A SEQUENTIAL ANALOGUE OF THE BEHRENS-FISHER PROBLEM
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1. Introduction. In [1] and [4] a sequential procedure for the fixed-width in-
terval estimation of the mean of a single population was investigated. We
consider here an analogous procedure for estimating the difference of the means
of two populations.

Let @y, 22, -+ and 41, ¥2, - -+ be two independent sequences of rv’s, the z’s
iid N(u1, 0r°) and the y’s iid N(us, 02°). The four parameters py, ps, 01, o2 are
assumed unknown. We want to find a confidence interval I of width 2d and
with coverage probability =« for the parameter A = p; — u2, where0 < d < o
and 0 < a < 1are preassigned constants.

If 01, o2 were known we could proceed as follows. Ta,ke r observations on x
and s observations on ¥, and let

&= 1/rXiw,  §o=1/s2iy;
be the respective sample means. If
(1) I=1%—49g —d, & — g + d]
is the ipterval of width 2d centered at Z, — 7, , then
' P(Ael) = 20(d/(o/r + a/s)}) — 1,
where & denotes the normal (0, 1) df. Hence, defining the constants ¢ and b by
20(a) — 1 = «a, b = (a/d)?,
we have P(AeI) = « providing that r, s satisfy the inequality
(2) ol /r + a5 /s < 1/b.

Regarding r, s as continuous variables, the pair (r*, s*) which satisfies (2) and
for whichn = 7 + s is a minimum is given by

(3) r* = bow(oy + 02), s = baa(or + 03).
For this pair

(4) r*/s* = a1/0s,

and the total sample size is

(5) n* = r* 4+ 5% = b(or + o)’

We shall now give a sequential procedure when gy , o3 are unknown for determin-
ing r, s as random variables in such a way that (3) will hold approximately with
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high probability. The procedure consists of (a) a sampling scheme which tells
us at each stage whether to take the next observation on z or y, and (b) a
stopping rule which determines r and s and therefore I by (1).

2. The sequential procedure: .
(a) Let

wl =G — D7 Lia(m — &), o' =G~ D7 2Zlaly — 7))

be the usual estimates of oi” and o5, for which u; — o1, v; — 03 a.5. as 4, 7 — .
We take ny = 2 observations on z and on y to begin with. Then if at any stage

we have taken ¢ observations on x and j on y, withn = ¢ 4+ j = 2n,, we take the
next observation on z or on y according as

i/j £ ui/v; or /] > wui/v;.

This procedure generates an infinite sequence of observations and does not de-
pend on the value of « or d. We shall show in the next section that ¢/j — o1/02
a.8. as n — o,

(b) We now give three more or less equivalent stopping rules. Let {a.} be a
given sequence of positive constants such that @, — @ as n — «, and put
by = (an/d)".

R; : Stop with the first n = 2ng such that, if  observations on x and s observa-
tions on y have been taken, with » 4+ s = n,

(6) n 2 bu(ur + 0,)° (cf. (5)).
R, : The same, with (6) replaced by

(7) w/r + v'/s < 1/b, (cf. (2)).
R; : The same, with (6) replaced by

(8) r = buuur, + vs) and s = bo(ur + v;) (cf. (3)).

It is easy to check that the sample sizes n; determined by these three rules R;
are such that n; = ne = ns.

3. Asymptotic optimality of the sequential procedure. Let p1, u2, 01, 02, @,
no, {a,} be fixed and let d — 0, so that n* — « where n* is the optimal fixed
sample size defined by (5). Denote by n = r 4 s the sample size determined by
any one of the stopping rules Ry, , k = 1, 2, 3, and let I be the interval (1) forr, s.

TaeoreM. Asd — 0

(9) n/b(or + 02)’ > 1 as., En/b(or + 0)’ — 1,
and
(10) P(Ael) — a.

Proor. We begin with a non-stochastic
LeEMMA. Given constants ¢; (1,7 = 1,2, ---) such that 0 < ¢;;; — ¢ > 0 as
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1, J — o and any integer no = 1, define ©(2no) = j(2ny) = ng and for n = 2n, let
(I wn+1)=1dn)+1, jn+1)=4jn) i i(n)/jin) = cim.im,
(II) in+1) =in), jn+1)=jn)+1 i i(n)/j(n) > cimim -

Then i(n)/j(n) > casn — «.

Proor or THE LEmMMA. Clearly i(n) — «,j(n) —  asn — «. Call aninteger
n Z 2ng of type I or II according as the right hand side of (I) or (II) holds for .
Then for all sufficiently large n there exist a largest integer n’, 2ny < n’ < n, of
type I, and a largest integer n”, 2ny < n” < n, of type II, and n’, n” — « as
n — . Then

i(n)/i(n) £ (i(n') + 1)/i(n) £ ciwy.imn + L/i(n') — ¢,
i(n)/i(n) 2 i(n")/(G(n") + 1) = i(n")/i(n")1 — 1/G(n") + 1))
Cimn.imn(l — 1/j(n") + 1) >,

and the lemma follows.
In the present case we put ¢;,; = wi/v; and obtain the result

v

i(n)/j(n) — o1/o2 a.s. as n— o,
For any of our stopping rules, sincen — «» a.s. as d — 0, it follows that as d — 0,
(11) /s — o1/oy  as.

We shall now prove (9) for R = R;, where we stop sampling with the first
n = r 4+ s = 2ny such that

(12) r 2 baus(ur + v;) and s = buvs(ur + 0s),
where
be = (an/d):, b= (a/d)’.

Suppose that r > ny and that just before the rth observation on x there were
(r — 1 observations on x and) j observations on y. Then by the sampling rule (a)
of Section 2,

(r = 1)/j £ ura/v;.
This implies that r — 1 < b,_14Ur—1(Ur—1 + v;), for otherwise we would have
7= (r — )0/t > brayvi(Ura + v5),
and sampling would have stopped at the (r — 1, j) stage. Hence even if r = n,,
(13) 7 = brayfUra(Ura + v;) + no.
Asd—0,r— «,r/j > 01/02,50j — » a.s., and hence

lim supg»o 7/b =< 01(o1 + 02) a.s.
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The reverse inequality for the lim inf is obvious from (12), so
(14) limd_;o 'l'/b = 01(0’1 “+ (12), linld—»O S/b = 0’2(0’1 -+ 0'2) a.s.,

which implies the first part of (9).
The second part of (9) will follow from the dominated convergence theorem if
we can bound the rv r/b by an integrable rv which is independent of d. Let

U = SUPiz2 Ui, U = Sup;z2?;;
then
u' S 2supize {1/4 D i (2 — ),

and the right hand side is integrable (by Wiener’s dominated ergodic theorem [5])
since the fourth moment of z is finite. Thus Eu’ < « . and similarly Ev’ < .
But from (13), ford = a,

r/b £ C-u(u + v) + no,

so we can apply the dominated convergence theorem to conclude from (14) that
Er < «,FEs < » and

(15) limd_,o E’l‘/b = (11(0'1 + (12), Hmd-m ES/b = 0’2((11 + 0'2),

whence the second part of (9) follows.

(10) follows from (14) by a simple extension of the proof of Rényi’s theorem
to the case of two populations; cf. [2]. This completes the proof of the theorem
for B = R;. Because n1 = n: = ns, the other cases follow too.

We remark that the theorem just proved remains valid for non-normal popu-
lations; even the requirement that the population fourth moments be finite can
be relaxed (see Section 5).

4. Small-sample behavior. It seems hopeless to try to find exact values of
P(A & I) and En for finite values of n* by analytic methods. Instead, we present
the results of an experiment using pseudo-random normal deviates for the values

a=.95 a=19, n=25 a = (n+4)/(n— 4)(1.96)?
for which (5) becomes
* = {1.96NA + 1)}?

n¥ =
where

A =o01/oe, N =a/d.
Values A = 1,1, %, & andn™ = 10, 20, - - - , 200 were used, and 2,000 sequences

of x and y were generated for each entry (except that for n* = 175 and 200 only
1,000 sequences were generated). We denote by * the average value of n and by
vg‘) the coverage frequency of I using the stopping rule R; (k = 1, 2, 3).



PN n* 2@ 2@ 2® »@) »@) »@®
.80670 10 15.0 15.1 15.5 .977 977 979
1.14085 20 24.1 24.1 24.7 .953 .954 .956
1.39725 30 34.2 34.2 34.8 .949 .949 .952
1.61341 40 44.0 4.0 44.6 .946 .947 .949
1.80384 50 53.7 - 53.7 54.4 .945 .945 947
1.97601 60 64.1 64.3 64.9 .949 .949 .950
2.13434 70 74.8 74.8 75.5 .950 .950 .951
2.28170 80 85.0 85.1 85.6 .951 .951 .951
2.42011 90 94.9 94.9 95.5 .951 .951 .952
2.55102 100 105.0 105.0 105.6 .951 .951 .952
2.85213 125 130.7 130.7 131.3 .952 .952 .952
3.12435 150 155.8 155.8 156.4 .952 .952 .952
3.37468 175 179.7 179.7 180.4 .951 .951 .952
3.60769 200 206.6 206.6 207.2 .952 .952 .952

A=3
N n* 20 7@ 2® »(1) »@) »®)
1.07560 10 15.4 15.6 16.1 .976 .978 .980
1.31481 20 24.4 24.4 24.9 .955 .956 .959
1.86300 30 34.1 34.1 34.7 .950 .950 .952
2.15121 40 4.1 44.1 4.7 .948 .948 -950
2.40513 50 54.2 54.2 54.8 .948 .948 .949
2.63468 60 63.9 63.9 64.7 .947 947 .949
2.84578 70 74.2 74.2 74.9 .949 .949 .950
3.04227 80 84.9 84.9 85.6 .951 .951 .952
3.22681 90 94.8 94.9 95.5 .950 .950 .951
3.40136 100 104.9 104.9 105.5 .951 .951 .952
3.80284 125 130.5 130.5 131.2 .952 .952 .953
4.16580 150 155.8 155.8 156.5 .952 .952 .952
4.49958 175 180.3 180.3 181.0 .952 .952 .952
4.81025 200 206.2 206.2 206.9 .952 .952 .952

= 1

=3
by n* W 7@ 7@ »®) »@) »®)
1.29073 10 15.4 16.1 16.9 .967 .973 .978
1.82536 20 25.0 25.5 26.1 .956 .960 .964
2.23560 30 34.7 31.9 35.6 .952 .953 .957
2.58115 40 4.5 44.6 45.2 .952 .952 .954
2.88165 50 53.9 54.0 54.7 .949 .949 .951
3.16162 60 64.1 64.2 64.8 .949 .950 .951
3.41494 70 74.4 74.5 75.1 .950 .950 .951
3.65072 80 84.8 84.8 85.8 .951 .951 .952
3.87218 90 94.7 94.7 95.3 .950 .950 .951
4.08163 100 104.9 105.0 105.6 .951 .951 .951
4.56340 125 130.5 130.5 131.2 .951 .951 .952
4.99896 150 155.1 155.1 155.7 .951 .951 .951
5.39949 175 180.0 180.0 180.6 .950 .950 .951
5.77230 200 204.5 204.5 205.2 .951 .951 .951
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A=t

b n* 2@ @) 7®) ) »@) »®)
1.43414 10 15.3 17.0 17.7 .953 .968 .973
2.02828 20 25.2 26.5 27.4 .947 .958 .967
2.48400 30 35.4 36.3 37.2 .953 .959 .962
2.86828 40 45.3 45.7 46.5 .953 .955 .958
3.20683 50 54.7 55.1 55.8 .951 .953 .955
3.51291 60 64.6 64.9 65.5 .951 .953 ,954
3.79438 70 75.2 75.3 76.0 .951 .951 .953
4.05636 80 84.7 84.8 85.4 .952 .952 .953
4.30242 90 94.5 94.6 95.3 .952 .952 .952
4.53515 100 104.7 104.8 105.3 .950 .951 .951
5.07045 125 129.7 129.8 130.4 .950 .951 .951
5.55440 150 154.6 154.7 155.3 .951 .951 .951
5.99944 175 180.3 180.5 181.1 .950 .951 .951
6.41367 200 205.5 205.6 206.2 .951 .951 .951

A= %

N n* 2@ 2@ 2® ) »@ )
1.51850 10 15.1 17.6 18.1 .940 .963 .967
2.14748 20 24.7 27.4 28.3 .933 .955 .959
2.63012 30 34.7 37.1 38.2 .939 .954 .958
3.03700 40 " 45.0 46.8 47.8 .944 .953 .956
3.39547 50 55.9 57.0 58.0 .951 .956 .959
3.71955 60 65.4 66.3 67.2 .951 .954 .956
4.01758 70 75.3 76.1 76.9 .951 .954 .955
4.29497 80 86.1 86.7 87.5 .952 .955 .956
4.55550 90 95.4 95.8 96.6 .952 .953 .954
4.80192 100 105.4 105.7 106.4 .953 .953 .954
5.36871 125 129.8 130.0 130.6 .951 .951 .952
5.88113 150 154.9 155.0 155.6 .951 .951 .952
6.35234 175 179.7 179.7 180.3 .950 .950 .951
6.79097 200 204.0 204.4 205.0 .950 .950 .951

ReEMmarks. 1. Although (9) merely asserts that En

will be shown in the next section.

n* + O(n), the tables
suggest that the difference En — n* may be bounded for all ¢ > 0. That this is so

2. As is to be expected, for values of A < % the rule R; is somewhat more suc-

cessful in keeping the coverage frequency = .95 for small values of n*.

3. We have no proof that the minimum coverage probability for all n* is in fact

attained in the computed range n* = 10, - - - , 200, although we hope so.

4. To test Ho:pa = ps 50 as to guarantee a Type I error =1 — « and a Type I1
error =(1 — a)/2 for alternatives such that |y — wy| = 2d, irrespective of oy
and o2, we may reject H, iff |z, — 7| > d (cf. [3] for the corresponding one
population test of Hyp:p = 0).

5. The cost of ignorance. Assume that, as in Section 4, a, = a + O(n™)
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as n — . We shall show that for R; (and a fortiori for Ry and R,), En — n™ is
less than some finite constant for all d > 0.
Proor. We assemble some facts that will be used in what follows. For some

0=M< o,
by = (a./d)* < b(1 4+ Mn™"), where b = (a/d)’

Defining
Ul = (-1, Vi=(@G-—1
we have '
WMz U, Viaz V),
and

EU? £ B{D i1 (7 — m)"} = o'’Er, EV.} £ o)Es.
Finally, the function
g(r,n) = (r — na)*’(r 4+ M)7n™

isconvexinrandnforr = ne > 0,n > 0, M = 0.
As in the proof of (9), suppose that r > no and that just before the rth observa-
tion on z there were j observations on y. Then (as before)

(r—1)/F £ uafvi, 1 — 1= brappra(Ura + 05),
and hence
r—1 =201+ Mn Yot (Urms + Jur/(r — 1))
< b1+ Mr)U (e — 1)(r — 1)7H(r — 2)70
Since ng = 2 this implies that
(r — no)*/(r + M)n < bU.,
and this holds even if » = no . By Jensen’s inequality,
E*(r — no)E*r/(Er + M)En < bEU,® < bot'Er.
Hence by (9) and (15),

(16) EXr — no) < bor'{En + MEnE™'r} < bo’{En + 0(1)}.
Similarly,
(17) E*(s — no) < bos{E. + 0(1)}.

Since n — 2np = (r — ng) + (s — Mo), it follows that
E'(n — 2m) < b(o1 + o2)’{En + 0(1)},

agd hence
En £ b(oy + 02)* + 0(1) = n* 4+ 0(1),
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which was to be proved. From this, (16), and (17) we obtain also that for all
d>0

(18) Er =¢*40(1), Es=s*4+0(1).

These results hold whenever the distributions of  and y are such that
ol < w,0f < o and En < « for all d > 0; as we have noted, finite fourth
moments for 2 and y will guarantee this. In fact, by truncating n and using a
modification of the preceding argument we can prove that the second part of (9)
holds, and hence that En < o, under the sole condition that ¢1, 72 < . Con-
sequently, all the results of this paper hold when 1, g2 < .

Quite small upper bounds for the constants in (18) can be obtained in the case
a, = a; they depend only on n, . In the case a, = a 4 0(n™"), useful estimates of
these constants depending on n, , M, 01, o2 could perhaps be found by improving
the above argument.
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