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1. Summary. Invariant tests of the hypothesis that =, = X, are based on
the characteristic roots of $,S;%, say ¢; = ¢z = --- = ¢p, where ; and X, and
S; and S; are the population and sample covariance maitrices, respectively, of
two multivariate normal populations; the power of such a test depends on the
characteristic roots of £,=;". It is shown that the power function is an increasing
function of each ordered root of £,=;" if the acceptance region of the test has the
property that if (¢i, - - -, ¢p) is in the region then any point with coordinates not
greater than these, respectively, is also in the region. Examples of such acceptance
regions are given. For testing the hypothesis that ® = I, a similar sufficient con-
dition is derived for a test depending on the roots of a sample covariance matrix
S, based on observations from a normal distribution with covariance matrix
X, to have the power function monotonically increasing in each root of =.

2. Tests of the equality of two covariance matrices. Samples of size N; and
N are drawn from N(u®, ;) and N(u®, ), respectively, where N (¢, =;)
denotes a p-variate nonsingular normal distribution with mean vector u'” and
covariance matrix ¥; . On the basis of these data we wish to test the null hy-

pothesis

Hy:Z = 3.
Since the null hypothesis is invariant with regard to transformations
(2.1) X® 5 AX® + p®, X? 5 AX® * b,

where X is distributed according to N (u'”, £;) and A is any nonsingular matrix
and b and b® are any vectors, we ask for test procedures that are invariant
with regard to transformations (2.1). A minimal sufficient set of statistics con-
sists of the sample mean vectors and the sample covariance matrices £, 8, and
£? S, based on the samples from N(u®, ;) and N (u®, =), respectively. Any
invariant test depending on this sufficient set of statistics depends only on the
characteristic roots of $,S;".

The power of any invariant test depends on the parameters only through the
characteristic roots of 23", say v1 = v2 = --- = v,, which are the roots of
|E1 — =] = 0. The null hypothesis can then be stated as

HO:'YI= e = oy = 1.
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1060 T. W. ANDERSON AND S. DAS GUPTA
In this paper we are interested in tests against alternatives

Hyiviz1l, =1, ..., p; i_il'yf>p,
or

D
Hyvis 1, i=1, - ,p; 2 v<p
The alternatives H; , for example, can also be defined as pairs of =; and =, such
that a'S1a/a’S:a = 1 for every nontrivial p-vector a, or equivalently pairs of
normal distributions such that the variance of a’X" is at least as great as the
variance of a’X® for every vector a.

3. The monotonicity property. We first consider the problem of testing H,
against H; . The nature of the alternative hypotheses suggests that a good test
procedure is one for which the null hypothesis is rejected if the characteristic
roots of 8,57 are large. The tests we consider have acceptance regions such that if
a pair of S; and S; leads to acceptance of H, so does another pair with each
characteristic root no greater than the corresponding root of the first pair. The
main result of this paper is that such a test has a power that increases as each
ordered root of X;%;" increases. For the dual problem of testing H, against H,
we consider the test procedures having the above acceptance regions as rejection
regions; then the power of such a test will decrease as each ordered root of ;55"
increases.

Let chy(A) = --- = ch,y(A) denote the characteristic roots of the p X p
matrix A, and let ch(A) = [chi(A), ..., ch,(A)]. The main result of this paper
is proved using the following theorem:

TaEOREM 1. Let X:p X n(n = p) be a random matrix having density

(2.2) F(X; 2, m) = (2r) 2™ exp [} tr =7 XX,
where = is positive definite. Let ¢y = co = --- = ¢, be the characteristic roots of XX’
and o be a set in the space of ¢1, - - -, ¢p Such that when a point (¢1, -+, ¢p) isn

w 80 18 every point (c1, -+ ,¢,) forei = c; (¢ =1, ---, p). Then the probability
of the set w depends on = only through c¢h(=) and is a monotonically decreasing
function of each of the characteristic roots of =.

The proof of the theorem involves the following two lemmas:

LemMa 1. The distribution of ch(XX'), where X has the density f(X; =, n),
is the same as the distribution of ch [(AY)(AY)'], where Y has the density f(Y; 1, , n)
and A s the diagonal matriz having ch} (£), - - - , ch () as its diagonal elements.

Proor. There exists a p X p orthogonal matrix L such that & = LA’L'.
It can be seen that the density of Y = A™'L'X is f(Y; I, , n), and

ch(XX') = ch [(LAY)(LAY)'] = ch [(AY)(AY)].

LumMA 2. Let A be a positive definite mairiz of order p, and D and D* be two
diagonal matrices of order p such that D* — D s positive semidefinite, and D s
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positive definite. Then
ch;, (DAD) = ch; (D*AD*), i=12 ---,p.

The above lemma follows from Corollary 2.2.1 of [2].

Proor oF THEOREM 1. Let £* be a positive definite matrix of order p such
that ch; (£*) = ch; (£),% = 1, --- p, and let A* denote the diagonal matrix
having ch} (%), .-, chi (2%) as its diagonal elements. Let 4(X) denote the
region [X:ch(XX') & w]. It follows from Lemma 1 that

Pr(v; %) =f £(X; 5, n) dX =f A(Y;1,, n) dY,
AX) B(Y,A)

where B(Y, A) is the set [Y:ch(AYY'A) ¢ w]. From Lemma 2, we have for any
ch; [A(YY')A] = ch; [A*(YY))A™.

If we write ¢; = ch; [(A*Y)(A*Y)] and ¢; = ch; [(AY)(AY)'], then it follows
from the structure of the set w that B(Y, A) D B(Y, A*). Hence Pr (w; ) =
Pr (w; £%).

Consider random matrices Uy:p X ny and Us:p X ne which are independently
distributed with densities f(U; ; 1, n1) and f(Us ; =2, no), respectively. The
sample covariance matrices S; and S, , as defined in Section 2, can be written as
n:S: = UU; (i = 1, 2) with normal densities. Thus any invariant test depends
only on the characteristic roots of (U;U1)(UsUs) ™, sayeci = = -+ = ¢, . We
usen; = N; — 1(i = 1,2).

THEOREM 2. Let w be a set in the space of the characteristic roots of (UyU7) (UsUs)™
satisfying the condition stated in Theorem 1. Then the probability of the set » depends
on =1 and =y only through ch(E:23") and is a monotonically decreasing function
of each of the characteristic roots of £,1X3".

First we prove the following lemma:

LemMa 3. The distribution of the characteristic roots of (UiU1)(UsUs)™ when
U, and U, are independently distributed with densities f(Uy; =1, ny) and
f(Uy 5 By, mg), respectively, is the same as the distribution of the characteristic
roots of (ViV1)(VoVa)™" when Vi and Vs are independently distributed with densities
f(Vy; T, m) and f(Va 5 I, , ns), respectively, where T is the diagonal matriz with
ch; (2:237) as its ith diagonal element.

Proor. There exists a p X p nonsingular matrix L such that £, = LIL/
¥, = LL’. It can be seen that V; = L™'U; and V, = L™'U; are independently dis-
tributed with densities f(V, ; T, n1) and f(V2 ; I, ny), respectively, and

ch [(U1U1)(U,U;) ™Y = ch [(VyV1)(VaVa) 7.
Proor or TuroreM 2. It follows from Lemma 3 that

f f(Ul; %, nl)f(U2; X, 77«2) dU; dU,
Q(UlvUZ)

= f S(Vy; T, 11)f (Ve Iy, me) dVy dVy = Pr(w; T),
Q(V1,Vg)
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say, where Q(U;, U.) denotes the region [U;, Us:ch{(U,U;)(UsU;)™"} € w].
Consider V, as fixed, and let (V,V;)™" = T'T, where T is nonsingular. Then the
density of W = TV, is f(W; TrT', n), and ch {(ViV1)(VaVs)™} = ch (WW').
Thus for any fixed V., we have

(2:3) [ F(Vis T, m1) dV: = [ F(W; TTT, n) dW,
R(V1) A(W)

where R(V:) denotes the region [V; ; ch{(V,Vi)(VsVs)™} € w).
Let T'* be a diagonal matrix such that I'* — T is positive semidefinite. It
follows from Lemma 2 that

1
3

ch; [TT*T'] = ch; [T*(T'T)r™] = ch; [F(T'T)rY = ch; [TrT].
From Theorem 1 and (2.3), we have
[ s m)dvi = [ (VT m) av,
R (V1) R(Vy)
for any fixed V.. Multiplying both the sides of the above inequality by

f(Vz;1,,n2) and integrating with respect to Vs , we have Pr (w; T') = Pr (w; T'™).
CoroLLARY 1. If an snvariant test has an acceptance region such that if

(c1, - -+, cp) is in the region, so is (ci, -~ - , ¢ ) for ¢; < c; , then the power of the
lest is a monotonically increasing function of each vy, .

CoRrOLLARY 2. The cumulative distribution function of ¢i, , iy, - - , Cs; , Where
(21, -+, @) s a subset of (1,2, ---, D), is a monotonically decreasing function
of each v; .

CoroLLARY 3. If g(c1, -+, ¢p) is monotonically increasing in each of its
arguments, a test with acceptance region g(ci. -+ -, ¢p) = u has a monotonically

increasing power function in each v; .

In particular, Corollary 3 includes tests with acceptance regions > % d.T; < a,
where d; = 0 and T'; is the sum of all different products of ¢; , - - - , ¢, taken i at a
time. Special cases of the above regions are

(nz/nl)”gci — IS1/iS] < q,
and
(ns/n1) 2 6 = tr (ST < a.

It can also be seen that Corollary 3 includes tests with acceptance regions
D2 m1aiWi < p, where a;; = 0, and Wy; = T:/T; (i > j). The two tests
proposed by Roy [4] having acceptance regions ¢; < a;and ¢, < a,, respectively,
are also special cases of Corollary 3. The monotonicity properties of these two

tests were announced by Mikhail [3], but his proof is not complete.

4. Discussions. If X* is distributed as X* + Y, where Y is normally dis-
tributed, independently of X, with covariance matrix ¥, then =} = =, + ¥
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and ch; (27=7") = ch, (,237), [2]. The implication is that if the first distribu-
tion becomes more spread out, there is greater probability of discovering it by a
test considered in Section 3.

The tests treated here are analogues of one-sided tests of the univariate
problem ¢ = o} . It is much more difficult to investigate tests with reasonable
power against all alternatives. A modification of the likelihood-ratio test (by
replacing N; by n; = N; — 1) has the acceptance region

[ Si™ e Sy[™
[n1S1 + ne Sy|rrtne = 7

a constant ([1], p. 249). It is difficult even to determine whether this test is
unbiased.

5. Tests that a covariance matrix is a specified matrix. The development of
Section 3 can also be applied to testing the hypothesis £ = I when a sample of
size n + 1 is drawn from N (y, £). (The hypothesis = = X, can be transformed
into this.) Since the hypothesis is invariant under orthogonal transformations
and changes of location, we ask for procedures that are invariant under these
transformations. Such procedures are based on ch(S), where S is the sample
covariance matrix. The matrix nS is distributed as XX’ in Theorem 1. It follows
from Theorem 1 that any invariant test with acceptance region such that if
(c1, =++, ¢p) is in the region so also is (¢1, -+, ¢;) with ¢; < ¢; has a power
function that is an increasing function of each characteristic root of =.

REmark. It can be seen from the proofs of Lemma 1 and Lemma 3 that we
did not use the explicit form (2.2) of f(X; ¥, n), but we have only used the prop-
erty of f(X; =, n) that if X has the density f(X; =, n) then Y = AX has the
density of f(Y; AXA’, n) for any nonsingular matrix A. Thus instead of assuming
(2.2), if we assume the above property of f(X;=, n), then Theorem 1 and
Theorem 2 will still hold. (That the probability of the set » depends on =; and
=, only through ch (=,%;") was indicated by Anderson, [1], p. 259, and Roy,
[4], p. 188, in the case of normality.) If the column vectors of X are assumed to be
independently and identically distributed, then a necessary and sufficient con-
dition for f(X; X, n) to have the above property is that the common density
function of the column vectors of X can be expressed as

p(x; 2) = |5[7g(x'=7x).
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