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ON THE MATRIX RENEWAL FUNCTION FOR MARKOV
RENEWAL PROCESSES'
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1. Introduction. A Markov renewal process [7, 8], [N1(t), Na(t), ---, Nz(t)]
is an extension of an ordinary renewal process having considerable practical
importance. Whereas the ordinary renewal process describes the number of re-
currences (renewals) in the interval (0, ¢] for a single recurrent class of epochs
& of interest, the Markov renewal process describes the recurrence statistics for
intermingling classes of epochs {&; ;7 = 1,2, - - - R} of an underlying semi-Markov
process. The process is characterized by a stochastic transition matrix p;; for
the Markov chain governing the sequence of successive epochs, and a matrix of
probability distributions F;;(x) for the time elapsing between epochs of class &;
and epochs of class &;, whenever an &; epoch follows an &; epoch. We adopt the
convention that an epoch of a given class may be succeeded by another epoch
of that class.

Let N;; (t) be the number of epochs of class &; appearing in the interval (0, {],
when it is known that at ¢ = 0 there was an epoch of class &;. Let H;;(t) =
E[N;; ()] and let H (¢) be the B X R matrix with elements H;;(t). We will call
this matrix the matrix renewal function.

When R = 1, Nyu(t) is the ordinary renewal process, and Hy () = H(t)
is the renewal funection. It is well known [6] that if an interval distribution F (z)
has finite first and second moments u; and ws, and does not have arithmetic
support, then the associated renewal function H (¢) has the behavior

1.1) H(t) = m 't + 3™ (w2 — 2u’) + €()

where ¢(t) is bounded and goes to zero as t — .

The literature on semi-Markov processes has dealt largely with the theoretical
structure of such processes, and pathology distinguishing such processes from
Markov chains, in continuous time. The statistics for such processes, e.g. the
mean and variance of the renewal time between epochs of the same class,
and the mean passage time from an epoch of class & to an epoch of class &;,
have received less attention.? For finite semi-Markov processes (R < o ), much
of this statistical information is available from the following direct analogue of
equation (1.1).
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TrEOREM 1. Let N (t) be a finite semi-Markov process. If (a) the transition
matriz P = {py;} for the governing chain is irreducible; (b) [ 2" dFy;(x) < « for
all 2,7 = R; (c) the distributions F;;(x) are not all lattice destributions with a com-
mon span; then the matriz renewal function H () for the associated Markov renewal
process has the form

(1.2) H(t) = ast + a1 + &(¢)
where
(1-3) a = m_IJo,

(14) a; = m7Jo{ =By + imBuJo} + {Z — m7'JBiZ} {By — m 'BiJo},

and e(t) — 0 ast— . In the above (B(z))s; = puFij(x); By = [ 2" dB(z);
e is the left real positive eigenvector of B, with Z e; = 1; (Jo)ys = €,
m = D ieBuj,and Z = [I — By + JoJ ' is the fundamental matrix for the
governing chain [4].

From (1.1) and Theorem 1 we will exhibit the mean and variance of the re-
newal times for the epochs of any class, the parameters needed for the Central
Limit Theorem for the corresponding renewal process. The mean passage time
E (74;) from an epoch of class &; to the first subsequent epoch of class &; will also
be exhibited.

The matrices a; and a, appearing in (1.2) are obtained from a study of the
spectral decomposition of the matrix [I — B(s)]™" where g(s) is the Laplace-
Stieltjes transform of B (z). This part of the analysis is an extension of results
obtained earlier with D. M. G. Wishart [2, 3].

2. The asymptotic behavior of the matrix renewal function. We first wish to
demonstrate the validity of the form of the matrix renewal function H (¢) ex-
hibited in (1.2) under the conditions of Theorem 1.

LemMa 2.1. If the transition mairix By = p governing the finite imbedded M arkov
chain 1s irreductble, and if By is finite, then the random interval 7;; between an epoch
of class &; and the first subsequent epoch of class &; has a finite second moment.

Proor. Let K;; be the random number of epochs of all classes from an epoch
of the class &; to the first subsequent epoch of class &; . The irreducibility of B,
implies that E[K3;] and E[K;] are finite. The finiteness of By (and hence of B;)
and the finiteness of R permits one to infer that wi; = [ 2 dFij(x) < 4, all ¢, j,
and that pi; = fx2 dF;(x) < B, all 7, j. Any sample path in continuous time
from an epoch of &; to the first subsequent epoch in &; will be associated with the
corresponding path for the imbedded chain ¢ = jo —j1 — J2 -+ — ju = J, and
the duration of the sample path in continuous time will be

i =T1+ T+ + Ty
where T, is the duration of the kth step in the path. Hence,? E[ri;] = E[D_1*7 T4l

# 37Tt is known that E[K;;] and E[K?;] are finite for finite, irreducible chains. See Kemeny
and Snell [4].
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< AE[K;] < . Similarly, since E[T;T)] < B, from the Schwarz Inequality,
Elr%] < BE[K:j] < . []

Lemma 2.2. Under the conditions of Theorem 1, H;(t) has the form for i = j,
(2.1) Hj(t) = t/Elr;]) + (Blr5] — 2Er3])/ @QE[ri]) + €ii(t)
and for v # j
(2.2) Hi(t) = t/Elry] + {1 + EBlr3] — 2B[r;1])/ QE[rs:))

— Elril/Elriil} + (D)
where e;;(t) and ¢;(t) — 0 as t — «, and are bounded for all 1.

Proor. Equation (2.1) follows from Lemma (2.1) and the result (1.1) of
ordinary renewal theory when increments have finite second moments and do not
have arithmetic support [6]. The non-arithmetic support of 7;; follows from the
irreducibility of B, and the assumption that not all the distributions F;;(z) are

lattice distributions with a common span.
The proof of (2.2) proceeds from (2.1) and the observation that

(23) H”(t) = fé Hjj(t - t,) dS’L](tl) + Sw(t)
= Hj;(t)*S:(t) + Siit)

where S;;(t) is the pdf for 74; , i.e. S;;(t) = P{ri; < t}. To obtain (2.2) one only
requires the Dominated Convergence Theorem. Thus let

. F@t) = {at + b+ e@)}=S@),
ie.,

F@t) = b[edSE) + at [odS({H) — a [ dSE) + [oet — ¢)dS().

If we write [¢dS({) as 1 — [T dS(f'), and note that ¢ [7 dS(¥) < [T ¢ dS(t)
— 0 as ¢ — o, weneed only consider the fourth term. We see from (2.1) that e(t) is
bounded, i.e. |e(t)] < M < = foralltand e(t) — 0 as¢— o.If we write our integral
as [¢ {e(t— £YU(t—1)} dS (') the term in curly brackets is dominated by M, and
the Dominated Convergence Theorem permits us to infer that e(t)*S (t) — 0 as
t— . Hence F(t) = at + b —a [5 ¢ dS (') 4 o(t). Since S;;(t) — 1, (2.2)
follows [].
Equations (2.1) and (2.2) may be written in the combined form

2.4) : H () = at + a1 + ().
4 For let path o be a chain path (j, a1, *** %an—1 , j) starting at j and returning to j
after N steps. These paths are enumerable and we may write Rjj(z) = Pfrj; = x}

= 2o P{path a} Fi,@)* -+ *Figy_, j(x). Because of the irreducibility any transition
permitted by the chain must appear in at least one path contributing to the summation.
It then follows from a simple characteristic function argument that if r;; has span h,
every Fiu(z) must have the same span. Note that if &; is the rv for Fijz), and &; =
K; — K; + Nijh, then 7;;/h is an integer lattice random variable when K; and K; are con-
$tants, and N;; is an integer random variable. This possibility preventing () from going
to zero was suggested to the author by J. Th. Runnenburg.
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The constant matrices a; and a; are known from (2.1) and (2.2) in terms of
E[r;;] and E[r};]. An expression is needed for a; and a; in terms of the elements of
B(z). This expression may be obtained by a comparison of (2.4) with the alter-
nate form of H (¢) given by

(2.5) H() = 2 mB®@)

where B ® (¢) is the k-fold convolution of B (¢) with itself, i.e. is defined iteratively
from B *™ (1) = [(B(t — ) dB® (). Let 8(s) = [¢ ¢ ** dB(¢). We note that
the non-arithmetic support of B(z) implies [5] that . [8;(s)] < 1, in
D = {s|Re(s) = 0, s # 0} for one or more values of 7. We have, therefore, [1],
that the spectral radius of g(s) is less than unity in the domain D. Hence, in
D, [I — B(s)] is non-singular and

(2.6) SH@G} =" 276°6) = s3I — 861
From (2.4) we may then write, for limits taken along paths in the interior of D,
(2.6") ar = lim,op SS{s7B ()T — B ()7,

since §’2{a; + £(t)} — 0 as s — 0+4. Moreover, from s&{e(t)} — 0 as s — 0+
and (2.4) we also have

27) a1 = lime,or [s{sTB ()T — B — a/s’}].

Evaluation of a; and a, from (2.6’) and (2.7) requires study of the behavior of
[I — 8(s)]" in the neighborhood of s = 0.

3. On the structure of [I — 8(s)]* near s = 0. The matrix characteristic
function B (s) is analytic in the domain Re (s) > 0, and continuous in the closed
right half-plane Re (s) = 0 = Du{0}. It has been shown by Keilson and
Wishart [2, page 549] that when B, < o, 3(s) has a simple eigenvalue Ao (s)
larger in magnitude than all other eigenvalues for values s on the pure imaginary
s-axis in some neighborhood of s = 0. Moreover, [N\ (s)| = 1 and A\ (s) is con-
tinuous in that neighborhood and differentiable twice there. By virtue of the
analyticity of 8 (s) in the interior of D, a similar argument may be employed to
show that for some closed neighborhood NV of the origin in the right half s-plane,
i.e. for some set N = {s|Re (s) 2 0, |s| = 8}, 8(s) has a simple maximal eigen-
value A\ (s), differentiable twice at every point s, of N, in the sense that the de-
fining limits are independent of all possible paths taken within N, and Ao (s) and
Ao’ (s) are continuous at all points of N.

Associated with A (s) in N, will be left and right eigenvectors X,(s) and Yo (s),
and a corresponding dyadic matrix J(s) with components

Jij(s) = YM(S)XOJ‘('S‘)/ZJ‘ X0 (8)Y0;(s),

such that
(3.1) J($)B(s) = M (8)J(s),
(32) BT () = M) (6),

3.3) T (s) = J(s).
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Correspondingly one will always have available in N, the decomposition

(34) B(s) = M()J(s) + L(s)

where L(s) = 8(s) — X (s)J(s). From (3.1), (3.2) and (3.3) it follows that
J(s)L(s) = L(s)J(s) = 0. Hence from (3.4) and the idempotence of J we have
8°(s) = \°(s)J(s) + L¥(s). The spectral radius of L (s) is smaller than one for
all points of N, and hence [I — L (s)] will be non-singular in N. It follows from
(34) that

35) I —=BENT = MO = MN@I7J@6) + I — L), selN, s = 0.

The principle dyadic J (s) and its derivative J'(s) will also be analytic and
continuous on N. This follows from an argument almost identical to that of
Theorem 2.5 of Keilson and Wishart [2]. Hence J(s)— J(0) = J, with elements
Jo; = e; where e is the left eigenvector of By corresponding to the ergodic state
probabilities for the associated chain. Also L(s) — By — Joand [T — L(s)]™ —
[I — By + Jo| " = Z, the fundamental matrix for the associated chain.

4. Differentiation of the principal eigenvalue and principal dyadic at s = 0.
If we differentiate (3.1) at s = 0, and use \o(0) = 1,3(0) = Byand 8’ (0) = —By,
we obtain
@.1) —J(0)B: + J(0)Bs = J'(0) + X' (0)J (0).

If we next premultiply (4.1) by e, postmultiply by 1, and useeJ (0) = e, Bl = 1
and e-1 = 1, we obtain as in Keilson and Wishart [2]
4.2) — X' (0) = eByl = m.

We next obtain an expression for J' (0), from differentiation of (3.1), (3.2) and
(3.3). If we add J' (0)J (0) to both sides of (4.1) anduse Z = {I — By + J(0)} ",
we find

(4.3) {J7(0)J©0) + mJ(0) — JO)BJZ = J'(0).
Similarly, differentiation of (3.2) and the same procedure gives
(4.4) Z{J(0)J'(0) + mJ(0) — BJ(0)} = J (0).

We next add (4.3) and (4.4). We observe that ZJ(0) = J(0) and J(0)Z = J(0).
Moreover, from (3.3), J(0)J' (0) + J'(0)J(0) = J' (0). Hence we obtain

@.5) J©) = 2mJ(0) — J(0)B.Z — ZB,J(0)

where everything on the right of (4.5) is known.
An evaluation of A" (0) is also of interest. If we differentiate (3.2) twice and
set s = 0, we find

BoJ” (0) — 2BJ'(0) + B:J(0) = J"(0) — 2mJ' (0) + A" (0)J(0).
Premultiplication by e, postmultiplication by 1, and use of eB;1 = m (4.2) then
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gives
(4.6) N (0) = 2me]J (0)1 — 2eB.J'(0)1 + eB.l.

From (4.5), however eJ’ (0)1 = 0, since eZ = ¢, and Z1 = 1. Also from (4.5)
J (0)1 = ml — ZB,1. Substituting in (4.6), we find

@4.7) Mo’ (0) = eB,1 — 2m’ + 2eB,ZBil.
Hence
4.8) N (0) — {N(0)}® = Byl — 3m® + 2eBiZBil.

The expression on the left of (4.8) was identified previously in Keilson and
Wishart [2] as the asymptotic variance per increment for the Central Limit
Theorem for additive processes defined on a finite Markov chain, but the authors
were unable to evaluate the expression by direct differentiation. The term on the
right of (4.8) was obtained subsequently in Keilson and Wishart [3] as an ex-
pression for the asymptotlc variance by purely probabilistic considerations. The
evaluation of \” (0) — {\ (0)}® by our present technique provides a check on
these older results.

5. Evaluation of a, and a; . We next evaluate a, from (2.6) with the help of
(3.5). Since §(s) = Bo, J(s) = Jo, and [I — L(s)]"' — Z, we have from (2.6),
and BoJo = Jo ,

(5.1) hnls—>0+ 1= )\ (8) JO = ,(0) J
or
(5.2) a=m Jo.

To evaluate a; , we employ (2.7) and (5.2) in the following manner. The term
appearing on the right of (2.7) may be rewritten as

a; = lim,.oq [{S[I — B(s)] " Hs[B(s) — (0]
(5.3) + (ms’) ' [B(s) — B(0) — 8'(0)s]Jo}]
+ limesor [{I — 8(8)}{B(0) + m '8 (0)Jo}].

The ﬁmteness of B, assures the availability of the Taylor Expansion §(s)
8(0) + ¢’ (O)s + 8" (0)s’/2 + s°0(s) where 8(s) — 0 as s — 0+. Since 8’ (0)
= —B; and:8” (0) = B;, (5.3) becomes

(5.4) ar = m'Jo{3m 'BoJo — Ba} + limesos [{T — 8(s)}{Bo — m ™ BuJo}.
We note that

(5.5) J(©){By — m™BJo} = 0

and employ (3.5) to write the second term in (5.4) as

. No(s) —1 —1
i o [ 2280 (3(6) — JCO)} (B = 7B ol |+ Z{Bo = n'BuJi
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Hence
(56) a1 = mJ(0){3mB:J(0) — By} + {m” 'J(0) + Z}{Bo — m B.J(0)}.

If we now substitute the expression (4.5) for J'(0) into (5.6) and again use (5.5)
we find that

(6.7) ar = m " Jo{¢m ByJo — Bi} + {Z — mJeBiZ}{By — mByJo}.

6. The mean and variance of the regeneration time distributions. Let us
suppose that at ¢ = 0, the semi-renewal process has just experienced a renewal
event of class &; . Let R;(z) be the regeneration time distribution for events of
class 7, le., the distribution of times elapsing between successive events of
class &; . Then, from (1.2) and (1.3),

(6.1) Hj(t) = 2R ® () = mTet + ary + €55(2).
By comparison with (1.1) we have for the mean m; and variance o;° of B; (x)
(6.2) m; = m/e;

and (o7 — m;’)/2m;* = ay; . Hence o = mie; 2 (1 + 2a5;).
From (1.4) we then have the desired expression for o;’.

7. The mean time from an epoch of class &; to the next epoch of class &; .
A comparison of (2.1) and (2.2) leads to the simple equation

(7.1) Elrgl/m; = aj; — ari; + 1,

where m; = m/e; as in Section 6, and a1, is again given by (1.4). We note that
JoQ)i; — (JoQ)i; = 0 for any matrix Q. Hence from (1.4), (7.1) simplifies to

(7.2) Elri] = migi; — ¢ + 1)

where ¢;; is the %jth element of the matrix

(7.3) Q = Z{B, — m 'B.Jo}.
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