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1. Introduction. Stochastic point processes correspond to our intuitive notion
of a countable aggregate of points randomly distributed in R" (Cartesian n-
space). For clarity, the points of the aggregate will be called particles and so we
shall be concerned with random distributions of particles. The point processes on
R' that have been most widely studied are the Poisson process, renewal processes,
processes with stationary increments and general stationary processes. Khint-
chine [11] proved a variety of general statements about point processes on R'
(or random streams as he called them). However most of the published results
about point processes on R' make essential use of the order properties of the line.
The first interesting examples of point processes in higher dimensions seem to be
the cluster processes in R’ introduced in [15] by Neyman and Scott as models
for the distribution of clusters of galaxies. Here we begin a systematic study of
limit theorems for stochastic point processes for all R”.

Sections 2 and 3 contain the basic definitions and examples and a lemma funda-
mental to our later theorems. Sections 3—7 consider a variety of operations which
“scramble” a point process. Well distributed processes are introduced as the
natural class upon which to perform these operations. Our results lead us to the
following heuristic principle:

If one scrambles a point process without introducing any new dependence
between particles and if the operation is iterated, then the resulting sequence of
scrambled processes converges to a mixture of Poisson processes. This reinforces
our notion of the Poisson process as the most random distribution of particles.

The results in this paper are true for all R", but for the sake of clarity, I pre-
sent them in R®. The generalization of our results to all R are immediate. Thus
from this point on, unless explicitly stated otherwise, all statements and proofs refer
to point processes on R*. Furthermore all sets in R* are assumed to be bounded Borel
sets unless otherwise indicated.

2. Definitions and examples. Let » be a countable (finite or denumerably
infinite) aggregate of particles in R* and let 8 < R’. Then N(S, ») denotes the
number of particles of w in S. We generally write N(S) in place of N (8, w), the
set w being understood.

DzeriNiTION 2.1. A stochastic (or random) point process on R’ is a triple (M,
My, P), where (1) M is the class of all countable aggregates of particles in R
without limit points, (2) Mj is the smallest Borel algebra on M such that for
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772 JAY R. GOLDMAN

every S C R, N(8, w) = N(8) will be measurable, i.e., M3 is the smallest
Borel algebra for which the N(S) are random variables, (3) P is a probability
measure on My . This definition follows [14].

We often denote the process (M,-M3, P) by [P] or N or N, where N and N»
refer to the counting functions {N(S), 8 € R*. The restriction of our process
to a set S C R’ is defined in the obvious manner.

It is essentially proved, in [10] and [13], in the more general context of popu-
lation processes, that there exists a unique measure P on M assuming prescribed
values for events of the form {N(S;) =r, - N(8S,) = r,} where the S;
are disjoint, provided these values satisfy certain consistency conditions.

Our Definition 3.1 rules out the possibility of more than one particle appearing
at a point, e.g., we do not consider the compound Poisson process defined in [6].
This is a technical convenience assumed for purposes of clarity and can easily
be done away with.

We say a sequence of point processes {[P,]} converges to the point process [P]
if for every n-tuple of sets S, - - - S, and nonnegative integers K, , - - - K, we
have

limpe e Pn{N(S1) = K; y Tty N(Sm) = Km}
= P{N(8) =K1, -+ ,N(8Su) = Ku}.

Poisson Process. For fixed A > 0 and every set S, let the distribution of N(S)
be Poisson with mean A|S| and assume that for disjoint sets Sy, ---, S, , the
N(S8,), «+- N(S,) are independent. The process thus defined is called the Pois-
son process with mean A and its measure is denoted by P .

An interesting question related to the Poisson process follows: Assume [P]
is a point process such that for some fixed A > 0 and every set S, N(8) is Poisson
distributed with mean \. Is [P] a Poisson Process, i.e., if Sy, - - - S, are disjoint,
are N(S1), - -+ , N(S.) independent? It is often implicitly assumed in the litera-
ture that the answer is yes, however, in the appendix to this paper we give an
example which shows the answer is no if the S; are intervals. If the S; are finite
unions of intervals, the answer is yes [16].

A stochastic point process [P] is stationary if for every y ¢ R* and for every
n-tuple of bounded sets S;, ---, S, we have

P{N(&) = ki, -+ ,N(8:) = ka} = P{N(S1 + y)
=k1>"'7N(Sn+y) =kn}

where S; + y = {x + y/x ¢ Sj. The mean of a stationary point process is the
expected number of particles in a unit square where the value « is admissible.

3. Fundamental lemma. We consider arrays {Xj:} of 2-dimensional random
variables, I = 1, 2, - .- and k indexed on the positive integers or positive real
numbers, where Xi; = (Xx, X). The proof of our lemma is valid for both
indexing sets. The variables in question all serve mainly in our applications to
specify the location of a particle in one of two given sets. The row sums are de-
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noted by Vi = D1 Xi: . {Xi} will be called a null array if Sup;,; P{X4, > 0} — 0,
k— ,4 =1, 2. It is called a Bernoulli array if for each k, { X}, is a sequence
of independent random variables assuming the values (0, 0), (1, 0) or (0, 1).

Recall that a random variable ¥ has a 2-dimensional Poisson distribution with
parameters \; , denoted by P(\;, Ae) if

P(Y = (b, b)} = ¢ (M"/h)e ™ (\"/b)).

The following lemma is a variation of that given in [17].

FunpAMENTAL LEMMA. Let { Xy} be a Bernoutlli null array. Then a neces-
sary and sufficient condition that the distributions of the row sums Vi converge to
P()\1, Ap) s that

(3.1) S P{Xi =1 >N, - k— oo, (=12

Proor. Let 1 — (pii + pri) + piix + piry be the generating function for
X, where pii = P{Xi = (4, j)}. Then Pi(z, y) = IIia (1 — (pii + pii
+ prxz + piry] is the generating function for V; and

log Pi(z,y) = X i=1log{l — [pid(1 — 2) + pu(1 — o)}

Since we assumed sup;,; P{X:, > 0} — 0 and since log (1 — z) = —2 — 7z
where r — 0 as ¢ — 0, it follows from (4.1) that

(3.2) log Pi(z,y) = —(1 — x)Z;;l (pllc(z) -+ Tkzpllcg)
- (1 - y)Z'il; (pz'ﬂ + Tkngi)

— —M(1 — ) — N(1 — y), k — . Thus Pi(z, y) converges to the generat-
ing function of P(\;1, A2). The necessity of (3.1) follows from (3.2) and the fact
that { X3} is a null array.

4. Superposition of point processes. We treat first the superposition of a
large number of point processes which are uniformly sparse. By the superposition
of a finite number of point processes N; , we mean the process resulting from add-
ing these processes N = »_ N, regarding them as probabilistically independent,
i.e., N(8S), the number of particles of the superimposed process in S, is the sum
>~ Ni(8) of particles in S for each of the individual processes, where the N;(S)
are independent. For formal definitions in the context of Section 3 see the appen-
dix to [8].

The following theorem carries over the classical result on limits of triangular
arrays of random variables, [7], into the realm of point processes.

TueoreM 4. Let {Nu}, k= 1,2,---,1=1,2,..., k be a triangular array
of point processes satisfying: for any set S,

(A) Sup; P{N;(S) > 0} — 0, k— oo,

(B) 2 ia P{Nu(S) > 1} -0, k—

Then a necessary and sufficient condition that N, = >k Nu— [Py, (Pois-
son Process) is that

(C) X iz P{INw(8) = 1} — || for every S.
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Proor. (1) Sufficiency. We must show that for any pair of disjoint sets
S; and S;, the distribution of [N (S:), Nxi(Sz)] converges to the 2-dimen-
s1ogs;ml P(()21)sson distribution P( )\ISII, A|Ss|). Define the Bernoulli array X =
[X kl ] by

Xir = [Nua(81), Nia(8:)] if  [Nwa(81), Nia(Se)]
(4.1) =(0,0) or (1,0) or (0,1)
= (0,0) otherwise

We verify the conditions of the fundamental lemma. First (A) sup.,; P{X4; > 0}
=< sup; {Nk;(Sl us,) >0 >0,k — . Hence {Xkl} is null array. Secondly,
Zz P{Xkl = 1 Z (P Nkz(S1) = 1} - P{Nkz(sl) 1 Nkz(lSz) = }) But

by (B) Zz Nkl(Sl) =1, Nu(S:) = Zz Nkl(Sl US,)>1—0
so that using (C) we get
(4.2) D P{Xi =1} — S, i=1,2.

Thus the conditions of the lemma are satisfied and the distribution of V;
= D, Xi; converges to P(A|Si], A|Sz|). Now let Vi* be the actual number of
particles of Nj in S and Sy, ie., Vi* = [Nu(S1), Ni(Ss)] = > [Nk(Sy),
Ni(8S2)]. To finish the proof we must show

(4.3) limy,o P{V* = (I, b)} = limg.e P{Vi = (I, b)}.
This will follow if we prove limy.., P(V:* = Vi) = 0. But
{Vk # Vk*} = {for some l, sz # [Nkl(Sl), Nkz(Sz)]},

C UfXu = [Nkz(Sl), Nu(S2)l} = UfNu(SwS:) > 1} so that by (B)
P{Vi. # Vi*} £ 21 P{Nu(S1u 8:) > 1} — 0. QE.D.

(2) Necesmty The only place we used condition (C) in the proof of suffi-
ciency was in (4.2). But by the necessity part of the lemma, the distribution of
Vi converges to P(\|Sy|, A|Se|) only if (C) holds and since the proof of (4.3)
does not depend on (C), the necessity is established. Q.E.D.

6. Well-distributed process-mixed Poisson process. The remaining limit
theorems treat a wider class of processes than the stationary ones.

A countable aggregate of particles, with no limit points, will be called well-
distributed (a G-set for short [G stands for gleichverteilung]) with parameter
u, 0 £ u £ o, if for every v ¢ R® and every expanding sequence of rectangles
I, I, .- - centered at v; at least one of whose dimensions tends to infinity, we
have lim,. N(I,)/|I.| = u. A well-distributed process (a G-Process for short)
is a process whose sample points are well-distributed with probability one.
(Different sample points may have different parameters.) The parameter variable
u(w) is then a random variable with parameter distribution F(\).

+ TeroREM 5.1. A sufficient condition for a stationary point process to be well
distributed is that it have a finite mean and finite 1 + & moment for some § > 0.
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The expectation of the parameter distribution equals the mean of the process.

REeMARK. In R' a finite mean is sufficient.

Proor. Let I, be an expanding sequence of rectangles centered about a point
p, both of whose dimensions tend to mﬁnlty Then p partitions each I, into four
rectangles each having p as a Vertex Let I,/ be the rectangle with p as its lower
left hand vertex and let 1%, I}, I,* be the other rectangles gomg in a clockwise
direction. If N(I,")/|I.’|, N(I.})/|L.}, N(I.})/|L}, N(I.)/|I. | all have the
same limit, then (N(I,)/|I.|) has this limit. We prove (N(I.))/|I.’]) has a
limit, the proof for the others bemg identical. Because of the stationarity we can
let p be the origin and thus all I, are in the ﬁrst quadrant Let (a, , b,) be the
coordinates of the upper right hand vertex of I,

Consider the stationary stochastic process X (v), mdexed on the points » of
R?, given by X(v) = X(z, y) = N(I.,) where I., is the square whose ver-
tices are (z, y), (z,y — 1), (zx — 1, y), (zx — 1,y — 1). From our hypothesis
it follows that X (v) has finite first and 1 + 6 moments. We now apply an ergodic
theorem (see [5], Theorem 10, p. 694) to X (v) and get

(51) linla,.-»oo,b,,»oo (l/anbn)fll;" 3” X(x: y) dx dy =M

where u is a random variable independent of the choice of the sequence of rec-
tangles and Eu = EX(z,y) = EN(I1,1). But we have

(1/ab,) [ ' X(x, y) dvdy < N(I')/abs = N(L")/|L|
< (Vanba) [ [0 X (2, y) do dy

and therefore by (5.1) limy.., (N(I.))/|I.'|) =a.. n and our process is a G-
process with parameter variable .

In the case where one of the dimensions of the rectangles remains bounded, a
minor change in the above argument is required. Q.E.D.

By applying the strong law of large numbers we get

TrrorEM 5.2. For the Poisson process [P)], the parameter variable u = A with
probability one.

The following mixture of Poisson processes, introduced in R' by Dobrushin
[3], form the class of limiting processes for our remaining theorems. A stationary
point process (M, My , P) is a mized Poisson process with mixture distribution
F()\), where F(0) = 0, if there is a random variable u, with distribution F(}),
defined on M and such that for almost every A, the given point process condi-
tioned on u = X\ is a Poisson process with mean \. This means

PIN(S) = L, -+, N(8) = L} = [eTTia ((NSi)¥/1:1)e ™5 dF (N).

By virtue of theorem 5.2, the mixed Poisson process has u as its parameter
variable and p.d. F()\) equal to its mixture distribution.

6. Random translations. Number the particles of a point process N in an
drbitrary order x , 23, - - - . Now let the particles move randomly in time so that
at time #, the nth point x, has moved to z, + Ya.(t) where the Y.(¢) are 2-
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dimensional random variables with a common distribution, independent of each
other and of the x, . For each t we can think of this new process N; of the {x,
+ Y,.(t)} as a random translation of the process N by the random variables V,(¢).
For formal definitions as a special case of cluster processes see [8], [9].

The following theorem was proved by Doob [4] for R' and immediately general-
izes to all R".

TrrorEM 6.1. (Doob) If N is a Poisson process [Py] and {Y,.(t)} is an arbitrary
set of motions, then for every t, the translated process is also a Poisson process with
mean M. Coa

From this follows that if NV is a mixed Poisson process with mixture distribu-
tion F(A) and {Y,.(¢)} is a set of motions, then for every £, the translated process
is a mixed Poisson procéss with mixture distribution F()). Thus the mixed Pois-
son processes are tnvariant under any set of motions and we shall prove they are
the only processes with this property. Now turning to the study of translated
processes we show that under reasonable conditions the mixed Poisson processes
are the only limiting processes for N; as t — «. N, is called a limiting process
if N;— N,. o

Dobrushin [3], and Maruyama [12] worked on random translations in R'.

TaEoREM 6.2. If a set of motions Y,(t) satisfy: (A) for every I < R’

Supyer: Fo(I — y) — 0 {— o,

then a nasc that for every G-process, with parameter distribution F(\), the
limiting process exist and be a mixed Poisson process with mixture distribution
F()\) is (B) for any G-set {y;, 42, - - -} with parameter \ and any set I < R’
2 FI — i) = NI

Proor. (1) Sufficiency. First consider a G-process in which some G-set {z;,
X2, -+ -} with parameter A, has probability one. Let Iy, I, be disjoint bounded
sets. Since the x; are not random, the z; + Y;(¢) are independent of each other.
Define a Bernoulli array {X .} by X, = (1, 0) if z; + Yi(¢) eI, = (0, 1) if
xz; + Yi(t) ¢ I, = (0, 0) otherwise.

Now since the motions satisfy (A) we have

supi.; P{X} > 0} < sup; P{X} > 0} + sup; P{X: > 0}

(6.1) = sup; F.(I — z;) + sup: Fi(I: — ;)
< Supgert Fo(Iy — ) + Supger Fi(ly — )
— 0, t— o,

Hence {X;;} is a null array. Furthermore, as the {z,} are a G-set we have by (B)
(6.2) 2uP(Xu=1 = 2 FI: — m) — NI, t— w.,
, Thus since the conditions of the fundamental lemma are satisfied we have

(6.3) distribution of . D ,; Xy = ([Ny(I1), No(I2)]) — P\, MIaf).
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The sufficiency is thus established for G-sets. If we now have any G-process
with parameter variable u and parameter distribution F()\), we condition on
» = M\ and integrate the conditional distribution with respect to F(\) making
use of the limit for G-sets just proved. Thus N, will converge to a mixed Poisson
process with mixture distribution F()).

(2) Necessity. Assume that for every G-process and a given set of motions
{Y.(t)} which satisfy (A), the limiting process exists and is a mixed Poisson
process, with appropriate mixture distribution. In particular this is true for G-
processes in which one G-set has probability one. Looking at the proof for suffi-
ciency of our theorem, notice that (6.1) holds because the {Y,(¢)} satisfy (A).
However our lemma then tells us that (6.2) holds only if (6.3) does, i.e., our
motions satisfy (B) if we have convergence to the Poisson process. Q.E.D.

The application to the case of stationary processes.s clear.

A slight rewording of the results of Breiman [2] shows that a set of motions
of the form Y,(t) = v,t, where the random velocities v, have absolute values
chosen from a distribution with an a.e. continuous density, which is bounded on
bounded sets and whose direction with respect to the origin is uniformly dis-
tributed between 0 and 2, satisfies conditions (A) and (B).

THEOREM 6.3. A nasc that a process N such that EN(I)'** < o for some rec-
tangle I and some 6 > 0 be invariant under all sets of motions s that it be a mized
Poisson Process.

Sugfficiency. We have seen this follows from THEOREM 6.1.

Necessity. Since N is invariant under all sets of motions it is 1nvarlant under
Y.(t) = t which means N is stationary. Thus if we take a set of motions satisfy-
ing (A) and (B) of Theorem 7.2 and apply the theorem to N, the limiting process
N, exists and is mixed Poisson. By the invariance each N; has the same dis-
tributions and therefore this must be true for N, . Hence N is a mixed Pmsson
process. Q.E.D. ‘

7. Deleting particles. We now study the operation of deleting particles from a
point process. That is, given a point process N and a number p, 0 < p = 1,
we construct a new point process N, as follows: a particle of N appears in N,
with probability p and does not appear with probability 1 — p, with the appear-
ance of distinct particles of N in N, being independent of each other. For R see
[11.

TrEOREM 7.1. If N is a G-process with parameter distribution F()\) and py a
sequence of numbers, 0 = pr < 1, such that pr — 0, then N», converges to a mized
Poisson process with mixture distribution F(X\) in the following sense:

For any collection of bounded disjoint rectangles I, ---, I,

(7.1) P{Noy(Ii/pi) = b, -+, Noy(In/s) = b}
= [§ TTia (LD B8 M dF ()

where I/p = {z/p |z ¢ I}.
Proor. For notational convenience we prove the theorem for n = 2. We
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first consider a G-process in which a G-set with parameter \ carries probability
one.

Choose an arbitrary numbering {y,} of the G-set. Define the Bernoulli array
{ X} by Xi = (1,0) or (0, 1) if y; is in the process N,, and appears in I;/p; or
I,/pi respectively, = (0, 0) otherwise. Then Y, X;; = [No,(Iy/pr), No,(I:/Dr)].

Now we show that the conditions of the fundamental lemma hold. First
sup;,; P{X%; > 0} = pr — 0 hence {X;;} is a null array. Secondly by the defini-
tion of G-set
(7.2) 2 P{Xu = 1} = EN»(I/ps) = peN(1:/ps)

= (N(I:/pe)/1/pr) = ML, kb — .
As the conditions of the fundamental lemma hold we have
(7.3) limese P{Np,(I1/pi) = b, No(Is/pi) = I}
= ITic M OMTL) /01

Just a remark about (7.3). Since we don’t necessarily have (I;/p:) C

(I;/pr41) we don’t have a sequence of rectangles expanding about a point; how-

ever the existence of the limit of (N(I;/px)/1/px) follows directly from the defi-
nition of a G-set.

Now consider a general G-process with parameter variable p and parameter
distribution #(A). Conditioning on X = A, integrating this conditional dis-
tribution with respect to F(A) and applying the above result we arrive at our
theorem. Q.E.D.

APPENDIX

We give here an example due to L. Shepp of a point process such that the
number of points in any interval is Poisson distributed with mean \, but dis-
joint intervals are not independent. We restrict ourself to a point process S on
the interval (0, 1) in R'. Generalizations are clear. We assume known that a
Poisson Process in (0, 1) can be constructed by choosing the number of points
according to a Poisson distribution and distributing them independent of each
other and uniformly on (0, 1) (see [4]).

Fix (the rate) A > 0. Choose n with prob. ¢ ™\"/n!, n = 0, 1, --- and let
Fo(x1,++, &,) = 2125 - - - 2, for n £ 3 be the cumulative dist. fun. of the n
points #; , - -+ , &, of S. If » happens to be 3 take
(1) Fs(srors) = 2i2ams + e(21 — 22)° (21 — 23)°

(p — ) mawaws(1 — 1) (1 — 22)(1 — =3).
For sufficiently small ¢ > 0, F; is a dist. function. Note S is not Poisson dis-
tributed. Define
G.(a, b, m) = P,fexactlymof t,,---,t, € (a, b)}
(2) =(:)Pn{tly""tmg(a’b)} and tm+1)""tﬂz(a:b)
‘ = (MEJL% (Xu(ts) — Xa(t)) - ILi-mia (Xa(ty)
+ Xu(t;) — Xu(t5))
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where
1 if t<a

=0 if ¢> a.

Xa(2)

Note EX,,(t1) -+ X, (ta) = F(az, -+, a,). In the expansion of (2) only
terms of the form F(a;, --- , a,) appear where a; = a, b, or 1, for all 7. Thus if

(3) F(al’...,a”)—_:al...an

for all such a1, - - - , @, then G,(a, b, m) will be just as in the Poisson case. For
n ¥ 3 this is by the choice of F, as uniform. For » = 3, (3) follows from (1).
We are done.
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