations
for the choice of the parameters. We study characteristics of the symmetric version
of Page’s original two-sided procedure and approximate its average run length
(the expected number of articles sampled at a given quality level before action is
taken).

Typically in control chart applications no upper limit is placed on the number
of observations. We will call this the continuing case. We consider also the trun-
cated case in which at most n observations are sampled. In (1955) Page suggested
basing a significance test for the truncated case on his process inspection scheme.
However, he states that the properties of the test will be difficult to evaluate since
it is a truncated form of a linear sequential test. These technical difficulties forced
Page to modify his test. Chernoff and Zacks (1964) propose a Bayesian test for a
change of a parameter and compare the power of their test to that of the modified
Page test. We approximate the null distribution of Page’s original two-sided
statistic and the power of his test. First we show that Page’s procedure is equivalent
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to one based on the range of the sequence of partial sums of the observations.
Then using a standard method of sequential analysis we convert to the Wiener
process by replacing the sum Y 7Y, m =1, 2, --- by the Wiener process Y(¢),0 <
t < o0, where Y(0) = 0, {¥Y(z), t = 0} has independent and stationary increments,
and Y(¢+s)— Y(s) is normally distributed with zero mean and variance ¢ for all
s > 0. The probability distribution of the range of the Wiener process is found
exactly, and is used as an approximation to the distribution of the range of the
discrete process. A theorem of Donsker shows that in the null case this approximate
distribution of the range is, in fact, its asymptotic distribution as the number of
observations increases indefinitely. This technique of approximating the probability
of an event when observations are taken discretely by the corresponding prob-
ability of a continuous stochastic process has been discussed by Anderson (1960),
Darling and Siegert (1953), Doob (1949), and Feller (1951).

In computing the probabilities of interest we proved some new results in the
theory of Wiener stochastic processes. Let X(¢) be a Wiener process with drift;
that is, X(¢) = o Y(¢)+ut where Y(t)is the Wiener process. Let R, .(0,T) =
maxy<,<r X(t)— ming<, <7 X(¢). In Theorem 1 we derive the distribution function
of R, ,2 (0, T). Define 7 to be the random variable which represents the time at
which R, ,2(0, T) first exceeds some value r as T — co. We find the distribution
function, the Laplace transform, and therefore, any moment of .

Assume that the variance ¢? of the observations is finite. Then under the null
hypothesis Donsker’s theorem (1951) states that the asymptotic distribution of
the test statistic does not depend on the particular distribution of the observations.
Thus the test has a nonparametric character although the quality of the approxi-
mation for fixed n will depend upon the underlying distribution.

2. The procedure. Consider a sequence of independent observations x;, x,, «--,
ordered in time, where x; is distributed according to F(x—6;) with known finite
variance ¢2. In the null state all 0, = 0,; alternatively, for some m, 0, = 0, if
i=1,--, mand

(2.1) infi>m0i = 01 > 00 or Supi>m9i = 02 < 00.

The objective is to detect this possible shift in the value of the mean at the unknown
time m. In the truncated case we test the null hypothesis that x;, x,, -+, x, come
from F(x—8,) against the alternative that for some m satisfying 0 < m < n,
the observations x;, x,, **+, x,, come from F(x—0,) while x,,, -+, x, are dis-
tributed according to F(x—0,), 0;satisfying (2.1). (Since no loss of generality results,
assume henceforth that 6, is chosen so that u = E(X) = 0 in the null state.)

One situation with no limit on the number of observations sampled is a process
inspection scheme designed to detect a change in the mean of a production process.
E. S. Page (1954) proposed a sequential process inspection scheme (a scheme in
which a decision is made after each observation, considering all previous observa-
tions) for this purpose based on cumulative sums. Page’s procedure for detecting a
one-sided change from the null state to u = u’ > 0 is to form the cumulative
sums S, =0, S, = Zl;'=1 xj, k=1,2,---, and to take action after the kth
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observation if Sy —ming ;.. S; = h. This procedure is equivalent to forming the
sums Sy," =0, S, =max(S;_;+x,0), k=1, and to taking action after the kth
observation if S,’ = h. To test for a change in either direction he suggests the
simultaneous application of two one-sided schemes. His rule is to take action after
the kth observation if either

(2.2) Sy—ming<; <, S; = h or mMaXy<; <, S;—S, = h'.

The difficulty of evaluating the characteristics of this procedure forced Page to
consider an alternative scheme. However, since frequently one is equally interested
in changes of p in either direction, we consider his original procedure limited to
the case & = h’. Thus, in the symmetric version of his procedure, the cumulative
sums are plotted and action is taken if the sum rises a height 4 from its previous
minimum or falls 4 from its previous maximum.

This procedure is equivalent to one based on R, the range of the sequence of
partial sums after the kth observation. Let

Vi=maxg<;<,S; and U, = mingc;<, S;.

Then R, = V,—U,. We now show that the rule “Take action after the kth
observation if R, = /1’ is equivalent to the symmetric version of Page’s procedure.
Let 4 = &’ and assume that (2.2) holds for the first time at the Nth observation.
Clearly Ry = h. Conversely, suppose that N’ is the index of the first observation
such that Ry, =z h. Then either Sy. = Vy. or Sy, = Uy.. Thus either
Sy —ming <,y S; 2 h or maxg<;.n S;—Sy = h. Hence N = N’ and the two
procedures are equivalent. B

3. Distribution theory-truncated case. In this section we consider the probability
of rejecting the null hypothesis that x,, x,, ---, x, are independent observations
from a common distribution with mean x and variance a*. The probability of the
event in (2.2) is needed (we will hereafter always assume that # = /’). However,
because of the equivalence of the two procedures it suffices to find the probability
that R, = h. Derivation of the exact distribution of R, is an extremely difficult
problem (see Feller (1951)). Fortunately, Donsker’s invariance principle applies;
i.e., the limiting distribution of R,/n* does not depend on the particular distribution
of the x; (see Donsker (1951)). Let Y(¢) be a Wiener process and let X(t) = o Y(1) + ut.
We regard the sum S, as the value at time ¢ = k of the process X(¢) and calculate
the exact distribution of the range of this process with continuous time parameter.
We compute P{R, ,.(0, T) < r}. If we make the change of variable ¢ = r/T* we
then note that

P{R,,2(0, T) £ qT*} = P{R, ,2(0, 1) < ¢}.
By Donsker’s theorem, as n — o

P{R, £ gn*} - P{R, (0, 1) < g},
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so that our approximation to the distribution of R, provides the asymptotic
distribution of R, /n*.

Define V' = maxo<,<r X(t)and Uy = ming ., <+ X(7). To find the distribution
function of the range we begin by finding the joint distribution function
F, ,2(u,v;T)of Vyand Uy. Then

(3.1) P{R, (0, T) < r} _J J

30on F,(u, v; T)dudv

[Tt o

Let v < 0 and v > 0. From Theorem (4.3) of Anderson (1960) it can be shown that

(32 P{Vy<v;Upzu) = (D<”_#IT>_®(M—;¢T>

_ZEOZI {gk(u’ U; /l, GT%)_gk(v’ Ll; ,U,, GT%)}

where
O(x) =<, dp(z)dx,  ¢(z) = (2m) Fexp(—14z?) and

gk(u’ U;#Q GT%)

= exp {i—lj[ku—(k—l)u]}[ (2("‘1)“ @k—1)v— uT)

oT?*

Qk—1Vu—-2kv—uT
( oT?

@k +Vu—2kv—pT\ [ 2ku—@k— o —uT
+exp{ = k(w— )]}[@( “GT% vk >_q)< ! o e )]

The joint distribution of ¥ and Uy therefore can be written

FoooW,v;T)=P{Vy S 0v}—P{V; Z0v; Up > u}

u—uT 2uv v+uT
= — — | 1-D
(7)o (o | o(5

2, A9 03, 0T —gu(v, u3 1, oTH}.

Performing the calculations indicated in (3.1) we derive
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THEOREM 1. Let X(t) = o Y(t)+ut where Y(t) is the Wiener process with
EY(t) =0 and EYXt) = t. Let R,,(0,T) = maxo<,<r X(t)— ming <, < 7 X(2).
Then

P{R, (0, T) = r}
- q)<r ;r Tﬂ%T> +®<r; ];;T) B
+‘k§1{(4k — 1)[exp (21(?[2”)(1)((2/(C _;}'; + .UT>
+exp ( — i’;ﬂ r)(D((zk _01}; - uT>]
e B ()
+(dk + 1)[exp <2];’2‘ ! )@((2" +(3{ + #T> rexp (2 —a lzcur> cD<(2k +01;; - uT)]

o e A ()

oT? oT?

3 2kuT* exp ( —2lzcur>,:¢<(2k + 1)};—;1T> N ¢<(2k - l)r;—,uT)J
o o ol ol

2k 2kpr\[ 2k +Dr+uT
— xp( gr>[[(2k+1)r+uT](D<(#>
o o oTl>
2kr+uT
—2[2kr+,uT]CD( ’f“)
oTl>

[k —1)r + uT]@((zl‘_l—M>]

oT?
2ku —2kur k+1)r—urT
-— exp (T)[[(2k+ l)r—,uT](D<T

2ker —uT
—2[2kr—uT](D( 4 “)

oT*

+[2k—1)r— uT]cb(w)]} .
cT>
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If we evaluate (3.3) with u = 0 we find that

P{Ry,(0,T) = r}

_ Y- N (¢ e VA 2kr
(34 —2¢<rﬁ> 1+%;{(4k 1)®<—0T* ) 8kq><;ﬁ>
2k +Dr
+(4k + 1)q><--GTT)} .

This case was previously studied by Feller (1951), Anis (1954), and by Darling
and Siegert (1953), whose results are equivalent to (3.4).

The probability of accepting the null hypothesis that x,, x,, -+, x, have a
common distribution with mean zero is given approximately by (3.4). The prob-
ability that R, ,2(0, T) > r, or one minus the probability in (3.3), represents the
power of this test for the special class of alternatives in which the mean changed
before the first observation. An example in which these alternatives might be
appropriate is a production process in which an incorrect adjustment was made
to some equipment before testing began.

Table 1 contains the appropriate limit r for some values of Type I error « when
on* = 1. The expression in (3.4) is 1 —a. For other values of on* multiply the given
r by ont.

TABLE 1

o 1 .05 .025 .01 .005 .001
r 2.241 2.498 2.734 3.023 3.227 3.662

4. Distribution theory—continuing case. Let x, x,, --- be a sequence of indepen-
dent observations, ordered in time, which, in the null state, are from a distribution
with a known mean p, and known finite variance. (Without loss of generality
we take u, = 0.) To detect a change in y in either direction at unknown time m
we apply the procedure of Page stated in (2.2) with # = 4’. But even if the mean
remains constant at zero, (2.2) will hold for some k with probability one,
and action, though inappropriate, is taken. Thus one cannot choose 4 to control
the Type I and Type II errors; instead, onie can use the criteria of controlling the
average run length, which is the expected number of observations sampled before
action is taken.

As in Section 3 we regard the sum S, as the value at time ¢t = k of a Wiener
process Y(¢) with EY(¢) = 0 and EY?(¢) = 1. Let 7 be the random variable which
represents the time at which R, ;(0, 7)) first exceeds r as T — co. Then the average
run length for 4 = 0 is approximated by the expectation of 7. We note that
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P{t =t} = P{R, (0, 1) > r}. Thus the distribution function of t is one minus
the expression in (3.4), or

Fit)=P{z =1}

@.1) =2-20 (_;)_2 5 {(4k— 1)® <(2k Dr)
t k=1 t*
— 8k <2k >+(4k +1)d <(2k;‘ l)’)}.
The series of derivatives is

(4.2) ¢ <—> SL Z {(4k— 2k — 1) ((2k D')

t /
_16k2¢< >+(4k+1)(2k+1)¢ <(2kt+1)r>},

which converges uniformly on any finite interval. Thus (4.2) represents the density
function of 7. To find the mean value of T we take the Laplace transform

W) = [fe* dF (), A>0

and evaluate the lim,_, ¥'(1) where y'(1) = d/(dA)y(}) (see Feller (1966); XIII,
(2.6)). The transform is

W) = L o ﬂ% ¢ <é> dt

© i - (4k—1)(2k—1)r¢ <(2k—1)r> W

0 k=1 132 tt
©© 16k2 2kr
_ okz—'x i ¢< )dt
© e (@ DQk+1) |, (k1)
+ . Y eH P ¢ e dt

By Fubini’s theorem we may interchange the operations of summation and
integration. Let ¢ = exp (—r(2s)?). Then for 1 > 0

VO) = g+ 3 {(dk—Dg?* 1 — 8kg™ 4+ (4k + 1)g™+ 1)
k=1

__ 4
~ (1+g)?

Differentiating y(4) and taking the limit as A — 0 we find E(z) = r2/2. All moments
of 7 can be found by successive differentiation of /(4).

= sech?(r(31)%).
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The Laplace transform of the distribution of 7 could also be found by applying
the results of Darling and Siegert (1953). To illustrate this approach we will deduce
the approximation to the average run length in the non-null case (1 # 0) in this
manner. Let G(r) = P{R,»(0,1) £ r}, g(r) = (8/0r)G(r), and recall that
F(t) = P{t < t}. We noted that F(t) = 1—G(r). Therefore

;—tF(t) = _56-1 G(r).
As before we define y(4) as the Laplace transform of 7, and let
‘ 22 =[5 e g(r) dt.

Then
4.3) Y(A) = jwe_’“ <__0_ G,(r)> dt.

° ot
Define Go(r) = 0. Integrating (4.3) by parts we get

Y(2) = —A[5e MG (r) dt

so that

10
(44 1) = =25 V.

Applying Theorem (7.1) of Darling and Siegert (1953), as well as their relationship
in (3.4) and the results of their Section 5(c) we find that

. 12 [ exp [Ex(x—v)] sinh (§,r/2) —exp [, (x—v)] sinh (&,r/2) d
x4) = 1or2 2 sinh (&,r/2—¢&,r(2)
where
B > 2104 (12 21\%
- #+(#02+20 2 and &, = U (ﬂa;rza ME.

After performing the required integration and substituting into (4.4) we find that

) = 8 [ —(u*+2022)* cosh (ur|a?)—cosh (r(u* +262A)*[a?)
V=5 A sinh (r(u* +202A)*/0?) ]

—(Ur+2020)F ([ u ur
4.5 = — == h + =
@.5) 2 sinh? rq i R A

- (-:—t-z +q> cosh (rq - Z——;) +2q}

(U*+2020)%.
where q=—""
o
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Differentiating (4.5) and taking the limit as 4 — 0 we find that

0_2 r2

,
E(r) = ~coth (/o) = 5 — s =%
() 1 coth (ur/”) 2u® 207 sinh? (ur/o?)

5. Approximation to power function when mean changes at an unknown time.
It should be emphasized that the preceding work is approximate only in the sense
of the usual approximation in sequential analysis. The probabilities that are
calculated are the exact probabilities for the continuous process, and are used to
approximate what would occur if observations were taken discretely. When the
mean changes at an unknown time we cannot obtain results to the same degree of
accuracy.

Let Y(¢) be the Wiener process and X(¢) = o Y(¢)+u,(t—S), where u, = 0 for
0 =t Sand y, = u(some fixed value) for § <t < T.(Ifu, 2 uforS <t =T
then the resulting test would have even greater power.) Define R, ,.(0,7) =
max<,<r X(t)—ming <, < X(¢). Since in this section u, will only take on the
values defined above, we will suppress the subscripts u, and ¢ on R(0, T). To find
the probability of rejecting the null hypothesis when the mean changes at an
unknown time we need to find P{R(0, T) = r; R(0,S) < r)}. Let X(S) = yand let
f(ug, vg, y) represent the joint density function of Ug, Vs, and X(S). Then

P{R(0, T) = r; R(0, S) < r}
= IB t?s—r zzP{R(Oa T) g r|u85 Us, Y}f(“s, USa y)dy dudeS'

However, the probability in the integrand proves to be quite unwieldy, and this
approach leads to expressions which are too cumbersome to employ. Thus we will
have to content ourselves with an approximation to the power function which is
approximate even for the continuous process.

We require the probability that R(0, T') exceeds r. This can occur in any of four
mutually exclusive ways: if for S <t < T, X(¢) exceeds ug+r or is less than
vg—r, or if X(¢) achieves a new minimum u < ug and then increases beyond
u+r or achieves a new maximum » > vg and then decreases below v—r. Let us
assume that the change in the mean is positive (a negative change would be
handled similarly). Then the most probable path for which the range would exceed
r would be to achieve a new maximum greater than ug+1. Since P{R(0,T) > r;
R(0, S) < r} is greater than P{X(¢t) > ug+r; R(0, S) < r} the latter probability
will provide a lower bound for the power function of the continuous process.

Since we condition on the values ug, v5, and y, we need the joint density of
Ug, Vg and X(S). The joint distribution function of Ug and Vg given that
X(S) =yis

(5.1) F(“s,l’le(S)=J’)=P{VS§US|X(S)=)’}

—P{Vs = US; US > usi X(S) = y}‘



DETECTING A CHANGE IN LOCATION PARAMETER 547
We find the second probability on the right from Theorem 4.2 of Anderson (1960)

and the first by letting Us —» — oo in the resulting expression. The joint density
function of Uy, Vg, and X(S) can be shown to be

1 »?
f(uSaUS,y) f(uS’USly) ZS);[ p(_2_'—>

oS )’
2 (2(kvg— (k — Dug) — y)?
= 3(S3)L Z {Zk(k— 1)[ xS :|
¢ 2kvg—(k—Dug)—y
oS*
2 (k(vs—us)—y)* 2k(vs—us)—y
(5.2) -2k [1 - Py :l 1) < pres )
(2k(us—vs) —J’)z 2k(us—vs)—y
_2k2[1— s :|¢< — )

2
+2k(k_l)[l_@(kus—(k—l)us)—y) ]

%S
.¢ 2Akus—(k—1)vg)—y
aS* ’

Our lower bound for P{R(0, T) = r; R(0, S) < r} is

P{X(t)>us+r,S<t=<T;R(0,S)<r}

(5.3) - P{Y(z) > “S+"_ya_”(t_s), S<1<T;R0,S)< r}

rfo [ ug+r—y—u(t—S
:Jj f P{Y(t)> > yo_ at ),S<t§T|us,vs,y}
0J vs—r Jus

“f(us, vs, y)dy dug dvg.

We now make a change of variable; let rg¢ = vg—ug and z = y—ug where
0 <z <rgand —rg < ug < 0. Then (5.3) can be expressed as

(5.4) JJJ [Y(t) - _:(I_ N s<is Tius,rs,z]

flus, rs, z)dugdrgdz
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where
Sflus, rs, z) = 3(23) Z 2k(k—1) [1 _ (2krs :Z;—z)z] p <2krs(;l;s_z>
-2k [1 _ Qs ;212—2)2] p <2krs;31;s—z>
—2k2 [1 _ (2krs :ZLS +z)2] é <2krs:‘-;;s +2>
e [1- Gt (Hmpets)

Performing the inner two integrations yields

(@) = [L ]2, flus, rs, 2) dusdrs

2 2k;+z
-] ¢ () B e (5 e (3557)
Qk+1)yr—z QRk—Dr+z
+2ke (T)‘”“f’ (T)}]

From equation (17.1) of Shepp (1966) we find
r—z—u(t—>S)
o

P{Y(t)> ,S<t§T|z}

_ r—z—u(T—2S) 2u(r—2z) z—r—u(T—-S)
=1-0 <W>+6Xp< 2 )@( O'(T—S)% )

so that our approximation to the power function is

N r—z—u(T->S) 2u(r—1z) z—r—uw(T—S)
(55) J\OI: 1-® <w> +exp < 0_2 ) q)< o’(T— S)% >:|f(2) dz.

6. Approximation to the average run length function when mean changes at an
unknown time. The average run length is approximated by the expected value
of 7 (the random variable representing the time at which R(0, T) first exceeds
r as T — o0). We will consider the conditional average run length given that we
do not reject before time S. Then we require E{t | R(0, S) < r}. Recall that

P{t < t| R(0,S) < r} = P{R(0,?) > r| R0, S) < r} which is given by (5.5)
with f(z) replaced by f*(z) = f(z)[P{R(0, S) < r}.

@ r —z—u(t—S
6.1) E{x| RO, S) < r} = L {1—[0[141) (ra(r__ﬂfq)‘*—)>

2u(r— —r—u(t—S :
¥ exp( K ((:2 Z)>c1> <Z ;(t f(bf)% )>] *(2) dz} dt
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Letting x = t—S and interchanging the order of integration we see that (6.1)

equals
ax’ (4 X

which, after integration by parts, reduces to

J‘J“”(r z) <r z— #x)dxf*(z)dz
ox? ox?

= O APPROXIMATION TO
140+ AVERAGE RUN LENGTH

120 ® EMPIRICAL AVERAGE
RUN LENGTH

ARL
T

100}~
80—
60}
40}

20+

TN NN S IR SR NN S NN NN R SR GRS
0 020 040 060 080 100 1.20 140

MEAN/STANDARD DEVIATION

F1G. 1. Conditional average run length function for two-sided procedure when mean changed
at the 76th observation.

Thus
(6.2) E{t|R0,S) <r}= j ' %Z f*(z) dz
0

r 206.5* r 1 kr
=3 TRPRO S < e T L Z( D¢ ( s*)]

where P{R(0, S) < r} is given by (3.4).

Selected points on the function (6.2) are plotted in Figure 1 and are compared to
the results of sampling studies. In the empirical studies 500 sequences of pseudo-
normal deviates were generated on the GE 635 computer for each mean and time
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of change combination. (Six times of change were studied; only one of which is
reproduced here.) In Figure 2 we plot the approximation to P{R(0,T) =
r | R(0, S) < r}, the conditional power function given that we do not reject before
time S. This function is given by (5.5) with f*(z) replacing f(z). We compare these
results to those of the sampling study.

.00+ —0 -0

0.90
'0.80H
0.70—

0.60+

0.50

POWER
T

O APPROXIMATE PROBABILITY
OF REJECTION

e EMPIRICAL PROBABILITY
OF REJECTION

0.40
0.30

0.20

0.10
‘ ! 1 I L I l ! [ -
0 0.20 040 060 0.80 1.00
MEAN/STANDARD DEVIATION

Fi1G. 2. Conditional power function for truncated two-sided procedure when mean changed at
the 101-st of 200 observations.

7. Unknown variance. Throughout the preceding sections we have assumed that
o? is known. In industrial applications this is usually a reasonable assumption
since large quantities of past data are usually available. We recall that x,, x,, -+, x,
come from a distribution with variance g%, and we reject the null hypothesis when
the range of the partial sums of the x; exceeds r. This is equivalent to rejecting
the null hypothesis when the range of the partial sums of the y; exceeds r/c where
x; = oy;. We now consider the case when o? is unknown. Suppose at the jth
observation we estimate 6? by s,2 = (j—1)7' Y., (x;— %)) where x; = j ' Y /_; x;.
Then it is no longer true that the range for n, observations exceeding r/s,
implies the range for n, observations exceeding r/s, where n, > n;. However,
s;? converges to o? almost surely. Thus as the number of observations becomes
large this is not likely to be a serious problem. If r is chosen so that the Type I
error is small, then the probability will be small that the range will exceed r/s,
for small n. However, should this event occur, it should be viewed with some
suspicion.
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