Open Access
June, 1968 Moment Convergence of Sample Extremes
James Pickands III
Ann. Math. Statist. 39(3): 881-889 (June, 1968). DOI: 10.1214/aoms/1177698320


Let $Z_n$ be the maximum of $n$ independent identically distributed random variables each having the distribution function $F(x)$. If there exists a non-degenerate distribution function (df) $\Lambda(x)$, and a pair of sequence $a_n, b_n$, with $a_n > 0$, such that \begin{equation*}\tag{1.1}\lim_{n\rightarrow\infty}P\{a_n^{-1}(Z_n - b_n) \leqq x\} = \lim_{n\rightarrow\infty} F^n (a_nx + b_n) = \Lambda(x)\end{equation*} on all points in the continuity set of $\Lambda(x)$, we say that $\Lambda(x)$ is an extremal distribution, and that $F(x)$ lies in its domain of attraction. The possible forms of $\Lambda(x)$ have been completely specified, and their domains of attraction characterized by Gnedenko [5]. These results and their applications are contained in the book by Gumbel [6]. A natural question is whether the various moments of $a_n^{-1} (Z_n - b_n)$ converge to the corresponding moments of the limiting extremal distribution. Sen [9] and McCord [8] have shown that they do for certain distribution functions $F(x)$, satisfying (1.1). Von Mises ([10] pages 271-294) has shown that they do for a wide class of distribution functions having two derivatives for all sufficiently large $x$. In Section 2, the question is answered affirmatively for all distribution functions $F(x)$ in the domain of attraction of any extremal distribution provided the moments are finite for sufficiently large $n$. If there exists a sequence $a_n$ such that \begin{equation*}\tag{1.2}Z_n - a_n \rightarrow 0, \text{i.p.}\end{equation*} we say that $Z_n$ is stable in probability. If \begin{equation*}\tag{1.3}Z_n/a_n \rightarrow 1, \text{i.p.}\end{equation*} we say that $Z_n$ is relatively stable in probability. Necessary and sufficient conditions are well known for stability and relative stability both in probability (see Gnedenko [5]) and with probability one (see Geffroy [4], and Barndorff-Nielsen [1]). In Section 3 necessary and sufficient conditions are found for $m$th absolute mean stability and relative stability. The results of this work are valid for smallest values as well as for largest values.


Download Citation

James Pickands III. "Moment Convergence of Sample Extremes." Ann. Math. Statist. 39 (3) 881 - 889, June, 1968.


Published: June, 1968
First available in Project Euclid: 27 April 2007

zbMATH: 0176.48804
MathSciNet: MR224231
Digital Object Identifier: 10.1214/aoms/1177698320

Rights: Copyright © 1968 Institute of Mathematical Statistics

Vol.39 • No. 3 • June, 1968
Back to Top