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1. Introduction. This paper establishes uniqueness, stability, and methods of
error estimation for a broad class of integro-differential equations that arise in
the study of Markov processes. In Section 2 we consider the equation Tu = 0,
where T is defined for real-valued differentiable functions « on an interval S of
the real line by

(1) (Tw)(z) = u(z) — g(z, u'(z)) — a(x) [suly) dF.(y).

Here g(z, y) is a real-valued function defined for all z £ S and all real y, a(z)
satisfies 0 = a(z) = 1, and for each z ¢ S, F, is a distribution function on S.
In Section 3 the treatment is extended to an arbitrary space S. Here the variable
" is suppressed and 7 is defined for real-valued functions » on S by

(2) (Tu)(z) = u(z) — g(x) — a(z) [su(y) dP(y),

where for each z ¢ S, P, is a probability measure on a fixed o-algebra in S.

Using very elementary methods, it is shown that these operators are monotone
in the sense of Collatz [3], viz., Tu < Tv = u =< v. The uniqueness, stability,
and error estimation mentioned above are easily obtained from this property.

Equations of the type Tu = 0 are frequently satisfied by absorption proba-
bilities, mean passage times and various other expectations associated with a
Markov process in the space S. Some examples illustrating how the operator T'
arises are described in Section 4. The same methods have been extended to the
functional equations encountered in Markovian decision problems [1], [2].
These applications are considered elsewhere.

2. S an interval of the real line. Let S be a finite or infinite interval of the real
line, and let S* be its open interior (a, b). We say ‘4 < v on the boundary’
if lim supseat,eon— [(z) — v(xz)] £ 0, and ‘u4 = v on the boundary’ if
limgsgy zob— [u(z) — v(x)] = 0.

We consider now the operator T defined by (1). The distribution function
F is taken continuous from the right.

THEOREM 1. Suppose u < v on the boundary. If a(z)F.(z) < 1 at each z ¢ S¥,
then Tu < Tv on S* implies u < v.

Proor. Suppose sup, [u(x) — v(x)] = m > 0, with m necessarily finite.
Then there is a largest value of x, say z,, such that u — v = m at x,; moreover,
%y < b, since w < v on the boundary. To the right of x, we have u — v < m, at
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@0 have ' = »" and hence
(3) (Tu — Tv)(m) = m — a(xe)mFay(e) + [o (u — ) dFg] > O.

This contradiction completes the proof.

CoroLLARY 1. Let f be a given function. If a(x)F.(x) < 1 for every x & S¥,
there is at most one solution u to the equation Tu = 0, satifying u = f on the
boundary.

Proor. If Tu = Tv = 0, then 4 < v and v £ u by Theorem 1, hence u = v,

COROLLARY 2. In the definition of T, suppose a(x) = c where ¢ is a constant
less than 1. Then |Tu — Tv| < e for x ¢ S* and |u — v| < & on the boundary

implies
(4) Iu - UI < max [¢/(1 — ¢), 8],

for all non-negative constants e and 8.

Proor. Observe that T(u — m) = Tu — m + am where m is any constant.
If we takem = ¢/(1 — ¢), then —m 4+ am = —m + ¢em £ —e. Thus T(u — m)
< Tu — ¢ < Tvon S* If in addition, m = 8, then u — m =< v on the boundary,
so that u — m = v by Theorem 1. Similarly, v — m < .

3. General state-space. Let (S, &) be a probability space, and for each x ¢ S,
let P, be a probability measure on &, with P,(A) itself being a measurable func-
tion of x for each measurable set A. Attention is restricted to measurable sets,
and to real-valued measurable functions f on S such that [s [f(y)]| dP.(y) < o
for each . The complement of a set A relative to S is denoted by A4’, and I,
;8 the characteristic function of A. Define the operator II by

(5) (T (2) = a(x) [s5(y) dP:(y),

so that T as defined by (2) is of the form Tf = f — g — IIf.
THEOREM 2. Let u and v be given functions with u — v bounded above on S.

Assume there is a monotone sequence of sets S; C S; C --- C 8 such that
(6) limpsw SUPses,’ [w(z) — v(z)] = 0, |

and

(7) SUDges, infy (II'Is,) (z) < 1.

Let 8* = liMusw Sn. Then Tu < T for x £ S* implies u < v.

(For proof of a related result by means of martingale theory, see [4], p. 437.)

Proor. Let & be an arbitrary positive number. From (6) there is a set
A = 8, C S*such that uw — v < 5 on A", It suffices to show that supses (u — v)
= § 4+ m for m > 0 is impossible. Let 5§ = » + & so that supses (v — ¥) = m.
Since Tv < T%, we have Tu < T9 on A and hence I, (u — ¥) = I[,0(u — ?)
< I,0I,(u — ), with the latter inequality following from the fact that v —
7 < 0on A’. Applying the positive operator I 0T to I ;(u — 5) < I 0 4(u — 5) N
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times, we see that
IA(u bt 0) é (IAH)NIA(U - 5) é mHNIA .

In view of (7), a contradiction is now apparent, and the proof is complete.

. TFor ease in application, it is sometimes desirable to separate Conditions (6)
and (7). One natural way to do this occurs when S is a topological space, and
F consists of the Borel sets in S. Assume this is the case. Then we say ‘u < v on
the boundary’ if for a given non-compact set S * ¢ 8, there is a monotone sequence
of compact sets S1 C S < -+, Sn — S*, such that (6) holds for this sequence.
We say ‘u = v on the boundary’ if w < v and v < u on the boundary. (Since S*
is non-compact, boundary conditions are transitive; e.g., u = f and f = v on
the boundary implies u = v on the boundary.) Theorem 2 thus takes the following
convenient form:

TureoreM 2'. If u — v is bounded above, w < v on the boundary, and

SUPzea infy (V1) (z) < 1

for every compact set A C S*, then Tu < Tv on‘S* implies u = v.

Straightforward analogs of Corollaries 1 and 2 of Theorem 1 are now possible.
Also, we get a somewhat different stability result, valid for a = 1.

COROLLARY 3. Suppose u — v is bounded, lu — v| < & on the boundary, and I
satisfies the conditions of Theorem 2. Then |Tu — Tv| < € on S* implies |u — 0|
< e + 8, where t is any posttive function satisfying t = 1 + IIt on S*.

The proof follows that of Corollary 2.

If w — v is continuous, the condition on II in Theorem 2’ can be weakened to
infy (II"I,)(z) < 1 for x ¢ A. With reference to the proof of Theorem 2, the
contradiction is now obtained at a point at which I,(u — ) is maximized. Also,
with continuity of 4 — v, and the stronger hypothesis Tu < T on S* the con-
tradiction is obtained without any condition on II.

Another type of condition encountered in practice involves having sup. a(x)
< 1. In this case, if Tu < Tv on S and w — v is bounded, we obtain directly
u — v < sup, a(x)m where m = sup, (¥ — v), so that m cannot be positive.

A version of Theorem 2 can be reached by another route: Notice that if fi < f,
implies T'f1 £ T 'fy, that is, if T~ is monotone in the usual sense, then applica-
tion of T~ to Tu < Tv gives u < v directly. Define T~ by T7f = limy.e [(9 + f)
+ (g +7) + - + T"(g + f)]. Since (g + f) + T(g +f) + -~ T(g + )
is monotone for each finite N, 7" will be monotone when the defining limit exists.
In particular, if limy,o 'y = limy.e "y = h, say, we see that T 'Tu =
w— h, T'Tv = v — h, and hence Tu < Tv implies u =< v.

4. Some examples. (a) An example of the operator (1) is provided by the
storage system model described by Gaver and Miller [7]. In their notation
([7], p. 116), the storage level W (¢) decreases with deterministic rate W'(t)
= —r(W(t)) between non-negative, independent, and identically distributed
inputs, S1, Sz, - -+, which occur at Poisson times &, t2, -+, with intensity
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parameter \. If r(z) = € > 0, and lim,.., 7(z) < MES, then u(z), the probability
that W(t) is never zero given W(0) = z, satisfies

u(z) = —r(@)u @)\ + [T ulx + 2) dG(z), z =0,

where G is the common distribution function of the S, . Also, u(z) — 0asz — 0,
and u(z) — 1 as 2 — . The derivation is quite simple, starting with W(0)
= z + h and decomposing at a time when W (t) has fallen to z. Uniqueness for
this equation, which is evidently of the form Tw = 0, is provided by Corollary 1.

A variation of this model provides an example with a(z) < 1. Let 7 be arandom
time which is independent of W (t) and exponentially distributed on [0, )
with mean 1/k, and let u(x) = E[min ({4, 7) | W(0) = z], where & is the first
time at which W(t) = 0. We take 7(z) = ¢ > 0 as above, but require only
lim Sup,.,r(z) < o in place of lim,.,7(z) < NES. Instead of assuming that
the intensity parameter is constant we assume that it is given by N(W(t))
where A = 0 is continuous and bounded. Then

u(z) = [1 — r(2)v'(z) + Ma) [T u(z + 2) dG(2)](M=z) + k)7

The boundary conditions are u(z) — 0, as ¢ — 0, and u(z) — 1/kasz — .

Corollary 2 as well as Corollary 1 can be applied to this equation. Notice that
specification of 4 and then r, say, determines \ explicitly. Thus it is possible to
generate a variety of specific conditions for which u is known exactly, and thereby
obtain a good quantitative understanding of the model. Our understanding is
enhanced by the fact that p(z) = Plte = 7| W(0) = z] = ku(x).

With this same model, let u(z) = E[[¢ o(W(t)) dt| W(0) = z], where
t = min (&, 7) and ¢ is continuous and bounded with lim,., ¢(z) = o < .
Then u(z) satisfies the above equation, except that ¢(x) appears in place of the
constant 1 on the right, and u(z) — ¢*/k asz — .

(b) To illustrate the application of Theorem 2’ and at the same time show
how time dependent processes can be treated, we obtain a uniqueness condition
for the Kolmogorov backward differentiai equations. Using Feller’s notation and
assumptions ([6], p. 423 ff.), the backward equation for the case of discrete state
space {0, 1, ---} is

(8) aPik(r, t)/a‘r = C,‘(T)Pik(‘r, t) - C,’(T) Zv piv(T)ka(T, t)-
Multiplying both sides by exp (— [ ci(£) d&) = 1 — F(7; 1, s) and integrating
on 7 from s to ¢ gives
(9) Pa(s, t) = Pult, t)(1 — F(t;4,8)) + [¢ 220 pau(7) Pu(r, )F(dr; 4, 5).
Regarding P (s, t) as a function u of 7 and s alone, that is, a function on
S =B x Awhere B = {0,1, ---} and A = [0, ), we see that (9) is of the form
Tu = w — Ou = 0, where

(M) (4, 8) = [7 220 u(v, 7)piu(7)F(dr; 4, 8),

with the side condition u (%, r) = Pa(t, t) for 7 = t. For the boundary conditions
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required by Theorem 2’, let B, = {0,1, - -+, n}, let A, = [0, 7,] where 7, < ¢,
7o — ¢, and let S, = B, x A,, so that 8* = B x [0, t). The continuity of the
functions ¢; implies (II14/)(, 8) = e4 > 0 for every compact A < S* hence
(II4)(%, 8) £ 1 — e4. Now suppose return from the infinite boundary is for-
bidden, by imposing appropriate conditions on the c;(¢) and the p;;(t), so that
limy., SUpPics,’ (%, 7) = 0 with the passage to the limit being uniform in r ¢ [0, #].
Then u = & on the boundary where 8(7, 7) = Pu(t,t) is1if 7 = k and 0 otherwise.
Asin the proof of Corollary 1, we conclude from Theorem 2’ that there is only one
solution to (9), and hence to (8), which satisfies this boundary condition. This
method easily extends to cover the general case treated by Feller([5], p. 502).

(¢) In conclusion, we note that Spitzer’s minimum principle can be obtained
from Theorem 2. Let R, A, P(z, y), and the function f be defined as in Theorem
31.1, p. 373, of [8], and identify S with R, and 8™ with R — A. For z ¢ S* and
B c 8,let Po(B) = 2 .5 P(x,y), and for z ¢ S — S, let P,(S — 8*) = 1.
Also let @ = 1. The main hypothesis of the minimum principle then takes the
form Tf = 0 on 8* Let ¢ = inf.s_s« f(¢), which may be assumed finite. We have
Tc = 0 £ Tf on 8* Also ¢ — fis bounded since fis non-negative. Since P(z, y) is
the transition function of an aperiodic and recurrent random walk, and we have
made S — S* absorbing under P, , infy (II'Is)(z) = 0 for z £ S*, by a well
known result, and (7) is satisfied. With 8, = S*,n = 1,2, ---, (6) is satisfied
and we conclude from Theorem 2 that f = con S.
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