PRESENT VALUE OF A RENEWAL PROCESS!

By Giorgio Darr’Acrio?

University of North Carolina

0. Summary. This paper studies the present cost C(p) of a renewal process,
defined as the sum of the values of the costs of the replacements, considered at
the starting time of the renewal process, with a compound interest.

The characteristic function of C'(p) is found when the inter-arrival times X;
are negatively exponentially distributed. The asymptotic properties of C(p)
as the force of interest p tends to zero are studied in the general case, obtaining
that if X; has finite moments of all orders, C'(p) is asymptotically normal; more-
over, if we assume EX; < o, then the existence of all the moments of X; is
necessary in order that the moments of C(p) converge to the moments of the
normal distribution.

1. Introduction. Let us consider a renewal process with inter-arrival times
X1, X, --- identically and independently distributed with distribution fune-
tion F(z); we assume F(0—) = 0, and F(0) < 1, in order to avoid the trivial
case P(X = 0) = 1. Starting at time Ty = 0 we will have a replacement at each of
the instants 77 = X3, T, = X1 + X,, ---

We suppose that each renewal has a constant cost, which we assume equal to
1. So one will have to pay one (dollar, say) at time 7, one at time 75, and so
on. It is of interest to study the present value, at time 0, of these payments,
assuming compound interest.

The present value 4o, at time 0, of a sum A at time 7, is given by:

(1) Ay = 674

where p > 0 is the rate of interest. So the value C;, at time 0, of a replacement
which will take place at time 7';, is given by C; = exp (— pT;). The present
value, at time 0, of the total cost of the renewal process, which will be denoted

by C(p), is
(2) C(p) = ; C; = ; exp <_P;Xj)-

If we put N(t) equal to the number of T; < ¢, and set

N(t)

C(t p) = Zl exp (—p;Xf),

=
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then
lim,,o C(¢, p) = N(t) and lim,;e C(¢ p) = C(p).

This gives a link between the variables C(p) and N (¢). Some aspects of the
random variable C(¢, p) have been studied (see [1] and [2]), mainly with respect
to its first moments and (in the latter paper) their asymptotic properties.

Let us consider the random variables Y, defined by Y, = exp (—pX;). They
are independent and identically distributed ; we will denote by «, their moments.
If X is a random variable with distribution function F(z), and ¢x is the charac-
teristic function of X, we have

(3) a, = BEY; = Ee "™ = ¢x(irp);

where it is always 0 < a, < 1.

If we express C(p) by means of the Y,’s, the moments of C'(p) can be obtained
in terms of the «,’s by simple but cumbersome computations. On the other hand,
from the definition of C'(p), we have

(4) Clp) = ¢ (14 C'(p))

where C'(p) has the same distribution as C(p), and is independent of X, -
A recurrence relation based on (4) enables one to obtain easily the moments of
C(p). We will denote by v, these moments. We obtain, in particular

2

_ _ 231 2 — Qg — Q1
(5) v1 = EC(p) T a[C(p)] 0= ) — o)
The same recurrence method shows that all the moments of C(p) are finite.
This result could be obtained also by an argument similar to the one used to
prove that N(¢) has finite moments of all orders (see [5]; p. 245).

2. The case of a negative exponential distribution. A particular case of great
importance in applications is given by the negative exponential distribution,
which will be studied in this section. In this case, we have F(z) = 1 — ¢ ™ for
x> 0and N > 0. Also ¢x(¢) = (1 — ¢t/\) " and o, = (1 + rp/N\)"". Hence
putting x = \/p, we have y1 = pand ¢* = ¢’[C(p)] = p/2.

Let us study now the distribution of C(p). From (4) it follows that the charac-
teristic function ¢¢(t) of C'(p) satisfies the integral equation:

~+o0

(6) o(t) = f exp (ite™*")po(te"") dF (),

which, in the case of negative exponential distribution, becomes, by a change of
variables:

t .
dc(t) = p /0 eoc(y)y" "t " dy.

By multiplying both sides by ¢* and differentiating, we have the differential
equation:
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$o(t) = ul(e” — 1)/tpo(t),
with the condition ¢¢(0) = 1. Therefore

(7) do(t) = exp [u fot e; ! dx].

An interesting question concerning the random variable C(p) is its asymptotic
behaviour as p tends to zero. For the negative exponential distribution the
study of this problem is made very easy by formula (7). Let us consider the
normalized variable Z, = [C(p) — vi]/s. Using (7), the characteristic function
¢0(t) of Z, is given by:

tle iz
¢,(t) = exp l:—ﬁ it + ’“‘f e —1 dx].
o 0

X

Hence by expanding and taking limits, ¢,(t) — exp (—#/2) as p — 0. Thus we
have proved:

TueorEM 1. If X has a negative exponential distribution, C(p) is asymptotically
normally distributed as p tends to zero.

3. The general case. It can be easily seen that the negative exponential dis-
tribution is the only one which permits a simple solution of the integral equation
(6) by a transformation into a differential equation. In the general case, since
the integral equation (6) is a homogeneous Volterra equation of the second kind,
the solution must be found among the singular solutions. Thus it appears rather
difficult to find by this method the distribution of C(p) for distributions of X
other than the negative exponential one.

On the other hand, if we want to study the asymptotic properties of the dis-
tribution of C(p), other means are available; for instance, the investigation of
the behaviour of the moments of C(p).

Let us first establish a lemma.

LemMa 1. If B = EX* < o (k = 1), then, for every t = 0,

lim,.o p*Be "*(e™* — ay)* = E(B; — X)* ifh=k
=0 if h > k.
Proor. We can write, by a standard expansion:

e =1- p:wl(x, P), (e—P:t = 01(117, P)

lIA

1)
and

ar =1 — pBi(p), (0 < 6(p) < 1; limpsf(p) = 1)
then:

Ep e " (e — )" = B (¢ — a)"HB0(p) — X6u(X, p)I.

Since E|B:8(p) — X6.(X, p)/* < (B + X)*, the expectation and limit can be
interchanged, and the lemma, is proved.
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Let us consider now the central moments ¥, of C'(p). By means of (4) and
(5), since C'(p) and X, are independent, we obtain:

¥, = ElC(p) — v = Ele™(C'(p) + 1) — m’
= Ele "(C"(p) — v1) + (" — a))(1 — &)

— ZO( )'y, 1 — al)—r+:E —JPX(e—PX _ al)r—j]
=
from which it follows that

r—1

(8) Vo= (1-a)" 2 <;> 7;(1 — a1) "ET (e — )],

=0

We can now prove:
Lemma 2. If, for r > 0, EX*™' < o, then

(9) hmp—>0 P%‘"Y-r = Kr

where ,
= (B — B r1/27(3r) 1832 if 7 s even
=0 ' if r is odd.

Proor. We will prove this lemma by induction. Clearly (9) holds forr = 0, 1,
since vo = 1, v1 = 0. Now let us assume that it holds for 0, 1, --. » — 1, with
r = 2.

By means of the expansion used in Lemma 1, we obtain: lim,.o p(1 — &) =
(r81)”". Hence, using (8), we have by the induction assumption that

r—1
timyes 95 = 5 (1) 26K, timgen 57 H B — )
Now EX¥ ¥ < « gincej = 0;s0fordr — 4 +1<r—jiejSr—2
Lemma 1 holds. Moreover forj=7r—1,

E[e_jpx(e_px - al)'_j] = o T 00y = O(Pz),

as can be easily seen by an expansion as in Lemma 1. Then all the terms of the
sum, except possibly for j = r — 2, vanish in the limit, and for j = r — 2 we
obtain K, . Thus the lemma is proved.

Lemma 2 enables us to establish a sufficient condition for the asymptotic
normality of C(p).

THEOREM 2. [ f all the moments of X are finite, then the distribution of Z,
(C(p) — 71)/72 ¥ tends to the standard normal distribution as p decreases to zero.

Proor. Lemma 2 gives, for r = 2:

lim,.o p72 = (B2 — B1)/261 .

Thus, applying Lemma 2, we obtain that the moments of Z, converge to the
moments of the normal distribution, and this is sufficient to ensure that the
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distribution of the variate converge to the normal distribution (see, for instance,
[4] p. 110). The theorem is thus proved.

As it has been observed, the random variable C(¢, p) gives a link between
C(p) and N (¢). It is known ([3] and [6]) that, if EX* < o, N(t) is asymptotically
normal; i.e. C(¢, p) is asymptotically normal if we let p tend to zero first, and
then ¢ tend to . Theorem 2 assures (although under more severe restrictions)
that the result is true if the limits are interchanged.

It would be interesting to have some necessary condition in order that the
asymptotic distribution be normal; unfortunately a condition of this kind appears
rather difficult to establish.

However, the proof given above requires as an essential condition the ex-
istence of all moments of X; so that one should expect that, if this condition is
dropped, the moments of Z, do not converge to the moments of the normal
variate. That this is actually true will be seen later.

LemMa 3. If EX < « and, fortand k with0 < ¢t £ k,

limy.o o ‘E(e™ — a)* =0

then, for every q < t: EX* < o, .
Proor. We will show first that, under the hypotheses above, we have:

(10) lim,.o p ‘Ele ™™ — o) = 4

where 0 < A < . In fact, writing b, = — o 'log oy,

b, +o0
[[ @ = a)s™ dF@ + [ (% = e dF(z)
0 b
] _ Ele—-px _ allkp——t < .

But, as p decreases to zero, p ‘(1 — a;) tends to $: ; thus also b, tends to 8 .
Also (¢ — a1)p ' converges to i — z. Hence, by dominated convergence
theorem and the hypothesis of the Lemma, (10) is proved.

Now, since ey — 1, given K with 0 < K < 1, by making p small enough, we
can make a; > K. Then we have:

+oo
Ele — a2 f (a1 — ¢ ) dF (z)
—p"llogK
> (an — K)1 — F(—p 'log K)].
Hence, putting 2 = —p ' log K, it follows from (10) that:
lim SUPsaie 21 — F(2)] £ (—log K)'(1 — K)™*4

and this establishes the lemma.

TuEorREM 4. If EX® < o, then in order that all the moments of Z, converge to the
moments of the normal distribution N (0, 1), it is necessary that all the moments of
X be finite.

Proor. The proof will be by induction. Since EX® < o, the convergence of
EZ: to the kth central moment of the normal variate N (0, 1) is equivalent to

(11) lim,,_,o p%k’)-'k =K.
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We will assume that EX*" < « for an integer » = 4, and that (11) holds for
every integer &, and we will prove that EX** < o. The theorem will thus
be proved.

Let us go back to the proof of Lemma 2. For 7 = 2, we have:

4+1—%4=<i and EX""Y < o,
and for 7 = 1, 1 = 0; so we obtain:
lim,no o = K, + (1/7)87" " limpao o ¥ E(e™F — )"

Then the last limit must be zero, and, by Lemma, 3, this implies that EX? < «
for every ¢ < ir + 1, in particular for ¢ = %(r 4 1). The theorem is thus proved.
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