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1. Introduction and summary. Let X; and X, be independent random variables
(r.v.’s) and assume that ¥ = X; 4+ X, has finite second moment. We assume
that the mean and variance of X, conditional on fixed values y of ¥, satisfy the
structural relations

(1) E(X: Y =y) = My/A  and (i) V(X:]|Y =) = O/N)uly)

where A\; and ), are positive constants, A\ = A\ + Ay, and u(y) is non-negative.
Laha [2] has given a simple necessary and sufficient condition for the regression
E(X:|Y = y) to be linear, as we assume in (i). We use the added condition (ii)
to determine explicitly the distribution functions (d.f.’s) of X; and X, (and
hence of Y') for various choices of u(y). We prove in Section 2 a theorem on
which our characterizations are based and illustrate the theorem in Section 3.

2. The theorem. Let X; and X, be independent r.v.’s with characteristic
functions (ch.f.’s) ¢; and ¢, and let the ch.f. and d.f. of ¥ = X, + X, be de-
noted by g and G, respectively. If ¥ has finite second moment and E (XY =y
and V(X | Y = y) are given by (i) and (ii), then

(1) ei(t) = lg()M", i=12
and
(2) g(t)(d/dt’) Ing(t) = —[ ™ u(y) dG(y).

Proor. Let ¢(t, u) be the joint ch.f. of ¥ and X; . Then ¢ (¢, u) = Bl ) =
e1(t + u)ee(t) and g(t) = o1(t)ea(t) = (i, 0). Also,
(3) o(t,u) = [ ™[] " dF,(x)] dG(y)
where F, is the conditional d.f. of X; for fixed ¥ = y. Thus,
@ (8/0we(t, U)lumo = 7 [ ™[ &1 dF,(21)] dG(y)

= (M) [ye™ dG(y) = (W/)g' (1.
But (8/0u)e(t, u) |lu—o = o1 (1)ea(t), so that
(5) el (Dea(t) = (M/N)g'(2).

Since ¢ is a ch.f., does not vanish in a neighborhood of the orgin. Dividing
both sides of (5) by g, it follows that N(d/dt) In @1(1) = M(d/dt) In eu(2).
Intergrating and using the boundary conditions ¢1(0) = ¢(0) = 1, we obtain
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A Inoi(t) = A\ lneo(2), from which (1) follows immediately. On differentiating
o(t, u) twice, we see from (3) that

(8" /U)o (t, w)|uo = —[eB(X*| Y = y) dG(y)
(6) = —[e"(AN/A)u(y) + (\y/A)*1dG(y)
— (MN/AY) [ e™u(y) dG(y) + (M/N)" (1),

Differentiating each side of (5) and noting that A; In ¢»(¢) = Ay In ¢1(2), we find
that

(7) A" () = MMl () /er(t) + e (1))
Also,
(8)  (3/0uM)e(t, w)|umo = (8°/3uN)er(t + w)ea(t) = &1 () [er()™.

Equation (2) now follows directly from (6), (7), and (8).

REmARK. The referee pointed out that if X; and X, are independent r.v.’s,
YV =X+ X, E(|Y]) < ©,and M Ingx, (1) = M Inex, (1), then E(X,|Y = y) =
(Ay/\) a.e. For the assumptions immediately imply Equation (4), which in turn
implies that [ ¢"[E(X:]Y = y) — Ay/AdG(y) = 0. Then, from the unique-
ness theorem of Fourier transforms of functions of bounded variation, it follows
that BE(X4|Y = y) = My/A a.e. If we further assume that E(Y") < =, then
proceeding as in the proof of the theorem, one obtains Equation (2), with
(N/MN) V(X4|Y = y) replacing u(y). It then follows that (A*/A) V(X:1|Y = y)
is a function of y and an unbiased estimate of V(Y).

I

3. An example. We consider the case when u(y) is at most quadratic in y, say
w(y) = ay’ + By + v. Under this assumption, Equation (2) can be written in
the simpler form

(9) (1 —a)(d/d) Ing(t) = al(d/dt) Ing(t)] + B(d/dt) In g(1)] — v,

which can be solved in general by first solving for (d/dt) In g(¢) by separation of
variables and then finding ¢g(¢) by integration. In the ensuing discussion of the
solutions of the differential equation (9), it is convenient to distinguish three
cases, corresponding to (i) A = 0, (ii) A > 0, and (iii) A < 0, where A =
8° — 4ay. In what follows, we put 6 = ¢'(0).

(i) A = 0. We must distinguish three cases corresponding to various values of a.
If « = 0and B8 = 0, with v > 0, we find that In g(¢) = 6 — y£*/2, which is the
cumulant generating function of the normal distribution with mean 6 and
variance v. Then, X,;, ¢ = 1, 2, is normally distributed with mean 6x,/A and
variance yA;/A. If v is zero, ¢ is degenerate, while the case vy < 0 is impossible.
For a = 1, g is again a degenerate ch.f. Finally, if « # 0 or 1, we find that ¢g(¢) =
(1 — dct/u] e ¢ = 6 + (v/a)!,, u = (1 — a)/a. In order that g(¢) be a
ch.f., we must have u > 0 (implying that 0 < « < 1 and v is non-negative), in
which case ¢g(t) is the ch.f. of a gamma distribution.
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(i) A > 0. We consider various cases. If @ = 1, we find that g(¢) is the ch.f.
of a degenerate distribution. If @ = 0, so that 8 # 0, then u(y) = By + v, and
we find that In g(t) = —ivt/8 + v(e® — 1), » = 8°(68 + v), so that g(¢) is
the ch.f. of a Poisson-type distribution. The p.d.f. of Y is given by P(Y = y) =
¢’V /jl, fory = Bj — (v/B),7 = 0,1, --- . In particular, if 8 = 1 andy = 0,
then Y has p.df. ¢’6”/y!, y = 0, 1, --- . Chatterji [1] has recently given a
characterization of the Poisson distribution under a set of assumptions equiva-
lent to assuming that the conditional density of X, given ¥ = y, is binomial.

It remains to discuss the case when a # 0 or 1. In this case we find that

(10) g(t) = e_iﬁ”b[peépt + qe—%pt]—n

withp = (1 — a)/a, p = (day — B)Y/(1 —a),p =081 —8)",¢=1—p,
and 6 = [(2a6 + B)i — (1 — a)p)/[(2a8 + B)7 + (1 — a)p], so that p is purely
imaginary and § is real. Following the discussion of Lukacs [3], we conclude that
if p and ¢ are both positive, then (10) can be a ch.f. only if u is a negative integer.
The corresponding distribution is in this case a binomial distribution. If p and ¢
are not both positive, then one of them must be positive and the other negative
(since p + ¢ = 1). In either of these cases, (10) is the ch.f. of a negative bi-
nomial distribution, provided u is positive.

(iii) A < 0. It is not hard to show that if « < 0 or @ > 1, then the solutions
to (9) are not ch.f.’s, so that we need only examine the two cases o = 1 and
0 < a < 1 (note that « cannot be zero if A < 0). We consider the situation
when 0 < « < 1 first. Then the solution to (9) is again given by (10). Since
A < 0, we see that p is now real and § is complex. Lukacs [3] has shown that in
order for g(t) to be ch.f. in this case, we must have p > 0 and p = ¢ = 3, so that
(10) reduces to g(¢) = {cosh % pt] ™.

Finally, if « = 1 with A < 0, we obtain the ch.f. of the Cauchy distribution if
the further assumption is made that the resulting differential equation (9) is
valid at all points except the origin. This last case shows that it is not really
necessary to assume the existence and finiteness of the first moments if this
additional assumption is made.
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