ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS'

By OLE BARNDORFF-NIELSEN

University of Minnesota

0. Introduction. This paper is concerned with some recent developments in
the theory of limit behaviour of extreme order statistics. Most of the paper is
devoted to the discussion of limit distributions and of stability properties for
order statistics of independent random variables. While the situation here is
already well explored, very little is known in the case of dependent random
variables. Those results that are known for the dependent case have been ob-
tained in the last few years.

In Section 1 we introduce notations and definitions and state a few elementary
facts concerning the distributions of the set of order statistics corresponding to
a set of independent, identically distributed random variables. Throughout
Sections 2, 3 and 4 we assume independence of the basic variables. In Section 2
we deal with limit distributions, while in Sections 3 and 4 we deal with stability
in probability and stability almost surely. Finally, in Section 5 we turn to the
dependence case, summarizing some recent results due mainly to Berman [3],
[4] and [5].

Our principal result is contained in Section 4; it is a proof of the sufficiency
of a simple condition for stability almost surely of the maximal order statistic.
That condition was introduced and studied by Geffroy [7].

The aim in writing this paper has been twofold: to give a brief summary of
the current state of research for the topic in question and to indicate certain
recent contributions to this topic due to the author. A number of contributions
are not mentioned; these are noted in the references.

I want to thank Professor Glen Baxter for the stimulating interest he has
shown in this work.

1. Preliminaries. Let X;, Xz, ---, X,., ---, be a sequence of random vari-
ables defined on a probability field (@, @, P). To any set X, Xz, -+, X,
(n=12---)let Xpn1, Xpn2, -+, Xun denote the corresponding set of order
statistics, where for all points w ¢ 2, X (w) is equal to the kth largest of the
values X1(w), Xa(w), -+, Xu(w). Thus X,1 = Xp2 = +-- 2 Xpn. Through-
out the paper &k will denote a fixed positive integer. We will study the limit
behaviour of sequences {X,;} of extreme upper order statistics. Obviously the
results we mention hold with trivial modifications for sequences {X, n—z}
of extreme lower order statistics.

In the sequel, unless otherwise explicitly stated, we assume the variables
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X, to be independent and identically distributed with common distribution
function (d.f.) F, where F(z) = P{X, Sz}, —»o <z < .
Letting Foi(2) = P{Xu < z} we have

k=1

Fut@) = £ (7) @)1 - 7)Y

(11) »
=(n-k+4+1) (k ﬁ 1)1 () £ — t)k—ldt;

the second equality follows by partial integration. Also we note, that
(12) P{Xwm < 2, Xnp1a >y} = (k * 1) F"™M(z)(1 — F(y))* forz < y.

Suppose F is continuous. The values of X;, X;, ---, X, are then almost
surely distinct and the following definition makes sense. We say that the rank
of X;in the set X1, X, -+, X, isr if X; = X,,,. We have

THuEOREM 1.1. Suppose F is continuous and let R; be the rank of X; in the set
X1, X», -+, X;. The random variables Ry, Ry, --- , R, , -+ - are independent
and P{R, =r} = 1/n,r=1,2, -+, n.

ReMarks. For a number of applications of this result see [14]. It follows for
instance, that if 4, is the event {X, = max (X1, -+, Xo1)} = {X, = Xui},
then 4,, 4;, -+, An, --- are independent and P4, = P{R, = 1} = 1/a.

Proor. Let z1, 2, - -+, z, be n distinet real numbers. We define a mapping
¢ from the set {(x;, , zi,, -+, z4,)} consisting of the n! vectors obtained by per-
muting the coordinates of (z1, 2, :-+, @.), into the set {(ri, ra, ++-, ra):
rn=1r=12;---r, = 1,2, -- - n}. The jth coordinate of (i, , zs, , - - - , s,)
is the rank of x;, in the set 2, , z4,, - -+ , @, i.e. the jth coordinate is r if x;; i
the rth largest among ;, , %, , - -+ , z;; . The mapping ¢ is one-to-one and onto
and therefore we have

(1.3)

rn=1r=12;.---;r =12, , N
Consequently
(14) P{R; = r;} = 1/i, ri=1,2---,4¢1=12 --+-,n
and

P{Ri=r1,Ro =12, -+, Ry = 1,}

(1.5)

= P{R] = Tl}P{Rz = 7'2} s P{Rn = 1‘,,},
q.ed.

2. Limit distributions. The problem of finding the family £; of all possible
(nondegenerate) limit distributions for sequences of the form b7 (Xm — an)
where a, and b, (b, > 0) are constants was attacked by several authors. For the
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case k = 1 a complete solution with specification of domains of attraction were
given by Gnedenko [8]. His results were generalized by Smirnov [17] to arbitrary
values of k. We state their main results.

TaEOREM 2.1. The family £, is given by

Ay(z) =0 2=0,a>0
(2.1)
= exp (—z%) z2>0,a>0
As(z) = exp (—(—2)° 2=0,a>0
22) 2(z) p (—(—2)%) o
=1 2>0,a>0
and
(2.3) As(z) = exp (—e ™) —o <z < o

REMARK. The clue to the proof of this theorem is the following simple observa-

tion.
Suppose that F, {a,} and {b,} are such that F,1(b,-+ a.) converges weakly to
some d.f. A, i.e.

(24) F"(buxr + a,) — A(z) YzeChy,

where Cy denotes the set of continuity points for A. Then for any positive integer
7 we have

(2.5) FY(bpt + i) — A(2) YzeCy
or
(2.6) F*(bat + ani) — A% () YzeCy.

It follows from a well-known theorem of Khintchine (see e.g. the book by
Gnedenko and Kolmogorov [9] pp. 40-42) that to every ¢ there exists constants
a; and B; such that A*(Bx +a;) = A(z), — 0 <z < .

TaEOREM 2.2. The family £ is given by

AP (z) =0 £=0,a>0
2.7 =
27) = [1/(k = 1)1 f_ et dt z>0,a>0,

AP () = [1/(k — 1)! ) T dt <0,a>0
8 P =W/ k-1 e 25 0,a

=1 z>0,a>0

and
(29) M@ =k — DI [ e —w <z<

Various generalizations of Theorems 2.1 and 2.2 have been obtained.
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Berman [5] has shown that the limit distribution for the maximal order statistic
of a random number of independent and identically distributed variables under
certain general conditions is a mixture of distributions from &£, .

As is well-known, in order to give a satisfactory treatment of the central
limit problem for sums of independent random variables one is led to consider
limit distributions of row sums from triangular arrays

Yll) le, "',Ylfl
Y21) Y22’ "',Y2rg

Ynly Yn2, "',Ym',,

where r, — ® as n — o« and where in each row the variables are assumed
to be independent. For a discussion of asymptotic distributions of the row
maxima from such arrays, see Logve [11], p. 333 and Maslov [12]. Rowsums
and rowmaxima are special instances of the general type of functionals of
(Ya1, Yu2, <+, Yar,) considered in [12].

3. Stability in probability. We say that a sequence {U,} of random variables
is stable in probability, if there exists a sequence of constants {a.} such that
U, — a, — 0 in probability (i.p.). Also we say that {U,} is majorized in proba-
bility by a sequence {a,}, symbolically U, < @, i.p., if P{U, > a,} — 0 as
n— o and that {U,} is minorized in probability by {a.}, symbolically a. < U,
ip., if P{U, < a,} = 0asn — . Clearly

(3.1) Up— G, —0ip.oa, —e<U,<Ka,+€¢ ip. Ye>0.

Elementary computations show (see [7]) that {X,:} is stable in probability
if and only if {X,,} is stable in probability and that in this case X — X — 0
i.p. as n — . Furthermore, from (3.1) we find

X —a,—0ip. e (1) n[l — F(a, +¢)]—0

(3.2) . We>o0.
(ii) n[l — F(a, — €)] > « :

Hence, if there is a number a such that F(a) = 1and F(a —¢) < 1, Ye> 0,
then trivially X, — @ — 0 i.p. In the rest of this section we shall therefore assume

F(z) <1, Va.
THEOREM 3.1. The sequence { X} is stable i.p. if and only if
(3.3) [1—F(x+ e)l/[l — F(z)] >0 as z— o, Ye>0.

ReMARK. Theorem 3.1 is due to Gnedenko [8]. As could be expected the cri-
terion (3.3) is a growth condition on F. Simple estimates show (see Geffroy
[7], p. 77) that (3.3) implies [¢ 2" dF(z) < ®, ¥ r > 0. The converse proposi-_
tion does not hold.
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Proor. It suffices to prove the theorem for & = 1.

Suppose that {X,,} is stable i.p. and that X,; — a, — 0 i.p. Without loss of
generality we may assume {a,} strictly increasing. To any z = a: and any
€ > 0 there is then a uniquely detenmned n such that a, — ¢/2 S 2 < @1 — /2.
Clearly

(34) M—=F(z+ o)/l — F(x)] = [1 — F(an + ¢/2)I/[1 — F(an1 — ¢/2)]

where, on-account of (3.2), the right hand side tends to 0 as z and hence » tends
to .

In order to show that, conversely, stability is implied by (3.3) let us associate
with any d.f. F a function 7" defined by F'(y) = inf {z:F(2) 2 y},0 =y £ 1,
where inf {z:F(z) = 1} is to be interpreted as + « if F(z) < 1, ¥ z and where
inf {x:F(z) = 0} is to be interpreted as — .

Letting a, = F (1 — 1/n),forn = 1,2, ---, we have F(an) 2 1 — 1/n,
F(a, — 0) <1 — 1/n and hence

(i) #ll — F(an — €)] Z [l = F(an — €)]/[1 — F(an — 0)]
(i) #ll = F(an + )] = [1 — F(an + €)1/[1 — F(an)]

It follows that (3.3) implies (3.2) (i) and ‘(ii) with @, = a, ; thus Xu1 — an —
0i.p.
From the proof we see
THEOREM 3.2. {X.i} is stable i.p. if and only if X — an — 0 ip., (where
= F'(1 — 1/n)) and this condition is equivalent to

(3.6) Xour K an + €ip. Ye> 0.
(The sufficiency of (3.6) follows from the inequalities
1—-F(x+e)< 1 — Flon + ¢/2)

(3.5) Ye>0.

(3.7) 1-F@ ~1- 11”'(01,.;(— e/2)/2)
=1= F(a:_,_l —0 - < (n+ D1 — Flan + ¢/2)],

holding for a, — €/2 £ ¢ £ o1 — €/2.)

4, Stability almost surely. We say that a sequence {U,} of random variables
is stable almost surely if there exists a sequence of constants {a.} such that
U, — @, — 0 almost surely (a.s.). Also we say that {U,.} is majorized a.s. by a
sequence {a,}, symbolically U, < @ a.s., if P{U, > a,i.0.} = 0 (i.o. being an
abbreviation for infinitely often) and that {U,} is minorized a.s. by {a.}, sym-
bolically a, K U, a.s., if P{U, £ a,i.0.} = 0. Clearly

(4.1) U,—a,—0as.&a — e U, <Ka, + eas. Ye>0.

In order to analyze these concepts, as applied to order statistics, we shall invoke
the following lemma, which is a slight strengthening of Lemma 1*in [2].
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Lemma 4.1. Let Ay, Az, -++, As, -+ be a sequence of events and let A3, denote
the complement of A, . If
(4.2) g:l P(A,NA%) <
or
(4.3) ;P(A',’, NAp) <

then P(lim sup A, — lim inf 4,) = 0.

REMARK. The convergence part of the Borel-Cantelli is an immediate con-
sequence of this result.

Proor. Let I, be the indicator function for A, . Then {I,:n = 1,2, ---} isa
stochastic process with state space {0, 1}. The event lim sup A, — lim inf 4,
is the event that infinitely many transitions take place between state 0 and state
1, which under (4.2) or (4.3) has probability 0.

Now, suppose that {\,} is a nondecreasing sequence of real numbers and let
Ani = {Xar = M}. Then

(44)  PAuNAsus) = (" 1) O™ = FOa)).
k—1

From Lemma 4.1 we have
THEOREM 4.1. If P{Xu S N} = 0asn — © and

(4.5) S A EO)) T = FOu))’ <

then N, K X1 a.8.
A partial converse of Theorem 4.1 is given by
TurorREM 4.2. If the sequence {(F(\,))"} is nonincreasing and

(4.6) g;a(F(M))”(log logn)/n = «

then P{X,1 < N i0} = 1.

REMARK. It can be proved that convergence of the series (4.6) always entails
P{X,1 = M\ 1.0.} = 0 or (equivalently) N, < X, a.s., whether {(F()\,))"} is
nonincreasing or not, cf. [2], p. 392.

For a proof of Theorem 4.2, see [2].

Using the fact (see [7], p. 49) that P{X., > M} — 0 an n — o implies
P{X,1 > M} — 0 and thus F*(\,) — 1, from Lemma 4.1 we also find

THEOREM 4.3. If P{Xu > M} > 0asn — wand D aein® (1 — F(\))F < »
then X K N, a.8.

Since {X,1 > A\, 1.0.} = {X, > A\, 1.0.}, in view of the Borel-Cantelli lemma,
we have the following partial converse of Theorem 4.3.

THEOREM 4.4. If D ney (1 — F(\,)) = o then P{X,1 > A, i.0.} = 1.
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REMARK. Theorem 4.4 and its converse, which also follows immediately from
the Borel-Cantelli lemma, are due to Geffroy [7].

Let {a,} be a nondecreasing sequence of real numbers. From (4.1) and
Theorems 4.1 and 4.3 it follows, that if for alle > 0, F"(a, — ¢) —> 0asn — o,
and if the following two series converge

(4.7) ;n"‘lzr"(aﬂ — [l — Ftp1 — )] <
and
(4.8) gln""l[l — F(a, + )ff < o

then Xnx — @, — 0 a.s. Hence, if there is a number a such that F(a) = 1 and
Fla — ¢) <1, Y ¢ > 0, then trivially X,» — a — 0 a.s. In the rest of this sec-
tion we shall therefore assume F(z) < 1 V z.

As in Section 3, let a, = F'(1 — 1/n). We note

Lemma 4.2. Suppose that F is continuous and strictly increasing and let ¢ > 0.

(i) Convergence of the series

(4.9) g,‘ln"—‘ﬁ"'(a,. — o1 — Fans: — )T

18 tmplied by convergence of the integral

_[*L—F(— o 1—F(z — e
(4.10) I= ATy exp <—__i—:T(x)_—) dF (z).

(ii) Convergence of the series

(4.11) f}n"‘lll — F(an + ¢)I*

n=1

18 equivalent to convergence of the integral

(1 — F(z)*"?
e T = Fz — O

Proor. Let o, = F'(1 — 1/t),1 < t < o and consider the integral

(4.12) J = dF (z).

(413) r-| " e — L — Flay — OF d.

We have

f”-‘.l F P oy — €)[1l — Fay — €)]*dt = 2P (an — €)[1 — F(ants — Or;

thus, if I'* is finite, so is the series (4.9). Substituting (1 — F(z) Y~ for tin (4.13)
we obtain
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+c0 _ — € k — e
(419 1*=[ ] [1(1 F ;f”(x))H)I] exp <1°g1 F (’;,(x) )> iF(z) < I.

The first assertion of the lemma, is established.

Next, let J* = [7#7[1 — F(a; + ¢)]* dt. Convergence of J* is clearly equiv-
alent to convergence of the series (4.11). The substitution ¢ = (1 — F(x) )!
yields

(4.15) r= "l = Flz + O/ — F(2))*} dF ().

Let — o < ¢ < «. We find

‘[l = F(z + OF
. a = Faym @

(2 - s[5 e o

J* < o« implies convergence of (4.11) and hence n[l — F(a, + €)] — 0; con-
sequently we have (cf. Section 3, Formula (3.7))

(™= F+ I
(417) J'< w=J = f_,, (1 — F(z))*

A simple calculation shows that, conversely, J < o« =J * < o, which proves
(ii).

Lemma 4.2 enables us to derive

TurEOREM 4.5. The condition

® (1= F@)"
is sufficient for stability a.s. of {Xui}. For k = 1 4t is also necessary.

ReMARKs. The integral in (4.18) is to be interpreted as a Lebesgue-Stieltjes
integral. The necessity assertion of Theorem 4.5 is due to Geffroy [7].

Proor. Let € > 0 be such that the functions F(z) and 1 — F(z — ¢) have
no discontinuity points in common and such that a. + € # an, ¥ nand
k = 1,2, --- . Then, by some rather tedious and complicated considerations we
can show, that there exists a continuous, strictly increasing d.f. F* with the fol-
lowing properties: ¥ n, o = F* (1 — 1/0) 2 an, F(an + ¢) < F¥*(ah + ¢),

(4.19) WL — Flan + ) < o1 — F*(a} + )1 + 27

(4.16)

dF(z + €) < .

and
A= )™ o (1 — F(z))
— [I — F¥*@x — €)J dF*(x) —-1= j:_w i=7F@—OF dF (x)
(4.20) . - »
= A= F@) g + 1.

= . =@ =P
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Thus, from Lemma 4.2 we see that the Condition (4.18) is equivalent to

(4.21) D0l — Flan + ) < » Ye> 0.
n=1

If this condition is satisfied we have n[l — F(a, + ¢)] = 0 ¥ ¢ > 0 and hence

[1—F(z —¢€]/(1 — F(x)) > «=,asx — =, ¥ e > 0. Therefore (4.18) implies

21 — F(z — )f ( 1-—F(:1:-—e)>
(4.22) ‘/:_w a——FW"T—eXp‘ ——'—]-——_m— dF(IIJ) < © VG > 0.
Proceeding analogously to above one finds, invoking again Lemma 4.2, that
(4.22) in turn implies

(4.23) S0 T (o — €[l — F(anss — ) < « Ye> 0.
n=1

To sum up, (4.18) is equivalent to (4.21) and implies (4.23) and this together
with Theorems 4.1, 4.3 and 4.4 show the validity of Theorem 4.5.

Clearly

THEOREM 4.6. {X,1} is stable as. if and only if X1 — o, — 0 a.s., and this
condition is equivalent 10 Xn1 < o + e a8, ¥V e > 0.

Theorems 3.2 and 4.6 reveal a peculiar ‘“‘skewness’ in the distribution of the
extreme order statistics.

6. Dependent basic random variables. Berman has considered the question of
limit distributions for { X,;} when the variables X, are exchangeable (see [5]). A
basic tool in his investigation was the de Finetti representation formula for the
finite-dimensional distributions of X;, Xs, -+, X,, -+ (see [11], pp. 364—
365). The following theorem exemplifies the type of his results.

Suppose the variables X, are exchangeable, so that we have a representa-
tion formula for P{X; < 71, X2 < 22, -, X» < 2} of the form

P{X1§$1,X2§$2,"' ,Xn§$n}

(5.1) .
= [ Hu@)Hu(@) i+ Hlzn) dP(w)
where for each fixed w in the sample space @, H,, is a (one-dimensional) d.f. Let
{as}, {bs} and the d.f. @ be such that G(z) < 1, V¥ z, and G"(b.z + @,) —
A3(x)’ Vze (_ 0, °°)'
THEOREM 5.1. We have P{b;"(Xa1 — a,) = z} — A(z), YV 2 & Cy for some
d.f. A if and only if there exists a df. W such that W(0) = 0 and

lim,», P{log H,(u)/log G(u) < z} — W(x) Vzely.

In this case A(z) = [T[As(x)]) AW (s), V =.
A related result was obtained, also by Berman, in [4]. Specifically, if the
sequence {X,} is a stationary Gaussian process with EX, = 0, EX% = 1 and
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EX, X = p,0 < p < 1form = n, then
P{Xu — [2(1 — p) log )t < z} — (21rp)_*f et gy,

The proof runs as follows. The process {X,} is representable in the form
X,=Y+ Z,where Yand Z,,Z,, :--+ ,Z,, - - are independent and Gaussian
with EY = EZ, = 0, EY’ = p,EZ% =1 —p(n=1,2, ---). Clearly X,; =
Y + max (Z,, ---, Z,) and from (3.2) we obtain max (Zy, -+, Z,) —
[2(1 — p) log n]* — 0 i.p. As Professor Berman has kindly pointed out to me,
this last result is not a special case of Theorem 5.1, cf. [5], p. 903.

A sufficient condition for stability i.p. of {X,1} when {X,} is stationary is
given by (Berman [3]).

Lemma 5.1, If the sequence {a,} satisfies

(1) [l — F(a, + €)] — 0, (ii) n[l — F(a, — €¢)] — » and

2 “ . P{X1>a,,—e,X,->a,,—e}
(5.2) =it 1) P> 0 — <] -1
Ye>0andn— o, then X1 — a, — 0, i.p.

CoROLLARY 5.1. Let {X,} be stationary Gaussian with EX, = 0, EX5 = 1
and letr, = EX1X,, (n =1,2, ---). If nr, — 0 then X1 — (2logn)* — 0, i.p.

For a proof see [3]. A similar result for continuous time stationary Gaussian
processes is derived in [6].

We conclude with a proposition due to Robbins [15].

TuEOREM 5.2. Let the random variables X, be nonnegative and identically dis-
tributed.

If EX1 < o for some r > 0, then X, — 0, a8 If r = 1, then, moreover
n V" EX,1 — 0.

Proor. First, let us consider the case r = 1. EX; < o implies

2. P{X, > ne} < o, Ve>0
n=1
and hence
P{limsup n ' X,1 S ¢} = 1, Ye>0,
or
(5.3) 7 X —0 a.s.

For any A ¢ @ we have
Xu 1<
0 | =MdPpg =Y | XidP = | X:1dP.
4N N i=1J4 A

Thus the set functions f 7" X1 dP are uniformly absolutely continuous and
this together with (5.3) imply n'EX,; — 0.
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The transformation X5 = X7, and the inequality (EX,)” < EX», (r = 1)
reduces the general case to the one treated above.

CoroLLARY 5.2. If the random variables X, are identically distributed and
Ee™ < oo, then X1 — logn — — =, a.s.
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