ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR
GROUPED DATA!

By PranaB KuMAr SEN
University of North Carolina, Chapel Hill, and University of Calcutta

0. Summary. The object of the present investigation is to extend the findings
of Hajek [7] on asymptotically most powerful rank order tests (AMPROT) to
grouped data where the underlying distributions are essentially continuous but
the observable random variables correspond to a finite or countable set of con-
tiguous class intervals. In this context, the two sample problem for grouped data
is considered and various efficiency results are also studied.

1. Introduction. Let us consider a sequence of random vectors X, =

(Xu, +:+, X.~,) consisting of N, independent random variables, where X,
has a continuous cumulative distribution function (edf) F,;(x), forz =1, ---»
N,,1 = v < «.Asin Hijek [7], we consider the model

(11)  F,i(x) = F(¢'[x — a — Be.i)), i=1,-- ,N,,1<v»< o,
where a, 8 and o(>0) are real parameters, (¢, -- - , ¢yy,) are known quantities,
concerning which we make the following assumptions:

(1.2) 26 =0, Yndi=0C) 0<sup,C,’< «;
(1.3) Maxicicn, ¢:i/C»" = o(1).

Hi4jek [7] has considered the class of edf’s for which the square root of the proba-
bility density function possesses a quadratically integrable derivative i.e.,

(1.4) %o [f' (2)/f(2))f () dz = 4*(F) < o,

where f(z) = dF(z)/dz and f'(z) = df(z)/dz. Throughout this paper, we shall
also stick to the assumptions (1.1) through (1.4). In Hijek’s case, X, is observa-
ble, while in our case, we have a finite or countable set of class intervals

(15) Li:e;<z=a,11, Jj=0,1,---, o (without any loss of generality),

[where — = ay < a1 < @ < -+ < o is any (finite or countable) set of
ordered points on the real line (— «, »),] and the observable stochastic vector
is X,* = (X%, -+, Xlv,), where

(1.6) X = 2Lz,
and
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1230 PRANAB KUMAR SEN

7)) Zi;=1, if X,e¢el;,

= 0, otherwise, foralli=1,.--,N,, j=0,---, .
Thus, having observed X,*, we want to test the null hypothesis
(1.8) Ho:8 =0 ie., no regression,

against the set of alternatives that 8 > 0.

It may be noted that in actual practice, evenif the parent cdf’s are continuous,
the process of data collection mostly introduces such a set of class intervals on
which the data are recorded. This results in so called grouped data, where the
usual nonparametric methods (for continuous variables) are not strictly ap-
plicable. The object of the present investigation is to consider some permuta-
tionally distribution-free tests for regression for grouped data and by a generali-
zation of H4jek’s [5] ideas, to show that these are AMPROT for the same
problem. In this context, the two sample problem for grouped data is also con-
sidered and the allied efficiency results are studied. It may be noted that for the
two sample case, the problem of finding AMPROT for grouped data censored by
sample percentiles is asymptotically equivalent to the problem of finding AM-
PROT for the case considered here (cf. Chernoff et al. [2], Gastwirth [4], [5],
Sarndal [15] and Kulldorf [11]). In fact, the derivations of the results in [4], [5]
are comparatively shorter and they relate particularly to the one sample and
two sample location problems. Our results are not only true for the more general
regression problem but also the desired asymptotic normality is proved for
“nearby”’ alternatives. Thus, these may also be regarded as generalizations of
the earlier works referred to.

2. Asymptotically most powerful parametric test. This test is considered in
brief, as it will be essentially required in the sequel. Let us define

(2.1) Fj = F(la; — o&]/e), Pj=Fjnu—F; forj=0,1,:--., o;
(22) i = f(F(Fy) = f(F(Fi1)))/P;, J=0,:, 0,
(23) AXF,(I}) = T5aAP
Now, A; can be written as
(24) Jirt o(u) du/f3i du
where
¢(u) = = (F'(w)/f(F'(w)), 0<u<l,

and hence,
(25) A(F, (I}) wo {53 @ (u) 4’/ [73+ du

' f it ¢’ (u) du = A*(F),
uniformly in {I;} ie., for all possible —© = < a; < a2 < :-+ < 0. Again

IIA
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under (1.2) and (1.3), we have for any real and finite 8
(2.6) Fui(az1) — Fui(a;) = P{1 + (8/0)cwidd; + 0(B)},

uniformly inj(= 0, - -+, ). Thus, for any real and finite 8, the likelihood func-
tion (under (1.2) and (1.3)) is

(2.7) L(X*8) = TTiu( 2o5m0 ZiPi1 + (B/0)enid; + o(B)]}.
Consequently,
(2.8) L(X*[B)/L(X*|8 = 0) = 1 4 (8/0) 25 0w 20 Asllis + 0(B).
Let us denote by T,
(2.9) T, = D¥% i D gmo AZij -
Then from Néyman-Pearson’s fundamental lemma (cf. Lehmann [12], p. 65),
it readily follows that for testing Ho : 8 = 0 against 8 > 0, the asymptotically
most powerful test function is

wx,* =1, it 7.>T.,,

ve, if Tv=T,.,
0, it T,<T,,.,

where T, and v, are so chosen that E{¢2(X.*) |H = 0 < € < 1, ¢ being
the desired level of significance of the test.

[It may be noted that in actual practice both o and ¢ in (1.1) are mostly un-
known, and as a result, A;/’s are also so. However, as in (3.1)-(3.4) of Hajek
[7], we may estimate « and ¢ and work with the estimated A,’s.]

Now Yoo ZiA;,i=1,---,N,, are independent random variables, and (1.3)
guarantees the condition for the central limit theorem to be satisfied by the co-
efficients. Consequently, we get on using the classical central limit theorem and
avoiding the details of derivation, the following:

TueoreM 2.1. Under (1.1) through (1.4) and for any finite 8

e([T, — (B/)C,MA™(F, {I}))/C.A(F, {I4)) = N(0, 1),

where C.,2 and AX(F, {I;}) are defined in (1.2) and (2.3), and £(Z) — N(0, 1)
indicates that Z converges in law to a normal distribution with zero mean and unit

variance.
Thus, from (2.10) and Theorem 2.1 we get that the asymptotic power of the

test (2.10) is given by
(2.11) 1 — &(rc — (B/a)C,A(F, {I}})),

where ®(z) is the standardized normal cdf and &(7¢) = 1 — e

(2.10)

I

3. Asymptotically most powerful rank order test. Let us define
(3.1) ¥y 7y = N,;, for j =0, -, o, sothat N, = > re N,
(3.2) Fuo =0, Fujpn= 2ioNu/N, for j=0,1,-:-, .
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If now N,; > 0, we define
(3.3) A, = [f(F(Fy,.;)) — f(F (Fx,:2)))/[Fy, 11 — Fu,.;]
= [AN o (u) du/[ 720 d,
where F~' is the inverse of F(z) and ¢(u) is defined by (24). If N,; = 0, we
conventionally let

(3-4) Zvj = ¢(Fer])'
Our proposed test-statistic is then
(3.5) 8, = 2 h e i AiZi,

and we shall see later on that S, provides an AMPROT for the hypothesis
B = 0 against 8 > 0.

3.1. Null distribution of S, . Since, we are dealing with grouped data, even
under H, in (1.8), the distribution of S, will depend on the unknown A; (j = 0,
..., o)., However, under a very simple permutation model, S, will pro-
vide a distribution-free test. Now, under H, in (1.8), X3 (¢ = 1, --- , N,)
are independent and identically distributed random variables (iidrv), and hence
X,* has a joint distribution which remains invariant under any permutation of
its N, arguments. Thus, in the N,-dimensional real space R"”, we have a set of
N,! permutationally equiprobable points. The permutational (conditional)
probability measure defined on this set is denoted by ®, . Hence, under ®, , all
the N,! equally likely realizations have the common probability 1/N,!. Now,
N,;in (3.1) and 4,; in (3.3) are unaffected by the permutations of the coordi-
nates of X,* i.e., they are permutation-invariant. Hence, by some simple reason-
ings it follows that

(3.6) Ey{Z:i;} = N,;/N, foralli=1,---,N,,j=0,:-+,0;
(3.7) Eg{Z:;-Zi} =0 foralli=1,--- ,N,,j#j =0+, 0;
(3.8) Ee¢{Zij-Zij} = Nyj(N,jy — 8,7)/Ny(N, — 1)

foralli = ¢ =1,---,N,and j,j =0, ---, «; where 8, is the usual Kro-
necker delta. By analogy with (2.3), we define

(3.9) AX(Fy, , {1}) = 227 B;N3i/N,,

and it is easy to see that (3.9) also satisfies (2.5), uniformly in {7;} and for all
{Fy,}. From (3.5) through (3.9), we have

(3.10) Eeg{S)} = 0 and Ee{S)} = [N./(N, — 1)ICA*Fx,,{I}),

where C,% is defined by (1.2). Now, under @, , S, can only assume N,! possible
values (actually, there are N,!/ ][5 N,;! distinct equally likely permutations
of X,*), and hence, for small values of N,, the upper tail of the permutation
distribution of S, , can be evaluated to formulate the test function:
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1, if 8> 8.,
55 ) if Sv = Sv,e b
0, if Sy < Sr,e )

where S,. and 6. are so chosen that E{ys(X,*) | ®,} = ¢, the level of significance.
This implies that E{ys(X,*) | Ho} = ¢, ie., ¢2(X,%) is a similar size € test.

Let us now define
(3.12) W = D50 h,Z;; fori =1,---,N,.

Under @, , 4,;’s are all invariant while Z;,’s are stochastic. Thus, it follows that
N,; of W,’s are equal to 4,,, forj = 0, ---, . We now impose the nonde-
generacy condition on F(z) as

(3.13) sup, [Fig — Fil1 <1 with probability one.

(X5
(3.11)

Then, writing S, equivalently as D121 ¢,;W,: , it follows from the well-known
permutational central limit theorem by Wald-Wolfowitz-Noether-Hoeffding-
Hijek (cf. [4]) that under (1.2), (1.3), (3.9) and (3.13)

(3.14) £,(8,/C,A(Fy,,{I})) = N(0,1), in probability.
Consequently, from (3.11) and (3.14), we have
(3.15) S,.e > 17C.A(Fy,,{I}}), 86— 0, in probability,

where 7. is defined by (2.11). [It may be noted that @, being a conditional proba-
bility measure, (given (N,;,j =0, ---, ©),) (3.14) and (3.15) hold in proba-
bility i.e., for almost all (N,;,7 =0, -+, «).]

3.2 Asymptotw optimality of ¥2(X, ) The main contentlon of this paper is to
establish the asymptotic equivalence of y1(X,*) and y2(X, *),in (2.10) and (3.11),
respectively. For this, let us first consider the following lemmas:

LemwMa 3.1. Under (1.1) through (1.4) and for any real and finite B, A*(Fx, , {I,})
converges in probability to A*(F, {I;}), uniformily in {I;}.

Proor. We shall prove the lemma only for 8 = 0 as the rest of the proof will
follow by the contiguity argument of Hajek [7]. Let us select a sequence of real
and positive numbers {»,} in such a manner that

(3.16) limye 7, = 0 but lim,—. Nty = o.

For any given N,, the set of class intervals {I;} is divided into two subsets
@, and G,®, where

(3.17) &P ={I;:P;zn}, GP ={I:P;<n).

Let Fy,(z) = N, [Number of X,; < z] be the empirical cdf of X, . Then by
making use of the fact that sup; |[Fy,; — Fj| = sup. |FN,(:v) — F(x2)| and the
well-known result regarding Kolmogorov-Smirnoff statistic, viz., sup. {N, Yy, (x)
— F(z)|} is bounded in probability, we obtain that

(3.18) sup; {N}|Fxy,; — F;|} is bounded in probability.
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Further, it is easily seen that

(3.19)  sup; | f(F " (Fx, ;) — S(F(F)| = sup; |[¥,.; ¢(w) dul
< sup; |[#4,., ' (w) dul'|Fy,,, — F;f
< AX(F) sup; |Fw,; — Fil.

Hence, from (2.2), (3.3), (3.18) and (3.19), we have for all I, G\,

(3.20) AZN.;/N, = Pjla; + RV + RY),

where

(321)  sup; [RD| = O,(IN,}n]™),  sup; [BSY] = Op(N.7H).

Consequently, from (3.16), (3.20), (3.21) and some simple algebraic manipula-
tions, we have

(3.22) Sew ALNL/N, = 26w AP + 0(1).
Again, using (2.4) and (3.3), we have
(3.23) AFP; = [5i+1 *(w) du — [73+ [p(w) — AT du;

(324)  BLN/N, = [P0 ¢(w) du — [rn g (u) — BF du,

where A; and 4,; are also the conditional means of é(u) on [F;, Fjul and
(Fx,.; , Fx,.i+1), respectively. Now, using (3.18) and some routine analysis, it is
easily seen that

(325) Do [FEnT g w) du = Lom [5 6 (w) du + o0p(1),

and we shall show that the second integral on the right hand side of (3.23) con-
verges to zero (as » — ) and the second one on the right hand side of (3.24)
converges to zero, in probability. For an unessential simplification of this proof
we shall assume (as in Lemma 2.2 of [6]) that ¢(u) is T in u. It follows from
the existence of (1.4) that if P; < =, for all I; ¢ G,%, then

(3.26) limye 20,0 $°(F;)P; = limyee Da,0 ¢'(Fia) Py = [a, ¢'(u) du.
Now for all u & [F;, Fjul

(327)  [b(u) — AF = [6(Fim) — 6(F)F £ ' (Fin) — &'(F)).

Therefore

(328) o [Fip(u) — Affdu £ Do (Fin)P; — $(F)Pil =0

as » — « (by (3.26)). Similarly, from (3.16), (3.18) we have for all I; ¢ Gu»
Fy,i1 — Fu,i <+ OP(N,,_%) < 2n, for adequately large N, . Consequently,

as in (3.26) and (3.27), we get that > ﬂ,’&:jﬁ“ [6(uw) — Al du —° 0. Hence,
(3.29) Se ALN,/N, = 2w ASP; 4 05(1).

Hence, the lemma follows from (3.22) and (3.29).
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LemMA 3.2 Under Hy in (1.8), E{S, — T} — 0 as v — o, where S, and T,
are defined in (3.7) and (2.9), respectively.
Proor.

E{S, — T} = E,{Eg,[S, — T.J}
(3.30) = BB, [ 27 20 ciZy(Bs, — A)I
= [N/(N, — DXVl (A — 4;)°N,/N,
— {250 (&ss — A)N/NY,

where Ep, and £, stand for the expectation over the permutation distribution
and the distribution of the order statistic associated with X,*, respectively. Thus,
it follows from (3.30), that we are only to show that

(3.31) EAY 7(A,; — A;})’N,j/N} -0 as v— w.
We rewrite the expression in (3.31) as
(3.32) B2 7= ALN,;/NJ — 2270 AEAAGNG/NY + 225w A P

Now, D 5= ALN,,/N, is just A*(Fy, , {I;}), defined by (3.9), and hence, it is
bounded by A*(F), defined by (1.4), uniformly in all (N,;,7 = 0,1, -+, »).
Further, by Lemma 3.1, it converges to )i~ A;°P;, in probability. Since, for
bounded valued random variables convergence in probability to a constant im-
plies convergence of the expectation to the same constant, we readily obtain

I

(3.33) B2 50 B Ny/NY — 250 A7P; as v — .
Similarly, it follows that
(3.34) B2 50 AAN,/NY — D 70 AP, as v — .

(3.32), (3.33) and (3.34) imply (3.31), which in conjunction with (3.30) proves
the lemma.

Lemma 3.3. Under Ho in (1.8), (T, , S,) converges in law to a bivariate normal
dustribution which degenerates on the line T, = S, .

Proor. By virtue of Lemma 3.2, any linear function aS, 4 b7, con-
verges in mean square to (a + b)T,, and hence, from Theorem 2.1, has
(under H,) an asymptotic normal distribution with mean zero and variance
(@ + b)°C,*A* (F, {I,}). The rest of the proof follows from Theorem 2.1,
Lemma 3.1 and Lemma 3.2, and hence is omitted.

TueoreM 3.4. Under the sequence of alternatives in (1.1) through (1.4) with a
real and finite B

£([Sy — (B/a)CA*(F, {I))/C,A(F, {1}})) — N(0, 1).

The proof is an immediate consequence of Lemma 4.2 of Hijek [7] and our
Lemma 3.3, and hence is not reproduced again.
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From Theorem 3.4, we get that the test ¥»(X,*) in (3.11) has asymptotically
the power function

(3.35) 1 —&(re — (B8/0)C,A(F, {1}})),
which agrees with (2.11). Thus, 8, provides the AMPROT for Hy: 8 = 0
against 8 > 0.

This result also applies in particular to the two sample location problem, where
(3.36) ¢, = 8,/m)} fori=1,---,m,

= —m5,/n, fori =m,4+1,---,N,,m,+n,=N,,

where §, is real. Further, the results derived here can also be extended to the
problems of symmetry and scalar alternatives. For that one will have to work
with Capon’s [1] technique and use his ¢(u) (defined by (iv) on p. 89 of [1])
instead of the ¢(u) in (1.4). The rest of the procedure will be very similar to the
one considered here, and hence is omitted. Finally, the impact of these findings
on AMPROT for truncated/censored two sample problem will be considered in
the next section.

4. Asymptotic efficiency. Suppose now for the AMPROT we work with the
assumed density function f(z) instead of the true density function g(z)
(= G'(x)), where
(4.1) A%(G) = [2.1¢'(2)/g(2)] dG(z) < .

We define G, and P,* as in (2.1) with F replaced by G(z), and Fy, ; as in (3.2).
Also, we let

(4.2) o(u) = f'(F(w)/f(F(u)),
¢"(w) = ¢' (G (w))/g(G7 (w)); 0<u<l;
(43) A7 = [9% 6*(u) du/P,

A =[G ¢(u) du/P}¥;
(44)  AXG{I}) = 2270 AP/,
BY(F, {I}}) = 235=0 (A)'P,%;
(45) C(F, G {I;}) = 2 5= AAPSY;
(4.6) p({I3}) = C(F, G, {I})/1A(G, {I}) -B(F, {I,})].

TreEOREM 4.1. Under (1.1)-(1.4) and (4.1), the asymplotic power of the test
(3.11) s equal to

(4.7) 1 —®(r. — p({1,})(B/0)C,A(G, {I}})).
Proor. Defining
(48) T.* = D Mhcn Do AZy;, T = D2 Ve Doimo A Z,5,
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and following the same approach as in Sections 2 and 3, we get that
(4.9) (i) E{S, — T**f|Hs} -0 as »— o,

(410) (i) &([T,* — (8/)C,"A%(G, {I}))/C,A(G, {I}})) — N(0, 1),
(411) (iii) £([T,**/C.B(F,{I})]| Hy) — N(0, 1),

(4.12) (iv) £(T.*, T,** | H,) tends to a bivariate normal distribution with a
correlation coefficient p({I,}), given by (4.6).

The rest of the proof follows directly from Lemma 4.2 of Hajek [7] and (4.9).
Hence, the theorem.

As in Héjek [7], we can interpret [p({I;})]* as the efficiency factor of (3.11)
with respect to the asymptotically most powerful parametric test; the interpreta-
tion for the two sample problem again being the ratio of the sample sizes needed
to attain the same power.

REeEmARX 1. The loss in efficiency due to grouping of data, as obtained from
our Theorem 3.4 and Theorem 1.1 of Hijek [7], is equal to

(413) 1 — AY(F,{I})/A*(F) = 25~ [#i* lo(u) — A du/[o6"(w) du,

where A; and ¢(u) are defined by (2.2) and (2.4), respectively. (4.13) can be
made arbitrarily small, provided the Lebesgue measures of all the classintervals
{I;} are also arbitrarily small. Again, from our Theorem 4.1 and Theorem 6.1 of
Hiéjek [7], it follows that the loss in efficiency in the case where the assumed
density differs from the true density, is given by

(414) 1 — [p({I})/pl{1 — 225 [2i o(w) — AT du/[5 ¢'(w) du},

where p({1,}) is defined by (4.6) and p by (6.3) of [7]. (4.14) may be greater
than, equal to or less than (4.13), depending on p and p({Z;}).

ReEMARK 2. If we take Iy : ¢ < xp, while I, - - - , I, all have sufficiently small
Lebesgue measure, the results will relate to the AMPROT for truncated case
(x = x, being truncated). More than one truncation can be dealt in a similar
way. Again, in the two sample problem, Gastwirth [4] has considered the censored
case where only N,*( <N,) of the ordered variables of the combined sample are
observable, and N,*/N, approaches p(0 < p < 1) as » — . In his case, N,*
is given but the corresponding truncation point is random, while in our case,
the truncation points are given and N,; (j = 0, - -+, «) are random. In spite of
this basic difference, the power properties can be studied by the same formulae.
In this connection, the reader is also referred to Gastwirth [5], Chernoff et al.
[2], Sarndal [15] and Kulldorff [11] for some interesting results related to the
percentile censored case for the one sample and two sample location problems.

REMARK 3. In the particular case of f(x) being assumed to be normal, the cor-
responding S, will be termed the grouped normal store statistics. The corresponding
test in (3.11) will be AMPROT for normal alternatives. The grouped Wilcoxon’s
test also belongs to the class of tests considered here (namely when we work with
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logistic distribution). The test-statistic may be written as

(4.15) W, = 2V en Do Vvili s
where Z;;’s are defined by (1.7) and
(4.16) 4, = Fn,,; + 3N,,i/N, = §(Fn,.; + Fu, ;11), J=0,---, .

For the two sample problem, W, defined by (4.15) and (4.16) may be simpli-
fied further. On defining N,;,j = 0, --- , =, asin (3.1) and m,; as the number
of observations of the first sample (of size m,) belonging to I; ,7 = 0, --- , =,
it can be shown that W, is a linear function of

(4.17) U, = (1/m) 2 7m0 (moi/m)3Nw; + 2ici Nl

where n,(=N, — m,) is the size of the second sample. For a set of finite number
of class intervals, statistics of the type (4.17) have been considered by Natrella
[13], Halperin [8], Sugiura [17], Klotz [10], among others, while the present author
([16]) considered the same when the number of class intervals need not be finite
(but be countable). For details, references may be given to [8], [10] and [16]. For
a comparison of the grouped normal score test and the group Wilcoxon’s test
one may proceed as in [9] with the modifications suggested earlier in this section.

5. Acknowledgment. Thanks are due to the referee for his helpful suggestions.
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